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New design model for high 
efficiency cylindrical diffractive 
microlenses
Ye Li, Huan Zhao, Sheng-Fei Feng, Jia-Sheng Ye, Xin-Ke Wang, Wen-Feng Sun, Peng Han & 
Yan Zhang

A new model, i.e., the decreasing thickness model (DTM) is proposed and employed for designing the 
cylindrical diffractive microlenses (CDMs). Focal performances of the designed CDMs are theoretically 
investigated by solving Maxwell’s equations with the boundary element method. For comparison, the 
CDMs designed by the traditional equal thickness model (ETM) are also studied. Theoretical simulations 
demonstrate that focal performances of the designed CDMs are improved a lot via replacing the 
traditional ETM with the proposed DTM. Concretely, the focal efficiency is heightened and the focal 
spot size is shrunk. Experimental measurements verify the theoretical simulations well. Especially, 
the above-mentioned improvements become more prominent for the CDM with a higher numerical 
aperture.

The diffractive microlens, as one of the most important components in micro optical systems, is widely used in 
beam focusing1–4 and object imaging5–7. Therefore, scientists make great efforts on its design8–13, performance 
analysis14–18, fabrication19–22 and practical applications23–25. In past literatures, the cylindrical diffractive micro-
lens (CDM) is generally designed from a refractive microlens by removing the vertically abundant 2π phases14,26. 
Consequently, the CDM is a Fresnel lens with maximum phase of 2π. Since the Fresnel lens has equal maximum 
thicknesses in all the Fresnel zones, this design model is called as the equal thickness model (ETM).

If we reconsider the ETM more carefully, we will find its two drawbacks. Firstly, at the boundary jump point 
between two adjacent Fresnel zones, although the phase change is 2π along the optics axis direction, it deviates 
from 2π with respect to the preset focal position. Secondly, since different parts of the CDM boundary are seg-
mented and downward shifted from a definite refractive microlens, they concentrate the incident plane wave 
on a series of sub focuses in the optics axis. As a result, at the preset focal position the field interference effect is 
destructed. Especially, if the CDM has a high numerical aperture, the destruction will be serious due to a large 
number of Fresnel zones27,28.

Aiming at the above two drawbacks, we propose a new model for designing the CDM by making two improve-
ments. Firstly, the boundary jump points between two adjacent Fresnel zones are relocated, where the phase 
change is exactly 2π with respect to the preset focal position. Secondly, the CDM boundary equation is exactly 
deduced from Fermat’s principle, so that the incident plane wave inside a given Fresnel zone accumulates the 
same optical path. With this new design model, the CDM boundary can be determined. Since the maximum 
thickness monotonously decreases with the increase of the Fresnel zone ordinal number, we name it as the 
decreasing thickness model (DTM).

In order to verify the feasibility of the proposed DTM, we apply it to several design examples of the CDMs. 
Since the CDMs have very fine structures smaller than the wavelength, their focal performances are analyzed 
by solving Maxwell’s equations with the boundary element method (BEM)14,29–31. To show the superiority of 
the proposed DTM, the CDMs designed by the traditional ETM are also investigated. The characterized focal 
performances include focal efficiency, focal spot size and actual focal length. The focal efficiency is defined as the 
percentage ratio of the focused energy in the central lobe to the total incident energy. The focal spot size is defined 
as the dimension between the first lowest intensity positions on both sides of the central lobe in the actual focal 
plane. The actual focal length is the axial distance from the maximum intensity point to the origin point.
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Moreover, the designed CDMs are fabricated by a photonic professional GT 3D laser lithography system32. 
Then, focal performances of the fabricated CDMs are experimentally measured. We expect for a significant 
improvement in experimental focal performances of the CDM designed by the DTM. If so, it will promote the 
application of the CDM to practical systems.

The layout of this paper is as follows. In the second part, we theoretically analyze and compare focal perfor-
mances of the CDMs designed by the DTM and the ETM. Physical explanations are presented. In the third part, 
experimental fabrication and characterization of the CDMs are described in detail. The experimental measure-
ments of the CDMs are compared with the theoretical simulations. In the fourth part, a concise conclusion is 
made. Finally, the design principle of the proposed DTM and the relevant formulas are delivered in the fifth part.

Theoretical Performances of the Designed Cylindrical Diffractive Microlenses (CDMs)
Detailed design principles and processes of the CDMs are described in Section 5 with formulas. On selecting a set 
of parameters, we can calculate the boundary profiles from Eqs (3) and (9) in Section 5 for the CDMs designed by 
the ETM (blue curve) and the DTM (red curve), respectively, as shown in Fig. 1. Apparently, the CDM designed 
by the ETM has the same maximum thicknesses in all the Fresnel zones, while the maximum thickness of the 
CDM designed by the DTM is gradually decreased. The selected parameters are as follows. The upper and lower 
regions are filled with glass and air, whose refractive indices33 are n1 = 1.5 and n2 = 1.0, respectively. The dual 
CDMs have the same diameters and the same preset focal lengths of D = 20 μm and f = 4 μm, respectively. The 
dual CDMs have the same f-numbers (f/# = f/D) of f/0.2. The incident wavelength is λ = 0.633 μm. The incident 
plane wave is TE polarized, namely the electric field is along the infinite z-axis.

For the dual f/0.2 CDMs in Fig. 1, there exist three differences: the boundary jump position, the boundary cur-
vature, and the maximum thickness. Locations of the boundary jump points are obtained from Eqs (5) and (7) in 
Section 5 for the CDMs designed by the ETM and the DTM, respectively. Since the boundaries of the dual CDMs 
are respectively calculated from Eqs (3) and (9) in Section 5, the boundary curvatures are different. Besides, the 
maximum thicknesses are different for the dual CDMs, due to different boundary equations and different jump 
positions.

Next, focal performances of the dual f/0.2 CDMs are theoretically analyzed by the BEM, to show the supe-
riority of the DTM to the ETM. Figure 2 displays the focused intensity distributions for the dual f/0.2 CDMs 
designed by the DTM and the ETM, respectively. The red and blue districts represent the regions with high and 
low intensities, respectively. It is seen from Fig. 2(a) that the CDM designed by the DTM has one focal spot with 
normalized peak intensity higher than 50. In contrast, it is seen from Fig. 2(b) that the CDM designed by the ETM 
has three axial focal spots with normalized peak intensity lower than 20. Physical explanations are as follows. For 
the CDM designed by the DTM, all the boundary points have the same phases or have a phase difference of 2π 
multiples with respect to the preset focal position, where a perfectly constructive interference effect is observed. 
However, for the CDM designed by the ETM, as the segmented boundaries are axially shifted from the refractive 
lens boundary, they generate a series of axial focal spots. It is concluded from Fig. 2 that the CDM designed by the 
DTM performs much better than that designed by the ETM.

In order to compare focal performances of the dual CDMs more precisely, the normalized intensity distribu-
tions in the preset focal plane are plotted in Fig. 3(a). The red and blue curves correspond to the CDMs designed 
by the DTM and the ETM, respectively. Compared with the CDM designed by the ETM, the CDM designed by 
the DTM has a much higher peak intensity and a smaller focal spot size. Numerical results reveal that the nor-
malized peak intensities are 54.3 and 18.4 for the CDMs designed by the DTM and the ETM, respectively. The 
corresponding focal efficiencies are 38.61% and 19.85%. The focal spot sizes are respectively 0.57 and 0.89 μm. 
Figure 3(b) draws the normalized axial intensity distributions for the dual CDMs. The dashed lines mark the 

Figure 1.  Boundary profiles of the cylindrical diffractive microlenses (CDMs) designed by the decreasing 
thickness model (DTM) and the equal thickness model (ETM). The red and blue curves correspond to the DTM 
and the ETM, respectively.
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actual focal lengths. It is seen from Fig. 3(b) that the CDM designed by the DTM has a distinct focus, which 
situates around the preset focal position (−4 μm). In contrast, the CDM designed by the ETM has three focuses. 
Numerical results reveal that the actual focal lengths are 4.06 and 3.93 μm for the CDMs designed by the DTM 
and the ETM, respectively. Above all, the CDM designed by the DTM has a much higher focal efficiency, a smaller 
focal spot size and a more accurate focal length, in comparison with the CDM designed by the ETM. Namely, it is 
demonstrated again that the DTM is much superior to the ETM in the design of the CDM.

To furtherly show a general superiority of the DTM to the ETM in designing the CDMs, we select several 
f-numbers from 0.2 to 1.4 with an interval of 0.2. The preset focal lengths ranges from 4 to 28 μm. Other param-
eters are the same as above. The theoretical focal performances of the designed CDMs are tabulated in Table 1. 
When the preset focal length is smaller than 20 μm, focal efficiency for the DTM is much higher than that for 
the ETM. For large preset focal lengths, the focal efficiencies for the DTM and the ETM differ little since the two 
designed microlens profiles gradually coincide, according to Eqs (3) and (9) in Section 5. With the increase of the 
preset focal length, the focal spot size for the ETM is irregularly varied because the CDM boundaries in different 
Fresnel zones produce destructive interference at the preset focal position. In contrast, the focal spot size for the 
DTM monotonically increases with the increase of the preset focal length, since the CDM boundary is optimally 
designed based on the Fermat’s principle. For each preset focal length, the focal spot size for the DTM is smaller 
than that for the ETM. In addition, the CDM designed by the DTM has a more accurate focal length than that 
designed by the ETM. In conclusion, the DTM is much superior to the ETM for designing the CDMs, especially 
for small f-numbers.

Figure 2.  Focused intensity distributions for the dual f/0.2 CDMs designed by using (a) the DTM and (b) the 
ETM, respectively.

Figure 3.  Normalized intensity distributions for the dual f/0.2 CDMs in (a) the actual focal plane and (b) the 
axial plane. The red and blue curves correspond to the CDMs designed by DTM and the ETM, respectively.
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Experimental Focal Performances of the Fabricated CDMs
The photonic professional GT 3D laser lithography system from the German Nanoscribe Company is utilized 
for fabrication of the above-designed CDMs, which provides a fast fabrication platform for arbitrarily com-
plex three-dimensional nanostructures with extraordinary high resolution via two-photon polymerization34–36. 
Figure 4(a,b) show the scanning electron microscope (SEM) images of the fabricated CDMs designed by the 
DTM and the ETM, respectively. Figure 4(c,d) are magnified images of Fig. 4(a,b) for clearer observation of the 
cross-sectional profiles. The preset focal lengths of the fabricated microlenses are 4 μm. In Fig. 4(a,b), the fabri-
cated microlens profiles are overall uniform along the longitudinal direction. In Fig. 4(c,d), the fabricated ridges 
have sharp corners, being consistent with the designed profiles. It is also noted in Fig. 4(c,d) that there are some 
slight concaves on the cross-sectional profiles of the fabricated microlenses, because of instability during the 
system operation.

Once the CDM fabrication is finished, we use the Olympus BX61 microscope to measure focal performances 
of the CDMs, as shown in Fig. 5. The collimated white light source is radiated from the build-in halogen lamp 
of the Olympus BX61 microscope. After passing through the CDM, it will be focused. A microscope objective 
(100×, NA = 0.9) is utilized to image the focal line on a charge-couple-device (CCD) camera. Since the CDM is 
designed at wavelength of 0.633 μm, a single-band bandpass filter37 (Semrock FF01-631/4–25) is inserted in front 
of CCD camera. The filter transmission band ranges from 0.629 to 0.633 μm with transmissivity higher than 90%.

Preset focal length (μm) Focal efficiency (%) Focal spot size (μm) Actual focal length (μm)

Design Model DTM    ETM DTM    ETM DTM    ETM

4 38.61    19.85 0.57    0.89 4.06    3.93

8 48.19    32.39 0.85    1.79 8.11    10.19

12 55.72    42.85 1.07    1.98 11.94    15.54

16 64.51    52.24 1.27    1.99 15.83    18.95

20 69.38    65.03 1.51    2.37 19.69    22.19

24 73.10    73.38 1.74    3.11 23.35    25.73

28 75.66    73.46 1.98    2.11 27.28    29.12

Table 1.  Theoretical focal performance comparison between the CDMs designed by the DTM and the ETM.

Figure 4.  Scanning electron microscope images of the fabricated f/0.2 CDMs designed by the (a) DTM and the 
(b) ETM. (c,d) Are magnified cross-sectional images of (a,b) respectively.
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To see the dynamic focusing property of the fabricated CDMs, we measure the intensities in several 
cross-sectional planes along the propagation direction, as shown in Fig. 6. The upper row of Fig. 6 shows the 
measured intensities of the f/0.2 CDM designed by the DTM. Figure 6(a–g) correspond to the cross-sectional 
planes at y = −1 μm to y = −7 μm for every 1 μm. From the upper row, the fabricated CDM designed by the 
DTM firstly converges and then diverges. The actual focal plane lies at y = −4 μm. The lower row is the same as 
the upper one except that the DTM is replaced by the ETM. An obvious difference is that the CDM designed by 
the ETM has a much longer axial focal depth, ranging from y = −2 μm to y = −5 μm. The actual focal plane for 
the ETM situates at y = −2 μm.

To see the normalized focal plane intensity more clearly, the experimental linescan intensity profiles of 
Fig. 6(d,k) along the x-axis are drawn in Fig. 7(a). The red and blue curves correspond to the CDMs designed by 
the DTM and the ETM, respectively. It is clearly seen from Fig. 7(a) that the CDM designed by the DTM has a 
higher peak intensity and a smaller focal spot size, compared with the CDM designed by the ETM. In experiment, 
the normalized peak intensities are 203 and 99 for the CDMs designed by the DTM and the ETM, respectively. 
The corresponding experimental focal efficiencies are 16.23% and 11.42%, and experimental focal spot sizes are 
1.10 and 1.38 μm. The differences between the experimental measurements and theoretical simulations can be 
explained as follows. The CDMs are theoretically designed to focus the incident plane wave to the preset focal 
position. However, the experimental SEM images show that the fabricated microlens profiles have slight concaves, 
which makes local curvature of the fabricated profile deviate from that of the designed profile. The fabricated 
profiles can no longer bend the incident plane wave to the preset focal position because of profile deviation, weak-
ening the experimental focal performances. Accordingly, the experimental focal efficiency is decreased and the 
experimental focal spot size is increased, in comparison with the theoretical simulations.

We also extract the axial intensities from Fig. 6 and plot the normalized axial plane intensities, as shown in 
Fig. 7(b). The axial peak intensity for the DTM is much higher than that for the ETM. In addition, the experimen-
tal actual focal position is near to the preset one (−4 μm) for the DTM, while it deviates away for the ETM. It can 
be explained in the following. For the CDM designed by the DTM, from Fig. 3(b) the theoretical axial intensity 
profile has a single sharp peak around −4 μm. Although there exist some slight concaves in the fabricated micro-
lens profile, the experimental actual focal length does not change. In contrast, for the CDM designed by the ETM, 
from Fig. 3(b) the theoretical axial intensity profile has three peaks. Especially, the two peaks around −2.5 and 
−4 μm almost have identical intensity values. In this case, the fabrication errors of the microlens profile severely 
influence the measured axial intensities. That’s why the experimental actual focal length becomes 2.0 μm for the 
fabricated CDM designed by the ETM (the axial step is 0.5 μm in experiments).

Besides, we also fabricate the dual CDMs whose focal lengths are 6 μm, i.e., the f-numbers are f/0.3. The exper-
imental (theoretical) focal efficiencies are 20.13% (37.13%) and 16.99% (29.09%) for the f/0.3 CDMs designed by 
the DTM and the ETM, respectively. The corresponding experimental (theoretical) focal sizes are 1.37 (0.66) and 
1.86 (1.38) μm. The experimental (theoretical) actual focal lengths are 6.5 (6.12) and 8.0 (6.55) μm for the f/0.3 
CDMs designed by the DTM and the ETM, respectively. It is proved again in experiment that the CDM designed 

Figure 5.  Schematic of the experimental system for measuring the focal performances of the fabricated CDMs.
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by the DTM has a higher focal efficiency, a smaller focal spot size and a more accurate focal length, compared 
with the CDM designed by the ETM.

Conclusion
In this paper, the DTM is proposed for designing the CDMs based on Fermat’s principle without any approx-
imation. Focal performances of the CDMs are theoretically analyzed by the BEM. The CDMs designed by the 
traditional ETM are also analyzed for comparison. Superiority of the DTM to the ETM is clearly demonstrated for 
designing the CDMs. This superiority becomes more notable, when the f-number is decreased. For instance, for 
the f/0.2 CDM, the focal efficiency is almost doubled and the focal spot size is reduced by one half. In addition, the 
designed CDMs are fabricated by the photonic professional GT 3D laser lithography system. Experimental focal 
performances of the fabricated CDMs agree well with the theoretical simulations. The proposed DTM is a more 
powerful tool for future designs of CDMs in practical application systems.

Design Principle of the Proposed Decreasing Thickness Model with Formulas
Before elaborating the proposed DTM, we firstly recall the design principle of the traditional ETM, as shown in 
Fig. 8(a). In Fig. 8(a), the black dashed curve represents the boundary of a cylindrical refractive microlens, which 
separates the whole space into two parts. The upper part is a dielectric with refractive index n1; the lower part is 
another dielectric with refractive index n2. The xy plane is the incident plane, and the CDM is infinite along the z 
axis. The CDM has an aperture size of D, which is symmetric about the y axis, as shown in Fig. 8(a). A plane wave 
with TE polarization is incident upon the refractive microlens boundary Γ, and it is assumed to be focused at (0, 
−f) owing to phase modulation of the microlens. The incident wavelength is λ in vacuum.

According to Fermat’s principle, the boundary height of the refractive microlens hr(x) satisfies the following 
equation:

Figure 6.  Measured intensities in several cross-sectional planes along the propagation direction. The upper 
row corresponds to the f/0.2 CDM designed by the DTM. (a–g) Correspond to the cross-sectional planes at 
y = −1 μm to y = −7 μm for every 1 μm. The lower row is the same as the upper one except that the DTM is 
replaced by the ETM.

Figure 7.  Measured intensity distributions for the fabricated f/0.2 CDMs in (a) the preset focal plane and (b) 
the axial plane. The red and blue curves correspond to the f/0.2 CDMs designed by the DTM and the ETM, 
respectively.



www.nature.com/scientificreports/

7Scientific Reports | 7: 16334  | DOI:10.1038/s41598-017-14787-x
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where x is the transverse coordinate; f is the preset focal length of the CDM. After simplification, Eq. (1) can be 
written in an explicit form as follows38:
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In fact, the refractive microlens boundary in Eq. (2) is hyperbolic. As is well known, in wave optics an additional 
2π phase does not change the optical element performance. The cylindrical refractive microlens can be thinned 
into a CDM by removing the abundant 2π phases. The obtained CDM is a traditional Fresnel lens, whose bound-
ary height in the m th Fresnel zone is given by

h x h x h h x m h m( ) Mod [ ( ), ] ( ) , 0, 1, 2, 3, , (3)m
F r r= Δ = − Δ = ± ± ± …

where Mod[A, B] = A − Int[A/B] × B stands for the residual function; Int[A/B] represents the maximum integer 
not larger than A/B; A and B are positive real numbers; m = 0, ±1, ±2, ±3, … denotes the Fresnel zone ordi-
nal number. The jump height Δh corresponds to 2π phase modulation, i.e., we have 2π(n1 − n2)Δh/λ = 2π or 
Δh = λ/(n1 − n2). It is seen from Eq. (3) that the CDM has equal maximum thicknesses in all the Fresnel zones, as 
shown by the blue curve in Fig. 8(a). Accordingly, this design model is called as the ETM. Now we can determine 
the boundary jump points from the following equation

= Δh x m h( ) , (4)m
r old

where xm
old represents the transverse coordinate of the jump points, as shown in Fig. 8(a). Eq. (4) can be simplified as
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Although the ETM attenuates a refractive microlens into a CDM, it has two problems. Firstly, although the phase 
change is 2π in the vertical direction at the Fresnel zone edges, it deviates more or less in regard to the preset focal 
position. Secondly, since the segmented CDM boundary parts are moved from the refractive microlens, they no 
longer focus the incident plane wave on a same focal position. Two rectification strategies are proposed to over-
come the two problems. One rectification is the boundary jump positions. In the new design model, the phase 
variation is exactly 2π with respect to the preset focal position at the Fresnel zone edges. Therefore, the boundary 
jump point of the m th Fresnel zone satisfies:

λ+ − = = ± ± ± …n x f n f m m( ) , 0, 1, 2, 3, (6)m2
new 2 2

2 ∣ ∣

where xm
new represents the new boundary jump positions, as shown in Fig. 8(b). On simplifying Eq. (6), we can 

write xm
new as

x
n

m m n f m1 2 , 0, 1, 2, 3,
(7)m

new

2

2 2
2λ λ= ± + = ± ± ± …

Figure 8.  Schematics of the CDMs designed by (a) the ETM and (b) the DTM.
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The other rectification is the boundary profile of the CDM, which is strictly deduced by Fermat’s principle. That 
is to say, two arbitrary light beams in the same Fresnel zone have the same optical path, and its mathematical 
expression is:

+ + = + +n h x n x f n x h x f( ) ( ) [ ( ) ] , (8)m
m m1 2
new 2 2

2
2 2

where hm(x) denotes the boundary height in the m th Fresnel zone of the CDM. By substituting Eq. (7) into Eq. 
(8), we can obtain the CDM boundary equation as
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In Fig. 8(b), the red curve shows a schematic of the CDM boundary, whose maximum thickness decreases as the 
Fresnel zone ordinal number increases. Therefore, we call the new design model as the DTM.
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