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Abstract
This study was conducted to supplement single and complex probiotics to investigate the 
effect on growing-finishing pigs and compost. In experiment 1, the 64 crossbred ([Landrace × 
Yorkshire] × Duroc) pigs with an initial body weight of 18.75 ± 0.33 kg and a birth of 63 days 
were assigned to a completely randomized four treatment groups based on the initial body 
weight (4 pigs in a pen with 4 replicate pens for each treatment). For 13 weeks, the dietary 
treatments were provided: 1) Control (CON; basal diet), 2) T1 (CON + 0.2% Bacillus subtilis), 
3) T2 (CON + 0.2% Saccharomyces cerevisiae), 4) T3 (CON + 0.2% Bacillus subtilis + 0.2% 
Saccharomyces cerevisiae). In experiment 2, the pig manure was obtained from Chungbuk 
National University (Cheongju, Korea) swine farm. For 12 weeks, the supplementary treat-
ments were provided: 1) CON, non-additive compost; 2) T1, spray Bacillus subtilis 10 g per 
3.306 m2; 3) T2, spray Bacillus subtilis 40 g per 3.306 m2; 4) T3, spray Saccharomyces cer-
evisiae 10 g per 3.306 m2; 5) T4: spray Saccharomyces cerevisiae 40 g per 3.306 m2; 6) T5, 
spray Bacillus subtilis 5 g + Saccharomyces cerevisiae 5 g per 3.306 m2; 7) T6, spray Sac-
charomyces subtilis 20 g + S. cerevisiae 20 g per 3.306 m2 and there were 6 replicates each 
treatment. In experiment 1, During the overall experimental period, T3 showed significantly 
improved (p < 0.05) feed conversion ratio and average daily gain compared to other groups. 
In average maturity score, T3 showed significantly higher (p < 0.05) than other groups. Sup-
plementing complex probiotics group improved (p < 0.05) H2S emissions and fecal microflora 
compared to the non-supplementing group.  In experiment 2, additive probiotics groups had 
no effect (p > 0.05) on moisture content than the non-additive group at 9 and 12 weeks. T6 
showed a significantly improved (p < 0.05) average maturity score at all periods and ammo-
nia emissions at 1 week and 4 weeks compared to other groups. In summary, supplementa-
tion complex probiotics induced positive effects on both pigs and compost.
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INTRODUCTION
Various issues have emerged associated with improving livestock manure management (LM) 
due to the increasing demand for animal-sourced foods [1]. LM generally contains heavy metals 
(arsenic, copper, and zinc) that can be hazardous to humans and the environment. It also generates 
various harmful compounds (e.g., volatile fatty acids, alcohols, amines, hydrogen sulfide [H2S], and 
ammonia [NH3]) that can cause an unpleasant odor [2]. In particular, NH3 is produced at a higher 
concentration than other odorous gases. It is involved in air pollution as a precursor to secondary 
ultrafine dust [3].

Composting is the primary method of LM treatment applied on a farm [4]. However, the process 
of composting can have various adverse effects such as nitrogen loss and increase in greenhouse 
gas due to rapid degradation of nitrogenous organic matter and the presence of anaerobic space 
in feedstocks [5]. Previous studies have shown that nitrogen losses during composting can result 
in the production of NH3, nitrous oxide, and leachate, which can reduce the agricultural value of 
composted products, and contribute to increase in greenhouse gas emissions and unpleasant odor 
[6].

Probiotics have been shown to improve the environment of digestive organ microorganisms 
by reducing harmful microorganisms in the intestine, resulting in improved nitrogen utilization 
and reduced nitrogen excretion in pigs [7]. Li and Kim [8] have reported that supplementation 
of Saccharomyces cerevisiae (S. cerevisiae) can improve nitrogen digestibility in growing pigs. Other 
studies have suggested that supplementation including Bacillus subtilis (B. subtilis) can attenuate 
NH3 release by suppressing the urease-producing microorganisms in the gastrointestinal lumen by 
producing the protein-digesting enzyme such as subtilisin in pigs [8]. Wang et al. [9], have reported 
that S. cerevisiae can reduce the Methanobrevibacter spp. known to produce methanogen and 
methane. According to results of previous studies, supplementation containing Bacillus spp. might 
reduce NH3 emissions in pigs [8,10]. 

However, there are few studies on adding complex probiotics to swine diets and manure. 
Therefore, the objective of this study was to determine effects of single and complex probiotics in 
growing-finishing pigs and compost on growth performance, odorous gas emissions, blood profiles, 
and compost maturity.

MATERIALS AND METHODS
Ethics approval and consent to participate
All experimental procedures received prior approval from the Animal Ethics Committee of 
Chungbuk National University (CBNUA-1740-22-02). 

Source of probiotics 
The probiotics used in the current study were kindly provided by a commercial company (Garam 
Co. Ltd., Eumseong, Korea).

Experiment 1
Experimental design, animals, and housing
A total of 64 crossbred growing pigs ([Landrace × Yorkshire] × Duroc) with an average initial body 
weight (BW) of 18.75 ± 0.33 kg and a birth of 63 days were used for 13 weeks in this study. All 
pigs were assigned to a completely randomized four treatment groups based on the initial BW. 
There were 4 pigs in a pen with 4 replicate pens for each treatment. Dietary treatments were as 
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Table 1. Ingredients and chemical composition of the basal experimental diets (as fed basis)
Items Grower phase (0−6 w) Finisher phase (7−13 w)

Ingredients (%) 100 100

Corn 53.479 55.776

Soybean meal 15.660 13.100 

Wheat (11%) 3.750 3.750 

Rice bran 6.500 6.500 

DDGS 11.500 11.500 

Limestone 1.270 0.910 

Vegetable oil 1.320 1.720 

Sugar 4.590 4.870 

Poultry oil 0.200 0.200 

Salt 0.358 0.376 

Choline chloride 0.040 0.040 

Lysine sulphate 0.724 0.711 

L-Methionine (99%) 0.083 0.077 

Tryptophan (98%) 0.049 0.038 

Threonine 0.146 0.162 

MDCP 0.061 0.000 

Emulsifier 0.050 0.050 

Vitamin and mineral premix1) 0.220 0.220

Calculated values

Dry matter (%) 86.69 86.45

Protein (%) 15.90 14.89

Fat (%) 5.51 5.75

Fiber (%) 3.83 3.79

Ash (%) 5.19 4.41

Calcium (%) 0.72 0.46

Phosphorus (%) 0.49 0.44

Na (%) 0.20 0.20

Cl (%) 0.35 0.35

NE (kcal/kg) 2,408.70 2,446.50

Analyzed values (g/kg)

AID Arg 7.40 6.70

AID Ile 4.63 4.26

AID Leu 12.07 11.48

AID Lys 8.90 8.20

AID Met + Cys 5.25 5.00

AID Met 3.17 3.01

AID Thr 5.43 5.25

AID Trp 1.60 1.39

AID Val 5.71 5.28
1) Provided per kilogram of complete diet: vitamin A, 11,025 U; vitamin D3,1,103 U; vitamin E, 44 U; vitamin K, 4.4 mg; riboflavin, 
8.3 mg; niacin, 50 mg; thiamine, 4 mg; d-pantothenic, 29 mg; choline, 166 mg; and vitamin B12, 33 µg; Cu (as CuSO4 · 5H2O), 
12 mg; Zn (as ZnSO4), 85 mg; Mn (as MnO2), 8 mg; I (as KI), 0.28 mg; and selenium (as Na2SeO3 · 5H2O), 0.15 mg.

DDGS, Distiller’s dried grains with solubles; MDCP, monodicalcium phosphate; NE, Net energy; AID, apparent ileal digestibility; 
Arg, arginine; Ile, Isoleucine; Leu, leucine; Lys, lysine; Met, methionine; Cys, cystine; Thr, threonine; Trp, tryptophan; Val, valine.
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follows: 1) Control (CON; basal diet), 2) T1 (CON + 0.2% B. subtilis), 3) T2 (CON + 0.2% S. 
cerevisiae), 4) T3 (CON + 0.2% B. subtilis + 0.2% S. cerevisiae). The probiotic used in this study such 
as B. subtilis and S. cerevisiae contains 2.0 × 1010 CFU kg−1 and 3.0 × 1010 CFU kg−1, respectively. All 
diets were formulated to meet or exceed the NRC [11] requirement (Table 1). The diet was divided 
into two phases: the grower phase (0–6 weeks) and the finisher phase (7–13 weeks). Each of the 
pigs had ad libitum access to water. A nipple drinker and single-sided stainless steel automated 
feeder were placed with each pen.

Measurements and sampling
Growth performance
BW was recorded on initial, 6, 9, and 13 weeks to calculate average daily gain (ADG), average daily 
feed intake (ADFI), and feed conversion ratio (FCR). The ADG was calculated by subtracting 
the BW of the previous time point from the BW of the current time point and dividing it by 
the period. ADFI was calculated by subtracting the remaining feed amount from the initial feed 
amount and dividing it by the period, and FCR was calculated by dividing feed intake by ADG.

Nutrient digestibility
In experiment periods, fresh fecal samples are collected at 6 and 13 weeks using rectal massage 
after each treatment. Fresh fecal and feed samples were stored in a freezer at −20℃ after 
collection immediately. The stored fecal samples were dried at 70℃ for 3 days and then crushed 
on a 1 mm screen at the end of the experiment. Chromic oxide was analyzed immediately after 
supplementation of 0.2% as an indigestible marker that was added to the pig’s diet the apparent 
total tract digestibility (ATTD) of crude protein (CP), dry matter (DM), and gross energy 
(GE). Chromium levels were analyzed with ultraviolet absorption spectrometry (UV-1201, 
Shimadzu, Kyoto, Japan) using a method used by Williams et al. [12]. The procedures utilized for 
the determination of DM (method 930.15), and CP (method 999.03) were conducted with the 
methods of AOAC [13], and GE using a bomb calorimeter (Parr 6400 Bomb Calorimeter, Parr 
Instrument, Moline, IL, USA).
Calculating the ATTD used the following formula: 

“Digestibility (%) = [1 − {(Nf × Cd)/(Nd × Cf)}] × 100”

Nf = nutrient concentration in feces (DM %), Nd = nutrient concentration in diet (DM %), Cd = 
chromium concentration in diet (DM %), and Cf = chromium concentration in feces (DM %).

Blood profiles
At 6 and 13 weeks, blood samples from the anterior vena cava of 4 pigs per treatment. Blood 
samples were collected into vacuum tubes containing K3EDTA (Becton, Dickinson and Co., 
Franklin Lakes, NJ, USA) for complete blood count analysis, and nonheparinized tubes for serum 
analysis, respectively. After collection, serum samples were centrifuged (3,000×g) for 15 min at 4℃. 
The white blood cell (WBC), and red blood cell (RBC) levels were determined using an automatic 
blood analyzer (ADVIA 120®, Bayer Lab, NY, USA). The blood urea nitrogen (BUN), creatinine, 
and total protein levels were measured using a chemistry analyzer (Cobas C702, Roche, Munich, 
Germany).

Maturity score of compost
Compost was used by mixing sawdust with manure obtained from pigs. The manure was collected 
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at the 6 and 13 weeks. Compost was prepared by adding sawdust to swine manure at a ratio of 4:1 
(swine manure: sawdust) for adjusting moisture content (MC) at the beginning of the experiment. 
Each compost was stored in a plastic box with air holes. Each compost was mixed weekly to supply 
oxygen. Compost maturity was evaluated using a maturity analyzer (CoMMe-100, E&A TECH, 
Dangjin, Korea), according to maturity analyses specified in the fertilizer quality inspection and 
sampling standards in Korea. MC was adjusted to be around 50% for all samples before they were 
analyzed for maturity score according to methods described by Song et al. [14]: score 1, immature 
(barely progressing in compost maturity); score of 2, initial maturity (an initial state in which 
maturity progressed); score of 3, the middle of maturity (compost maturity in which a longer 
stay was required); score of 4, the latter part of maturity (compost was almost mature); score of 5, 
maturity completion (compost was mature). The samples collected at 6 weeks were ripened for 14 
weeks, and the samples collected at 13 weeks were ripened for 13 weeks.

Odorous gas emissions
The feces (150 g) that collected for 2 pigs each treated by a rectal massage at 6 and 13 weeks. The 
samples were mixed with 150 g of collected feces 100 g of sawdust, and 50 g of urine to analyze 
gas emissions. About samples were stored in a 4.2 L plastic box at room temperature 26℃ and 
fermented for 72 h. The plastic boxes with small holes sealed with plaster were used for analyzing 
fecal NH3, H2S, and acetic acid (CH3COOH) emissions of samples. The samples with plastic boxes 
are shaken 20 s to break down any crust formation before the measurement. NH3 concentrations 
were determined within the scope of 5.0–100.0 ppm (No.3La, detection tube, Gastec, Kanagawa, 
Japan), H2S concentrations were determined within scope of 2.0–20.0 ppm (No.4LK, detection 
tube, Gastec), and CH3COOH concentrations were determined within the scope of 2.5–10.0 ppm 
(No.81L, detection tube, Gastec, Kanagawa, Japan).

Fecal microflora
The samples of fresh fecal were collected by rectal massage at 6 and 13 weeks from 4 pigs in each 
treatment by rectal massage. The samples were immediately packaged in plastic bags and transferred 
to the laboratory freezer (−20℃) for the duration of the experiment. To count the number of 
Lactobacillus and Escherichia coli (E. coli), 1 g of samples from each treatment were diluted with 
9 mL of 1 % peptone broth (Becton, Dickinson and Co) and homogenized. In 6-fold to 4-fold 
dilution (1 % peptone solution) samples were used to analyze the viability of E. coli on MacConkey 
agar plates (Difco Laboratories, Detroit, MI, USA) and Lactobacillus on de Man, Rogosa, and 
Sharpe agar plates (Difco Laboratories) respectively. E. coli were incubated at 37℃ for 24 h and 
Lactobacillus were incubated for 48 h.

Experiment 2
Experimental Design, Animals, and Housing
This study used swine manure and sawdust as raw materials for composting. Swine manure from 
CON of experiment 1 was obtained. The manure was collected from all CON replicates and mixed. 
The compost was prepared with the same method as experiment 1. The compost was matured in 
a 12 L plastic box and mixed weekly to provide oxygen and ripening at ambient temperature for 
12 weeks. There were 6 replicates for each treatment. Experimental treatments were as follows: 1) 
CON, normal compost without probiotics; 2) T1, spray B. subtilis 10 g per 3.306 m2; 3) T2, spray B. 
subtilis 40 g per 3.306 m2; 4) T3, spray S. cerevisiae 10 g per 3.306 m2; 5) T4, spray S. cerevisiae 40 g 
per 3.306 m2; 6) T5, spray B. subtilis 5 g + S. cerevisiae 5 g per 3.306 m2; 7) T6, spray B. subtilis 20 g 
+ S. cerevisiae 20 g per 3.306 m2. In this study, 2.0 × 1010 CFU kg−1 of B. subtilis and 3.0 × 1010 CFU 
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kg-1 of S. cerevisiae were used.

Measurements and sampling
Moisture content of compost
The collected compost samples were determined before and after drying at 105℃ for 24 h to 
analyze for MC according to methods and calculating formula described by Singh et al. [15].
Calculating the MC used the following formula: 

“MC (%) = {(Ww – Wd)/Ww)} × 100”
Ww = weight of the sample before drying, Wd = weight of the sample after drying.

Maturity score of compost
The measurement methods are the same as experiment 1.

Odorous gas emissions of compost
Initially, the samples were agitated and collected 300 g on 1, 4, 8, and 12 weeks, respectively. About 
300 g samples were stored in a 4.2 L plastic box at room temperature 26℃ and fermented for 72 
h. The plastic boxes with small holes sealed with plaster were used for analyzing H2S, NH3, and 
methyl mercaptan (CH3SH) emissions of samples. The samples with plastic boxes are shaken 
for 20 s to break down any crust formation before the measurement. H2S concentrations were 
determined within scope of 2.0–20.0 ppm (No.4LK, detection tube, Gastec), NH3 concentrations 
were determined within scope of 5.0–100.0 ppm (No.3La, detection tube, Gastec), and CH3SH 
concentrations were determined within scope of 2.5–70.0 ppm (No.71, detection tube, Gastec).

Statistical analysis
All data excluding compost maturity were analyzed with the PROC General Linear Models 
procedure of SAS 9.4 software (version 9.4, SAS Institute, Cary, NC, USA). The maturity score 
was analyzed with a Chi-square test using the FREQ procedure of SAS. The GraphPad Prism 
8 software (GraphPad Software, San Diego, CA, USA) was used to visualize the maturity score 
and MC. Tukey’s multiple range test was used as post-hoc test was used to analyze the differences 
between means and a p < 0.05 was considered statistically significant for analysis.

Results
Experiment 1
Growth performance
The effects of supplemental probiotics on growth performance are presented in Table 2. There was 
no significant difference (p > 0.05) in ADG, ADFI and FCR in 0–6 weeks and 6–13 weeks among 
treatments. In BW, there was no significant difference (p > 0.05) at initial, 6 weeks and 9 weeks, 
respectively. However, T3 showed significantly higher (p < 0.05) BW than CON in 13 weeks, 
significantly higher (p < 0.05) ADG than CON and T2 in 9–13 weeks, and significantly lower (p < 
0.05) FCR than the other groups for 9-13 weeks and the overall experimental period (0–13 weeks), 
respectively. Additionally, T3 showed significantly higher (p < 0.001) ADG than other groups in 
the overall experimental period.

Nutrient digestibility
The effects of supplemental probiotics on nutrient digestibility are presented in Table 3. There was 
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no significant difference (p > 0.05) in DM, GE, and CP at 6 weeks among treatments. Also, there 
was no significant difference (p < 0.05) in GE, and CP at 13 weeks among treatments. However, 
T3 showed significantly higher (p < 0.05) DM than CON at 13 weeks.

Blood profiles
The effects of supplemental probiotics on blood profile are presented in Table 4. There was no 

Table 2. Effects of single and complex probiotics supplementation on growth performance in growing-finishing pigs (Exp 1)
Items CON1) T1 T2 T3 SE p-value

BW (kg)

0 week 18.52 18.81 18.84 18.83 0.974 0.995

6 weeks 51.01 51.73 51.77 52.17 1.237 0.931

9 weeks 70.38 71.44 71.25 72.32 1.387 0.811

13weeks 95.98b 98.83ab 97.97ab 101.29a 1.279 0.047

0–6 weeks

ADG (kg) 0.77 0.78 0.79 0.79 0.010 0.561

ADFI (kg) 1.70 1.72 1.69 1.70 0.033 0.923

FCR (kg/kg) 2.20 2.20 2.16 2.14 0.036 0.569

6–9 weeks

ADG (kg) 0.92 0.94 0.93 0.96 0.018 0.455

ADFI (kg) 2.41 2.46 2.42 2.46 0.048 0.815

FCR (kg/kg) 2.62 2.63 2.62 2.56 0.047 0.724

9–13 weeks

ADG (kg) 0.91b 0.98ab 0.95b 1.03a 0.026 0.021

ADFI (kg) 2.87 2.84 2.86 2.87 0.054 0.978

FCR (kg/kg) 3.15a 2.91b 3.00b 2.79c 0.040 < 0.001

0–13 weeks

ADG (kg) 0.85c 0.88b 0.87bc 0.91a 0.007 < 0.001

ADFI (kg) 2.22 2.24 2.22 2.23 0.021 0.896

FCR (kg/kg) 2.61a 2.55a 2.55a 2.47b 0.024 0.001
1) CON, basal diet; T1, CON + 0.2% Bacillus subtilis; T2, CON + 0.2% Saccharomyces cerevisiae; T3, CON + 0.2% Bacillus subtilis + 0.2% Saccharomyces cerevisiae. 
a–cMeans in the same row with different letters indicate different significantly (p < 0.05).
BW, body weight; ADG, average daily gain; ADFI, average daily feed intake; FCR, feed conversion ratio.

Table 3. Effects of single and complex probiotics supplementation on nutrient digestibility in growing-finishing pigs (Exp 1)
Items CON1) T1 T2 T3 SE p-value

6 weeks

DM 84.01 84.46 84.77 84.88 0.287 0.193

GE 74.95 75.38 75.77 75.96 0.347 0.225

CP 70.72 71.29 71.15 72.79 0.592 0.130

13 weeks

DM 83.32b 83.73ab 83.74ab 84.03a 0.144 0.032

GE 70.55 71.51 71.70 72.64 0.545 0.113

CP 70.56 70.65 70.82 71.63 0.805 0.780
1) CON, basal diet; T1, CON + 0.2% Bacillus subtilis; T2, CON + 0.2% Saccharomyces cerevisiae; T3, CON + 0.2% Bacillus subtilis + 0.2% Saccharomyces cerevisiae. a,bMeans in 
the same row with different letters indicate different significantly (p < 0.05).

DM, dry matter; GE, gross energy; CP, crude protein.
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significant difference (p > 0.05) in total protein, creatinine, WBC, and RBC at 6 weeks among 
treatments. Probiotics did not affect the total protein, BUN, creatinine, WBC, and RBC at 13 
weeks. However, supplementation of probiotic groups was significantly lower (p < 0.05) BUN than 
non-supplementation of the probiotic group at 6 weeks.

Compost maturity
The effects of supplemental probiotics on the maturity score of pigs (Exp 1) are presented in Fig. 
1. The chi-square test showed no difference (p > 0.05) in the maturity score among treatments. 
However, supplementation of probiotic groups was significantly higher (p < 0.001) average maturity 

Table 4. Effects of single and complex probiotics supplementation on blood characteristics in growing-finishing pigs (Exp 1)
Items CON1) T1 T2 T3 SE p-value

6 weeks

Total protein (g/dL) 5.78 6.00 6.03 6.03 0.187 0.742

BUN (mg/dL) 8.25a 6.75b 7.25b 6.50b 0.260 0.002

Creatinine (mg/dL) 1.18 1.19 1.40 1.39 0.080 0.121

WBC (103/μL) 23.03 23.47 23.18 23.21 0.794 0.983

RBC (106/μL) 7.80 7.69 7.99 7.86 0.168 0.657

13 weeks

Total Protein (g/dL) 6.28 6.70 6.58 6.70 0.168 0.284

BUN (mg/dL) 14.00 12.25 13.00 13.25 1.365 0.839

Creatinine (mg/dL) 1.20 1.21 1.43 1.41 0.084 0.141

WBC (103/μL) 17.00 19.02 18.04 17.43 1.180 0.658

RBC (106/μL) 6.75 6.94 7.14 6.77 0.117 0.121
1) CON, basal diet; T1, CON + 0.2% Bacillus subtilis; T2, CON + 0.2% Saccharomyces cerevisiae; T3, CON + 0.2% Bacillus subtilis + 0.2% Saccharomyces cerevisiae. a,bMeans in 
the same row with different letters indicate different significantly (p < 0.05).

BUN, blood urea nitrogen; WBC, white blood cell, RBC, red blood cell.

Fig. 1. Effects of supplemental probiotics on maturity score from pigs (Exp 1). 6 weeks, collected manure 
2 pigs per pen at 6 weeks and composting with sawdust; 13 weeks, collected manure 2 pigs per pen at 13 
weeks and composting with sawdust; CON, basal diet; T1, CON + 0.2% Bacillus subtilis; T2. CON + 0.2% 
Saccharomyces cerevisiae; T3, CON + 0.2% Bacillus subtilis + 0.2% Saccharomyces cerevisiae. n = 6 pen/
treatment. χ2 = 13.972, p = 0.303 in 6 weeks. χ2 = 13.387, p = 0.342 in 13 weeks. Numbers inside the bar 
indicates percentage of score out of total (100%) as shown in legend. a–cMeans scores with different upward 
letters in the graph bar different significantly by the one-way ANOVA (p < 0.05). 
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score than non-supplementation of the probiotic group at 6 weeks. Moreover, T3 showed a 
significantly higher (p < 0.001) average maturity score than other groups at 13 weeks.

Odorous gas emissions
The effects of supplemental probiotics on gas emissions are presented in Table 5. There was no 
significant difference (p > 0.05) in H2S, NH3, and CH3COOH at 6 weeks among treatments. 
Also, there was no significant difference (p > 0.05) in NH3 and CH3COOH at 13 weeks among 
treatments. However, T3 showed significantly lower (p < 0.05) H2S than CON at 13 weeks.

Fecal microflora
The effects of supplemental probiotics on fecal microflora are presented in Table 6. There was no 
significant difference (p > 0.05) in Lactobacillus at 6 weeks among treatments. Also, there was no 
significant difference (p > 0.05) in E. coli at 13 weeks among treatments. However, T1 and T3 
showed significantly lower (p < 0.001) E. coli than CON and T2 at 6 weeks. Moreover, T3 showed 
significantly higher (p < 0.05) Lactobacillus than CON and T2 at 13 weeks.

Experiment 2
Moisture content of compost
The effects of supplemental probiotics on MC of compost are presented in Fig. 2. Supplementation 
of probiotic groups was only numerically decreasing (p > 0.05) MC compared to the non-
supplementation group for 6 to 12 weeks.

Table 5. Effects of single and complex probiotics supplementation on odorous gas emissions in growing-finishing pigs (Exp 1)
Items (ppm) CON1) T1 T2 T3 SE p-value

6 weeks

H2S 5.47 5.32 5.42 5.23 0.180 0.788

NH3 8.10 7.99 8.00 7.95 0.113 0.815

CH3COOH 3.11 3.09 3.10 3.06 0.049 0.888

13 weeks

H2S 6.42a 6.23ab 6.31ab 6.11b 0.066 0.036

NH3 9.35 9.24 9.27 9.21 0.083 0.685

CH3COOH 3.14 3.06 3.10 3.04 0.041 0.384
1) CON, basal diet; T1, CON + 0.2% Bacillus subtilis; T2, CON + 0.2% Saccharomyces cerevisiae; T3, CON + 0.2% Bacillus subtilis + 0.2% Saccharomyces cerevisiae. a,bMeans in 
the same row with different letters indicate different significantly (p < 0.05).

H2S, hydrogen sulfide; NH3, ammonia; CH3COOH, acetic acid.

Table 6. Effects of single and complex probiotics supplementation on fecal bacteria counts in growing-finishing pigs (Exp 1)
Items (Log CFU/g) CON1) T1 T2 T3 SE p-value

6 weeks

Lactobacillus 8.89 9.01 8.98 9.07 0.158 0.864

E. coli 6.43a 6.21b 6.33a 6.15b 0.038 < 0.001

13 weeks

Lactobacillus 9.02c 9.09ab 9.08bc 9.14a 0.020 0.003

E. coli 6.45 6.33 6.36 6.30 0.798 0.976
1) CON, basal diet; T1, CON + 0.2% Bacillus subtilis; T2, CON + 0.2% Saccharomyces cerevisiae; T3, CON + 0.2% Bacillus subtilis + 0.2% Saccharomyces cerevisiae. a–cMeans in 
the same row with different letters indicate different significantly (p < 0.05).

E. coli, Escherichia coli.
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Fig. 2. Effects of probiotics supplementation on moisture content change in growing-finishing pigs 
manure compost during composting (Exp 2). CON, normal compost without probiotics; T1, spray Bacillus 
subtilis 10 g per 3.306 m2; T2, spray Bacillus subtilis 40 g per 3.306 m2; T3, spray Saccharomyces cerevisiae 
10 g per 3.306 m2; T4, spray Saccharomyces cerevisiae 40 g per 3.306 m2; T5, spray (Bacillus subtilis 5 g + 
Saccharomyces cerevisiae 5 g) per 3.306 m2; T6, spray (Bacillus subtilis 20 g + Saccharomyces cerevisiae 20 
g) per 3.306 m2; T6, spray (Bacillus subtilis 20 g + Saccharomyces cerevisiae 20 g) per 3.306 m2. Bars denote 
standard errors. 

Fig. 3. Effects of supplemental probiotics on maturity score (Exp 2). CON, normal compost without 
probiotics; T1, spray Bacillus subtilis 10 g per 3.306 m2; T2, spray Bacillus subtilis 40 g per 3.306 m2; T3, spray 
Saccharomyces cerevisiae 10 g per 3.306 m2; T4, spray Saccharomyces cerevisiae 40 g per 3.306 m2; T5, 
spray (Bacillus subtilis 5 g + Saccharomyces cerevisiae 5 g) per 3.306 m2; T6, spray (Bacillus subtilis 20 g + 
Saccharomyces cerevisiae 20 g) per 3.306 m2; T6, spray (Bacillus subtilis 20 g + Saccharomyces cerevisiae 20 g) 
per 3.306 m2. n = 6 pen/treatment. χ2 = 19.558, p = 0.722. Numbers inside the bar indicates percentage of score 
out of total (100%) as shown in legend. a–eMeans scores with different upward letters in the graph bar different 
significantly by the ANOVA (p < 0.05). 
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Compost maturity
The effects of supplemental probiotics on MC of compost are presented in Fig. 3. Supplementation 
of probiotic groups was only numerically decreasing (p > 0.05) MC compared to the non-
supplementation group for 6 to 12 weeks.

Odorous gas emissions of compost
The effects of supplemental probiotics on gas emissions of compost are presented in Table 7. There 
was no significant difference (p > 0.05) in H2S and CH3SH emissions of compost during the 
overall measurement period among treatments. Although there was no significant difference in 
NH3 emission at 8 and 12 weeks among treatments, T6 showed significantly lower (p < 0.05) NH3 
emissions than other groups at 1 week and 4 weeks, respectively.

DISCUSSION
Experiment 1
In addition to promoting the growth of beneficial bacteria, probiotics may also produce microbicidal 
substances that have effects against harmful microbes and gastrointestinal pathogens [16,17]. 
Furthermore, probiotics can improve growth performance by improving digestion, absorption, and 
uptake of nutrients in pigs [18]. Especially, Bacillus spp. can produce various digestive enzymes to 
degrade complex carbohydrates in feed and improve feed utilization [19]. Previous studies have 
indicated that supplementation of B. subtilis and B. licheniformis can increase ADFI and ADG [20] 
and decrease FCR [21] in pigs. The addition of Lactobacillus acidophilus, S. cerevisiae, and B. subtilis 
can also increase ADG [22] in pigs. Likewise, the results of this study revealed that the inclusion 

Table 7. Effects of probiotics supplementation on gas emissions in growing-finishing pigs manure compost (Exp 2)
Items, ppm CON1) T1 T2 T3 T4 T5 T6 SE p-value

1 week

H2S 6.00 3.00 2.47 3.18 2.49 2.52 1.85 0.980 0.124

NH3 16.64a 8.83b 6.24bc 8.98b 5.29c 5.34c 2.43d 0.922 < 0.001

CH3SH 2.86 1.45 1.24 1.53 1.30 1.31 0.99 0.504 0.232

4 weeks

H2S 1.09 0.41 0.34 0.42 0.36 0.36 0.19 0.205 0.111

NH3 5.05a 2.17b 1.67b 2.34b 1.92b 1.99b 0.80c 0.212 < 0.001

CH3SH 0.95 0.81 0.69 0.82 0.71 0.72 0.52 0.097 0.127

8 weeks

H2S 0.30 0.15 0.12 0.16 0.13 0.12 0.09 0.059 0.289

NH3 0.70 0.31 0.25 0.32 0.26 0.26 0.16 0.126 0.129

CH3SH 0.11 0.07 0.05 0.08 0.07 0.07 0.03 0.198 0.243

12 weeks

H2S 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.003 0.123

NH3 0.02 0.01 0.00 0.13 0.01 0.01 0.00 0.004 0.156

CH3SH 0.01 0.01 0.00 0.01 0.01 0.01 0.00 0.005 0.605
1) CON, normal compost without probiotics; T1, spray Bacillus subtilis 10 g per 3.306 m2; T2, spray Bacillus subtilis 40 g per 3.306 m2; T3, spray Saccharomyces cerevisiae 10 g per 
3.306 m2; T4, spray Saccharomyces cerevisiae 40 g per 3.306 m2; T5, spray (Bacillus subtilis 5 g + Saccharomyces cerevisiae 5 g) per 3.306 m2; T6, spray (Bacillus subtilis 20g + 
Saccharomyces cerevisiae 20 g) per 3.306 m2. 

a–dMeans in the same row with different letters indicate different significantly (p < 0.05).
H2S, hydrogen sulfide; NH3, ammonia; CH3SH, methyl mercaptan.



Effects of single and complex probiotics 

774  |  https://www.ejast.org https://doi.org/10.5187/jast.2023.e88

of complex probiotics such as B. subtilis and S. cerevisiae in the diets of growing-finishing pigs 
increased ADG and ADFI, while decreasing FCR. These study results agree with previous studies 
showing that complex probiotics have enhanced benefits in the gastrointestinal tract by integrating 
effects of different strains compared with a single probiotic [23].

The improved growth performance after adding probiotics might be related to enhanced nutrient 
digestibility by improving the gastrointestinal tract [24]. The mechanism of probiotics involves 
production of antimicrobials that can affect the composition and function of microbial communities, 
thus promoting overall gut health [25]. Previous studies have indicated that supplementation of 
complex probiotics (B. subtilis, Clostridium butyricum, B. liceniformis, and B. coagulans) can improve 
DM and nitrogen digestibility in growing-finishing pigs that addition of complex probiotics (B. 
subtilis and S. cerevisiae) can improve DM and GE digestibility in growing pigs [26,27]. Similarly, 
in this study, dietary addition of probiotics to pigs improved DM digestibility in the grower phase. 
However, another study has suggested that Supplements containing complex probiotics (B. subtilis, 
B. licheniformis, and S. cerevisiae) has no effect on nutrient digestibility in growing pigs [28]. Such 
inconsistent results on nutrient digestibility might be due to different probiotic species and dose 
levels.

In the current study, there was no significant difference in blood profile including WBC, RBC, 
creatinine, or total protein after supplementing probiotics to diets. However, there was a significant 
decrease in BUN concentration in groups supplemented with probiotics. BUN concentration might 
be used as a method for quantifying nitrogen utilization in livestock [29]. In addition, Otsuka et 
al. [30] have reported that increased BUN concentration is associated with an increase in feed 
intake. However, another study has revealed that high concentrations of BUN-impaired kidneys are 
harmful to pigs [31]. Probiotics can increase the efficiency of nitrogen utilization, improve nitrogen 
utilization, and increase BUN concentrations in pigs [32,33]. On the other hand, other studies have 
demonstrated that supplementation of probiotics has no effect on blood profiles of growing pigs 
[24,34]. These results were probably due to feed intake time or amount and gender differences.

Immature manure can generate odorous gas and cause civil complaints in nearby livestock 
facilities [35]. Its solutions include reducing nitrogen excretion in urine and feces and supplying 
feed additives to improve gastrointestinal microbial manipulation [18]. Scheuermann [36] has 
reported that supplementation of Lactobacillus in growing pigs can increase nitrogen retention and 
reduce nitrogen content in manure. In addition, Ramons et al. [37] have revealed that a reduction 
of nitrogen content can accelerate maturity period. Similarly, the present study showed that manure 
composting of dietary supplementation probiotics pigs accelerated the maturity period. These 
results might reduce BUN to enhance pig intestinal N retention. However, there have been few 
studies that have measured the maturity of manure excreted after feeding probiotics to pigs, so more 
research is needed.

High levels of noxious gases such as NH3, volatile sulfur, and volatile organic compounds can 
negatively affect animal health and performance. They, not only affect the health of workers but 
also cause environmental pollution [18]. Volatile sulfur-degrading properties of Bacillus spp. and 
increased absorption of nutrients in the gut by S. cerevisiae can reduce the substrate for microbial 
fermentation and decrease emissions of these gases [38,39]. Prior studies have reported that 
addition of Bacillus-based can reduce H2S emissions in growing pigs [24] and sows [40]. At the 
end of the experiment, H2S emissions were reduced in groups supplemented with probiotics. 
Supplementation of complex probiotics significantly decreased H2S from 4 weeks. This indicates 
that Bacillus-based complex probiotics might have potential to reduce gas emissions in pigs and 
improve air quality of swine farms efficiently with positive effects on pigs.

E. coli and Lactobacillus are representative intestinal pathogens and beneficial bacteria, respectively. 
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Moreover, these bacteria are associated with gastrointestinal conditions, health status, and immune 
system [41]. Prior studies have shown that S. cerevisiae can decrease the level of potential pathogens 
in the intestinal lumen and generate antibacterial substances and that Bacillus can generate some 
effective enzymes (such as α-amylase, α-galactosidase, β-glucanase, β-mannanase, cellulase) 
to improve the intestinal condition [42,43]. In this study, adding complex probiotics increased 
Lactobacillus but decreased E. coli. Similarly, previous studies have reported that supplementation of 
probiotics can increase the counts of gastrointestinal lactobacillus but decrease the counts of E. coli 
[26,44]. The present result was consistent with Balasubramanian et al. [26] showing that continuous 
feeding of probiotics could maintain beneficial intestine microbiota by generating organic acids 
and hydrogen peroxide, thereby preventing pathogenic bacteria activation into the intestine and 
excreting antagonistic activity.

Experiment 2
In compost, there are beneficial microorganisms that take charge of regular composting process 
and potentially harmful microorganisms for humans and the environment. These deactivations 
of harmful microorganisms and beneficial microbiome development are important goals of 
composting [45]. In addition, previous studies have reported that providing sufficient quantity of 
probiotics as beneficial microorganisms could enhance microbial enzyme activity and offset effects 
of pathogenic microorganisms [46,47].

In addition to microorganisms, factors that affect composting include porosity, aeration, moisture, 
and temperature [48]. Especially, low values of MC, an important environmental parameter during 
composting, can cause premature dehydration known to arrest biological processes, resulting in 
biologically unstable compost, while high values of MC will halt composting activity due to creation 
of anaerobic conditions caused by water logging [49]. Besides, moisture is related to heat capacity in 
compost [50]. It can influence metabolic activities of probiotics [51]. Lee et al. [52] have reported 
that microorganisms produce heat during enzymatic catabolism of substrates and synthesis of cell 
material. Therefore, we hypothesize that reducing MC during composting due to microorganisms 
could generate heat as they decompose organic material. However, in this study, single and complex 
probiotics (B. subtilis, S. cerevisiae) supplementation only numerically decreased MC compared to 
the non-supplemented group. Since no study has reported the relationship between probiotics and 
MC of compost, further research is needed.

Normal composting involving aerobic decomposition proceeds with the following phases: (i) 
fermentation, (ii) acid formation, (iii) thermophilic activity, and (iv) temperature decline [53]. 
Shortening the thermophilic activity phase during the degradation phase can delay the maturity 
period [54]. Prior studies have suggested that adding B. subtilis can prolong the thermophilic phase 
by increasing high-temperature-resistant bacteria [55]. Xu and Li. [56] have shown that inoculating 
B. subtilis, B. licheniformis, Phanerochaete chrysosporium, Trichoderma koningii, and S. cerevisiae into 
compost can promote compost maturity. Results of this study agree with those of previous studies 
showing that supplementation of B. subtilis and S. cerevisiae can reduce the maturation time of 
composting [57]. For this reason, complex probiotics such as B. subtilis can be used to accelerate the 
maturation.

Accelerating compost mature period can improve several problems such as greenhouse gas 
emissions, including loss of nitrogen via NH3 volatilization, and leaking of inorganic/organic 
pollutants from compost substrates [58]. In general, the genus Bacillus grows by assimilating 
ammonium nitrogen during composting, which causes NH3 emissions reduction [59]. A prior 
study has suggested that supplementation of Bacillus-based probiotics can reduce emissions of 
gases such as NH3, H2S, CH3COOH, CO2, and CH3SH [60]. In addition, supplementation of S. 
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cerevisiae can reduce NH3 by 10.2% and amine gas by 45.5% in swine manure [61]. In this study, 
supplementation of probiotics decreased NH3 emissions compared with non-supplementation. 
However, other odorous gas emissions (CH3SH and H2S) were not affected by supplementation of 
probiotics. These inconsistent results are attributed to temperature and humidity.

CONCLUSION
This study indicates that supplementation of probiotics at the complex probiotics are more 
improved on growth performance, nutrient digestibility, blood profile, compost maturity, gas 
emissions, and fecal microflora in pigs and on MC, compost maturity, and gas emissions in compost 
than single and non-supplementation. Therefore, these results revealed that complex probiotics 
(S. cerevisiae and B. subtilis) had positive effects in pigs and compost, respectively. However, 
supplementation of complex probiotics in compost rarely investigates so more studies are needed.
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