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Predicting demographics 
from meibography using deep 
learning
Jiayun Wang1,3,4, Andrew D. Graham1,3, Stella X. Yu1,2,4 & Meng C. Lin1,3*

This study introduces a deep learning approach to predicting demographic features from meibography 
images. A total of 689 meibography images with corresponding subject demographic data were used 
to develop a deep learning model for predicting gland morphology and demographics from images. 
The model achieved on average 77%, 76%, and 86% accuracies for predicting Meibomian gland 
morphological features, subject age, and ethnicity, respectively. The model was further analyzed 
to identify the most highly weighted gland morphological features used by the algorithm to predict 
demographic characteristics. The two most important gland morphological features for predicting age 
were the percent area of gland atrophy and the percentage of ghost glands. The two most important 
morphological features for predicting ethnicity were gland density and the percentage of ghost 
glands. The approach offers an alternative to traditional associative modeling to identify relationships 
between Meibomian gland morphological features and subject demographic characteristics. This deep 
learning methodology can currently predict demographic features from de-identified meibography 
images with better than 75% accuracy, a number which is highly likely to improve in future models 
using larger training datasets, which has significant implications for patient privacy in biomedical 
imaging.

The Meibomian glands of the human eyelid secrete lipid-rich meibum that during blinking forms a thin film 
on the surface of the tears1,2 that serves to inhibit evaporation of the tear aqueous and stabilize the tear film by 
reducing surface tension3,4. Dysfunction of the Meibomian glands leading to insufficient or poor quality lipids 
is a primary cause of dry eye (DE)5,6, a globally impactful and highly prevalent ocular surface disease7. Infrared 
meibography is the biomedical imaging of the Meibomian glands, viewed by everting the eyelids, using a thermo-
graphic camera. Meibography has been increasingly used in recent years for clinical diagnosis and management 
of Meibomian gland dysfunction (MGD) as well as in clinical research on MGD and DE; however, there are few 
studies that have examined how the detailed morphological structure of these glands relates to the signs and 
symptoms of MGD and DE8–10. Furthermore, it is unknown how the detailed morphology of the Meibomian 
glands relates to subject demographic characteristics such as age, gender, and ethnicity—all of which are well-
documented factors in the prevalence and severity of MGD and DE11–16.

There are a number of studies to date that have employed traditional statistical techniques to examine broad, 
global assessments of the Meibomian glands such as the overall percent area of gland atrophy (e.g., the 4-level 
meiboscore of Arita17, the 5-level score and software-based atrophy area of Pult18) and their relationships to vari-
ous subject characteristics. With few exceptions, however, the detailed, local morphological characteristics of 
the glands in meibography images (e.g., length, width, tortuosity, local contrast) have not been well studied with 
respect to subject characteristics or clinical outcomes. A major impediment to detailed morphological analysis 
of meibography images and to its use in both research and clinical eyecare has been the technical difficulty and 
time-consuming nature of quantifying local meibography features19. In a previous work we developed a deep 
learning model that proved capable of quickly and automatically identifying and quantifying eight different met-
rics describing both global and local morphological features in novel meibography images with good accuracy20. 
In this study we will build on this work by training a supervised machine learning model to identify and quantify 
the morphological features observed in de-identified meibography images and then use these images and image-
derived metrics to predict the demographic characteristics of the subjects who provided them.
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The significance of attempting to predict subject demographics from meibography images is twofold. First, 
it offers an alternative approach to traditional associative statistical modeling for determining whether the mor-
phology of the Meibomian glands differs depending on age, gender, or ethnicity—all known factors in MGD 
and DE. Rather than testing a null hypothesis under certain assumptions, we train the machine learning model 
not only to learn to use meibography image features to predict subject demographic characteristics but to reveal 
what the most highly weighted image features were in contributing to this prediction. This could shed further 
light on the etiology of MGD at a more detailed level, and possibly reveal novel relationships.

Second, de-identified biomedical imaging is not currently considered Protected Health Information (PHI), 
and is therefore not subject to the strict regulations on its use, sharing, storage and transmission21–23. These 
regulations, however, are in active debate and are likely to evolve rapidly, as ocular features such as retinal vein 
patterns, eye movements, and iris patterns have been proven to provide unique biometric “fingerprints” that can 
be used to identify individuals with a high level of accuracy24–26. It seems reasonable, given the highly detailed 
morphology revealed in meibography images, that meibography could be developed into a biometric identifier 
as well, thus requiring far greater patient safety and privacy protections—even for de-identified images—than it 
is subject to today. The field of artificial intelligence and machine learning is evolving rapidly and its capabilities 
ever-expanding. If we can train a machine learning model now to take de-identified meibography images as 
input, and based solely on the detailed morphology revealed in those images, reconstruct some characteristics 
of the subjects that provided them, it is very easy to imagine with larger training datasets and improved models, 
being able in the near future to reveal a patient’s individual identity.

Methods
Development and evaluation datasets.  This study utilized a meibography image dataset from a previ-
ously published work20 along with corresponding subject demographic information for deep learning algorithm 
development and evaluation.

Subject recruitment and imaging.  Adult human subjects (age ≥ 18 years) were recruited from the University of 
California (UC), Berkeley campus and surrounding community for single-visit ocular surface evaluations at the 
UC Berkeley Clinical Research Center during the period from 2012 to 2017. Eligible subjects were free of any 
eye conditions contraindicating meibography, not currently taking medications with effects on the anterior eye 
or adnexa, and with no history of ocular surgery. The research protocol adhered to the tenets of the Declaration 
of Helsinki and was approved by institutional review board (UC Berkeley Committee for Protection of Human 
Subjects). Informed consent was obtained from all subjects after being informed of the goals, procedures, risks, 
and potential benefits of the study. Meibography images of the upper eyelids for both eyes were captured with the 
OCULUS Keratograph 5M (OCULUS, Arlington, WA), a clinical instrument that uses an infrared light with a 
wavelength of 880 nm for Meibomian gland imaging27. During image capture, the ambient light was off with the 
subject’s head positioned on a chin rest and forehead strap apparatus. A total of 750 images were collected and 
pre-screened to rule out images that did not capture the entire upper eyelid (61 images or 8.90%); the remaining 
689 images were used in the analysis.

Demographics.  Subject demographics were documented during the visit. Three demographic characteristics 
were studied in this work, namely age, gender and ethnicity. Histograms depicting the distributions of these 
demographic features are presented in Fig. 1. The lack of sufficient subjects of some ethnicities for adequate 
training of the model allowed us only to make accurate predictions for our two largest groups: Caucasians and 
Asians. The total number of images used for ethnicity prediction is thus 421, while all 689 images were used for 
age and gender prediction.

Morphological features.  The development of an interpretable deep learning model for predicting demographic 
characteristics requires morphological features such as gland length and tortuosity as data sources. Eight mor-
phological features were quantified for each meibography image as in our previous work: number of glands, 
gland density, percent area of gland atrophy, gland local contrast, gland length (mm), gland width (mm), gland 
tortuosity and percentage of ghost glands20. Histograms of these morphological features are presented in Fig. 2.

Figure 1.   Histograms (in percentage) of the demographic features of our meibography image dataset.
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Data partitioning.  Meibography images were partitioned into two mutually exclusive subsets for training and 
evaluating the deep learning model. Images collected from years ranging from 2015 to 2017 were combined to 
constitute the development set, while those collected from years ranging from 2012 to 2013 were combined to 
constitute the evaluation set. All images were taken with the same instrument under the same protocol. The 
development set was further divided randomly into 2 subsets for training and validating the model. Specifically, 
the validation set was used to fine-tune the model hyperparameters (e.g., model learning rate) for the model that 
was trained on the training set. The evaluation set was used for evaluating and testing the performance of the 
model. Subject demographics stratified on development and evaluation datasets are shown in Table 1. Different 
subsets had similar demographic feature distributions, so that the distributional shift between the training and 
evaluation sets was minimized.

Algorithm design and training.  The overall goal is to design an interpretable deep learning model that 
can predict the demographic characteristics of a subject. Interpretability requires the model to be able to identify 
the most highly weighted morphological features used by the algorithm to predict the demographic charac-
teristics of a subject directly from their meibography image. A two-stage model was designed with a first stage 
attribute learning model to identify and quantify morphological features from input meibography images, and a 
second stage demographic prediction model to predict subject demographic features from meibography images 
and corresponding first-stage morphological features. Figure 3 depicts the overall pipeline.

Figure 2.   Histograms and density plots of morphological features from meibography images.

Table 1.   Subject demographics of the meibography image dataset used in the study.

Development

EvaluationTrain Tune

Images (n) 389 97 203

Subject demographics

Subjects (n) 260 94 109

Mean (SD) age (years) 27.8 (13.1) 27.0 (11.5) 27.9 (12.7)

% female subjects 69.6 66.0 69.4

Figure 3.   Overall pipeline of the interpretable deep learning model for predicting demographics from images.
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Deep attribute learning.  In the first stage, a deep learning model was developed to predict and quantify the 
morphological features of a given meibography image (first part of Fig. 3). The primary goal of the attribute 
learning model is to provide value ranges rather than exact values of morphological features for the final demo-
graphic predictions. There are two underlying reasons for this: (1) predicting coarser value ranges is easier than 
predicting precise values for the deep learning model, especially since the dataset (689 images in total) was not 
sufficiently large-scale to learn precise morphological feature values. (2) Morphological attribute prediction was 
an intermediate result, with the major purpose of interpreting relationships between demographic features and 
morphological features. Predicting value ranges is adequate for the purpose. For example, it would be acceptable 
for predicting gender to find that females exhibit a high probability of having > 15 glands rather than a high prob-
ability of having exactly 16 glands. Therefore, our first stage deep learning model predicts morphological features 
to fall within ordinal ranges (or, in the case of ghost gland percentage, binary classes).

The morphological attribute learning model specifically predicts a ternary level rather than an exact numerical 
value for each morphological feature. As depicted in Fig. 4, the model predicts each morphological feature value 
to fall below µ− σ (level 1), between µ− σ and µ+ σ (level 2), or above µ+ σ (level 3), where µ and σ refer to 
the mean and standard deviation of the morphological feature predicted value distribution. Table 2 provides the 
µ and σ for all morphological features investigated. In the case of percentage of ghost glands, 77.1% images (or 
531 images) have 0 ghost glands. Therefore, for the percentage prediction, a binary class was used (percentage 
of ghost glands = 0 or > 0).

Specifically, for each morphological attribute (e.g., gland length), a meibography image was fed to a ResNet18 
(a residual neural network of 18 convolution layers)28 to obtain a 64-dimensional vector. The vector was made 
available by directly adding a fully connected layer after the last convolution layer of ResNet18. The 64-dimen-
sional feature vector was then fed to another fully connected layer for classifying the corresponding attribute 
(e.g., ternary level of the gland length). The process was the same for all 8 morphological attribute prediction 
models, meaning that for each meibography image, there were 8 64-dimensional vectors with each one indicating 
the corresponding morphological attribute.

Demographic feature prediction.  In the second stage, a deep learning model was developed to predict demo-
graphic features from both meibography images and corresponding attributes from the attribute learning model 
in stage one (second part of Fig. 3). Specifically, a given image was input to ResNet1828 to obtain a 64-dimen-
sional vector. The vector can be considered as an embedding that encodes information of the image. The vector 
was combined with 8 predicted vectors of morphological features from the stage one deep attribute learning 
model. All vectors are of the same dimension. The combined 9 vectors were input to a fully convolutional layer 
for predicting the demographic features.

Figure 4.   Distribution mapping for the deep attribute learning model. The original distribution of a 
morphological feature is mapped to a normal distribution. The deep attribute learning model predicts if a 
morphological feature value is below µ− σ , between µ− σ and  + σ, or above µ+ σ , where µ and σ refer to the 
mean and standard deviation of the original morphological feature value distribution.

Table 2.   Means and standard deviations of morphological features. *Measured in pixel intensity of the 
meibography image. The lowest intensity the sensor could detect was 0 and the highest was 255. **For the 
percentage of ghost glands prediction, a binary classification was used (= 0, > 0).

Percent atrophy 
(%) Gland density (%) # of glands

Gland local 
contrast*

Gland length 
(mm)

Gland width 
(mm)

Gland tortuosity 
(%)

% ghost glands 
(%)**

Mean 19.7 40.7 15.9 22.2 7.7 0.35 63.6 7.8

Standard deviation 13.8 7.1 2.8 7.2 1.0 0.05 10.6 16.9
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Among the three demographic features to be predicted, gender and ethnicity are categorical, while age is 
continuous numerical. Following Dana et al.29 based on dry eye prevalence, subject age was stratified into three 
categories: (1) ≤ 39 years old, (2) > 39, < 50 years old, and (3) ≥ 50 years old.

The final output of the demographic prediction model can be interpreted by analyzing the learned coefficients 
of the morphologic features used to predict the demographic characteristics. Higher coefficient values indicate 
a stronger weighting of a morphological feature in predicting a demographic feature.

Evaluation metrics.  The model was trained on the training set with varying hyperparameters (e.g., dif-
ferent learning rates) and the highest performance model on the validation set was selected for final evaluation 
on the evaluation set. The highest performance models were selected for attribute learning and demographic 
prediction, and were evaluated by their classification accuracy.

Classification evaluation with tolerance threshold.  The evaluation technique was used for evaluating deep attrib-
ute learning performance. As described in the previous section, the stage one deep attribute learning model pre-
dicts the trinary level of each morphological feature (or binary, for percentage of ghost glands). However, near 
the transition limits of different levels ( µ− σ and µ+ σ ), the morphological features may be very similar and 
difficult to classify. A similar technique described in Wang et al.30 was applied here. A tolerance threshold near 
the grading transition limit was necessary. As illustrated in Fig. 5, the tolerance threshold was set at 0.03σ , and 
classifying morphological feature values within µ− 1.06σ to µ− 0.94σ , and µ+ 0.94σ to µ+ 1.06σ either to 
their ground-truth or adjacent level were both considered as correct predictions. Note that the tolerance thresh-
old does not apply to predictions of the percentage of ghost glands as that is a binary classification.

Five‑fold cross‑validation.  For evaluating both attribute learning and demographic prediction performance, in 
addition to reporting classification accuracy on the evaluation set with the best performing model on the valida-
tion set, five-fold cross-validation accuracy is also reported. First, the entire dataset (including both development 
and evaluation subsets) was randomly partitioned into 5 folds. Second, 5 iterations of training and evaluation 
were conducted. At each iteration, 4 folds were used for training and the remaining fold for evaluation. The mean 
and standard deviation of the classification accuracy on each fold were reported as five-fold cross-validation 
accuracy.

Results
Attribute prediction performance.  Table 3 reports the performance of the stage one attribute prediction 
accuracy for morphological features. Specifically, model accuracies on the evaluation set and five-fold cross-
validation are reported. For attribute prediction (including percent atrophy, gland density, number of glands, 
gland local contrast, gland length, gland width, gland tortuosity and percentage of ghost glands), the model 
achieved 76.5% accuracy on the evaluation set, and 76.6% average accuracy for five-fold cross-validation. The 
average standard deviation of the five-fold cross-validation was 4.0%.

Demographic prediction performance.  For each subject demographic feature, classification accuracy 
of the stage two demographic prediction model is reported. Similarly, accuracies on the evaluation set and five-
fold cross-validation are reported. Additionally, the coefficients for Meibomian gland morphological features 
were also analyzed by ranking coefficients and identifying the most highly weighted morphological features in 
the demographic predictions. The average values of morphological features in the different demographic groups 
were then compared. For each split in the five-fold cross-validation, morphological features ranked from most 
highly weighted to least were recorded. For both age and ethnicity, the 2 most important features were observed 
to be consistent for every split. Average values for the top 2 most important morphological features stratified on 
demographic group are reported below.

Figure 5.   The relaxed morphological feature classification evaluation rule with the tolerance threshold. The 
tolerance threshold was set at 0.06σ , and classifying an image with percent atrophy µ− 1.06σ to µ− 0.94σ , 
µ− 0.06σ to µ+ 0.06σ , and µ+ 0.94σ to µ+ 1.06σ either to its ground-truth or adjacent level were 
considered as a correct predictions.
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Age.  The five-fold mean (SD) classification accuracy for age was 75.7 (4.5)% (Table 4 upper). The sensitivi-
ties and specificities of the models for distinguishing each age group from the other two were as follows: (a) 
for [age ≤ 39 years] vs. [age > 39  years], sensitivity and specificity were 86.1% and 89.2%, respectively; (b) for 
[39  years  < age < 50  years] vs. [age ≤ 39  years & age ≥ 50  years], sensitivity and specificity were 70.1% and 
89.4%, respectively; (c) for [age ≥ 50  years] vs. [age < 50  years], sensitivity and specificity were 71.1% and 94.7%, 
respectively. Coefficient analysis showed the two most important morphological features for determining age 
were percent area of gland atrophy and percentage of ghost glands (Table 4 lower). For the three age groups from 
youngest to oldest, the average percent area of atrophy increases from 18.1 to 25.2 to 33.6%, while the average 
percentage of ghost glands increases from 5.6 to 14.2 to 28.7%. Older subjects exhibited a higher percent area of 
atrophy and a higher percentage of ghost glands compared with younger subjects.

Gender.  The five-fold mean (SD) classification accuracy for gender was 56.5 (5.0)% which is close to a random 
guess accuracy of 50%. Therefore, gender could not be accurately predicted from meibography images with the 
proposed deep learning model, nor could important morphological differences be identified.

Ethnicity.  As shown in the histogram of ethnicity (Fig. 1c), although the entire dataset was comprised of sub-
jects of eight different ethnicities, most ethnicities did not have sufficient sample sizes for trustworthy predic-
tions to be obtained. Therefore, predictions were only conducted for Asian and Caucasian subjects (75% of all 
subjects). The five-fold mean (SD) classification accuracy for ethnicity (predicting if the subject is Asian or 
Caucasian) was 85.7 (4.5)% (Table 5 upper). The sensitivities and specificities of the models for distinguishing 
Asians and Caucasians were 86.4% and 85.1%, respectively. Coefficient analysis showed the two most important 
Meibomian gland morphological features for determining ethnicity were gland density and percentage of ghost 
glands (Table  5 lower). Asian subjects exhibited approximately 2.8% greater gland density than Caucasians. 
Asian subjects exhibited 2.6% fewer ghost glands than Caucasians.

Representative meibography images stratified on age and ethnic group, illustrating the most highly weighted 
Meibomian gland morphological features used by the prediction model, are shown in Fig. 6.

Ablation study on the attribute module and image as additional input.  The demographic prediction model takes 
both learned MG attributes and the meibography image itself as inputs. A post-hoc ablation study was con-
ducted to understand the effects of each input on the final classifications. As reported in Table 6, removing either 
the attribute module or the full image as additional input leads to lower age and ethnicity classification accuracy.

Table 3.   Classification accuracy for morphological feature prediction of the attribute learning model. The 
model predicts the gland morphological features with an average accuracy of 77%. Note that the second 
row reports accuracies on the evaluation set and the last two rows reports means and standard deviations of 
accuracies on the five-fold cross-validation set.

Percent 
atrophy 

Gland 
density 

Number 
of glands

Gland 
contrast

Gland 
length 

Gland 
width 

Gland 
tortuosity 

Percent 
ghost gland Average

Evaluation 
accuracy 

(%) 
73.1 75.2 82.1 78.5 76.6 76.1 78.4 72.1 76.5 

Cross-
validation 
accuracy - 
mean (%) 

73.0 76.7 80.1 79.1 77.7 76.0 78.3 71.7 76.6 

SD (%) 3.9 4.1 4.0 4.5 3.8 4.0 4.3 3.8 4.0 

Table 4.   Age prediction results. The model predicts the subject age with an average accuracy of 77%, and the 
two most important morphological features are percent area of gland atrophy and percentage of ghost glands. 
First 4 rows: classification accuracy for subject age prediction of the demographic feature prediction model. The 
second row reports accuracies on the evaluation set and the last two rows report means and standard deviations 
of accuracies on the five-fold cross-validation set. Last two rows: Average values for the top 2 most highly 
weighted (largest model coefficients) morphological features stratified on age group.

Age ≤ 39 Age < 39, > 50 Age ≥ 50 Average 
Evaluation accuracy 

(%) 86.1 70.1 71.1 75.8 

Cross-validation 
accuracy - mean 

(%) 
85.9 71.1 70.2 75.7 

SD (%) 4.4 4.5 4.5 4.5 

Avg. % atrophy 18.1 25.2 33.6 25.6 

Avg. % ghost glands 5.6 14.2 28.7 16.2 



7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:15701  | https://doi.org/10.1038/s41598-022-18933-y

www.nature.com/scientificreports/

Grad‑CAM visualization.  Gradient-weighted Class Activation Mapping (Grad-CAM)31 is a technique that 
produces a visual explanation for decisions from convolutional neural networks. We applied Grad-CAM to 
understand the important regions of the meibography images that contributed to the final classifications. As 
shown in Fig.  7, the most important visual regions strongly trended toward the glandular image areas. The 

Table 5.   Ethnicity prediction results. The model predicts the subject ethnicity with an average accuracy of 86%, 
and the two most important morphological features are gland density and percentage of ghost glands. First 4 
rows: classification accuracy for subject ethnicity prediction of the demographic feature prediction model. The 
second row reports accuracies on the evaluation set and the last two rows report means and standard deviations 
of accuracies on the five-fold cross-validation set. Last two rows: average values for the top 2 most highly 
weighted (largest model coefficients) morphological features stratified on ethnic group.

Caucasian Asian Average 
Evaluation accuracy 

(%) 85.1 86.4 85.8 

Cross-validation 
accuracy – mean (%) 84.6 86.8 85.7 

SD (%) 4.9 4.0 4.5 

Avg. gland density (%) 39.2 42.0 40.6 

Avg. % ghost glands 10.5 7.9 9.2 

Figure 6.   Meibography images stratified on age and ethnic group, illustrating the most highly weighted 
Meibomian gland morphological features used by the prediction model. Older subjects exhibited more MG 
atrophy and ghost glands. Caucasian subjects exhibited lower gland density and more ghost glands compared 
with Asian subjects.

Table 6.   Ablation studies of the attribute learning module and using images as additional inputs in the 
demographics prediction model. The proposed model with both attribute learning model and images as 
additional inputs leads to the highest prediction accuracy. For age and ethnicity classification, removing either 
the attribute module or the image as additional input leads to decreased classification accuracy.

Classification accuracy (%) Attribute only Image only Attribute + image

Age 68.7 72.4 75.8

Ethnicity 79.2 83.0 85.8
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Grad-CAM results provide an additional, qualitative measure of confidence that the prediction model was more 
strongly weighting image features associated with the MG regions, as opposed to image artifacts with no clinical 
importance.

Hardware and inference speed.  The networks were trained and evaluated on a single NVIDIA GeForce GTX 
2080 Ti GPU with NVIDIA CUDA v11.0 (NVIDIA, Santa Clara, CA, USA). The average processing time per 
meibography image was approximately 0.21  s, allowing for the processing of 1000 images in approximately 
3.5 min.

Discussion
The work presents an interpretable deep learning model to predict demographics from meibography images. The 
proposed approach makes the following two contributions: (1) using deep learning models to find morphologi-
cal features predictive of demographics offers an alternative to traditional associative modeling and may reveal 
new relationships; (2) the proposed approach investigates an early stage of the technology that could be used to 
develop meibography images into a biometric fingerprint capable of identifying individuals.

Previous studies have explored the associations between imaging of the eyelid and systemic conditions such as 
diabetes mellitus32 that are thought to increase the risk of DE33. The symptoms of MGD and DE are well known 
to be associated with other subject-level characteristics14–16, including age34,35 and ethnicity36. The subjectively 
graded % area of gland atrophy in meibography images is thought to increase with age11, and ethnic differences 
in subjectively graded meibography have been documented in a pediatric cohort13. To our knowledge, very little 
other information directly relating meibography image features and demographics is currently available. Given 
the likely links between eyelid condition as revealed in biomedical imaging, subject-level characteristics, and 
symptoms of MGD and DE, in this study we explored associations between subject demographics and specific 
Meibomian gland morphological features, as well as image-level meibography features.

The results showed that older subjects had a higher percent area of gland atrophy and a higher percentage of 
ghost glands. Previous works37,38 have identified age-related changes Meibomian gland structure and function, 
including changes to the acini, loss of progenitor stem cells, abnormal meibum secretion, and MGD. The deep 
learning method also identified age-related changes with a new focus on changes in gland morphology which 
was quantitatively analyzed directly from meibography images.

The deep learning model was unable to predict gender with high accuracy. Previous works12 however identi-
fied differences in the anatomic lid margin and gland morphology in different gender groups. It is possible that 
the inability of the deep learning model to accurately predict gender from meibography images was due to an 
insufficient number of subjects to train the model to identify subtle intergroup differences. It may also be the case 
that the proposed deep learning method itself was not amenable to identifying gender groups, and may require 
alternative machine learning architectures. Finally, it may be that meibography images alone do not provide 
enough information for accurate gender prediction, and may need to be combined with clinical signs such as tear 
film breakup time in order for the model to recognize gender differences. Future work is warranted to determine 
whether meibography images encode sufficient gland morphological information for revealing subject gender.

As for ethnicity, Caucasians subjects exhibited a higher percentage of ghost glands and lower gland density 
compared with Asian subjects. Kim et al.13 observed ethnic differences between Asians and Caucasians in Mei-
bomian gland morphological patterns in the pediatric population by qualitatively identifying MG morphological 
changes. They found that the presence of gland shortening is more frequent in Asians while gland tortuosity is 
more frequent in Caucasians. The major differences compared to this study lie in efficiency and extensibility. In 

Figure 7.   Grad-CAM was applied to the demographic prediction model to visually understand the important 
regions of the meibography images that contributed to the final classification. The most important visual regions 
strongly trended towards the glandular image areas.



9

Vol.:(0123456789)

Scientific Reports |        (2022) 12:15701  | https://doi.org/10.1038/s41598-022-18933-y

www.nature.com/scientificreports/

the Kim et al. study, 70 meibography images were manually annotated for morphological features, compared 
with this study which employed a deep-learning-based model to automatically analyze morphological features 
directly from meibography images. The present study was also able to utilize a much larger meibography image 
dataset ( n = 689 ), and no additional manual annotation is needed for novel images.

In the United States, health care providers and researchers are held accountable for the privacy and security 
of protected health information (PHI) and individually identifiable health information39. However, the frequency 
and magnitude of health care data breaches continues to climb40, with significant impacts for patients in the areas 
of identity theft, faulty treatment, insurance coverage, job security, financial well-being, and mental health41,42. 
While the majority of a person’s medical and health information is considered PHI and thus subject to strict regu-
lations on its use, storage, and dissemination, this is currently not the case for de-identified medical imaging21–23. 
This is already an area of active debate, as biometric identifiers of unique individuals continue to be developed, 
and many types of medical images are highly unlikely to be exactly homomorphic between individuals, particu-
larly with today’s high resolution imaging and sophisticated image processing software. In the case of the eye, 
retinal vein patterns, iris patterns, and idiosyncratic eye movement patterns have all been shown to be accurate 
biometrics24–26. Meibography, given the highly detailed morphology of the Meibomian glands, could also serve 
as a biometric identifier with some further development of current technology. In this study, we have shown that 
a relatively straightforward deep learning algorithm trained on a fairly small dataset was capable of extracting 
some of the demographic characteristics of the subjects that provided the de-identified meibography images. 
Further development of the models and larger training datasets will certainly gain in accuracy and specificity, 
with individually identifiable meibography images on the horizon. While there is a potential for meibography’s 
use as a highly accurate biometric identifier, there is also concern with the lack of regulation and enforcement 
of the privacy and security of such images (assuming they are de-identified). Considering that combining data 
from multiple sources (e.g., multi-modal biometrics) significantly increases the likelihood of accurate individual 
identification43,44, it seems clear that urgent updates are needed in the regulations and enforcement governing the 
security of all biomedical imaging of patients and research subjects, regardless of whether it has been anonymized.

The study has certain limitations. Following a previous work20, only Meibomian gland morphology in the 
central upper eyelid was analyzed as imaging the central region of the tarsal plate with an optimal focus causes 
defocus of the peripheral glands. The decreased imaging quality of peripheral glands could lead to inaccurate 
analysis and thus only central regions were utilized. This work thus only presents results on demographic features 
and central tarsal plate morphological features as morphological features of peripheral glands were not used in 
this analysis. Additionally, images from lower eyelids were excluded in this study because gland features (e.g., 
% atrophy area) referencing to the lower tarsus area cannot be accurately quantified because the border of the 
lower tarsus is not accurately defined when eyelid eversion exhibits an exposed area that is larger than the lower 
tarsus20. It has also been reported that the border of the lower tarsus and the glands can be blocked by conjunc-
tival folds19. For ethnicity, due to limited and imbalanced samples for some races, only Asian and Caucasian 
meibography images were distinguished using this deep learning approach. This leaves morphological features 
for other ethnic groups undiscovered.

In conclusion, an interpretable deep learning model to predict demographic characteristics from meibography 
images was developed. The model could be helpful in furthering the understanding of the relationships between 
local features of Meibomian gland morphology and subject demographics. Future work will extend the model 
to investigate detailed aspects of Meibomian gland morphology and the signs and symptoms of MGD and other 
types of DE. Finally, this work suggests that de-identified meibography images—currently not considered PHI 
and thus not subject to strict regulations on their use and dissemination—could in the future be developed into 
biometric identifiers of individuals with the rapidly evolving capabilities of artificial intelligence.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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