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Abstract

In the urinary metabolomics for finding biomarkers in urine, owing to high concentrations of

urea, for chromatography-based metabolomic analysis, urea needed to be degraded by ure-

ase. This urease pretreatment has been the key step of sample preparation for standard uri-

nary metabolomics until today even for mass spectrometry-based analysis. The urease

pretreatment involving incubation of urine with urease contradicts the concept of metabo-

lome sampling, which should immediately arrest metabolic reactions to prevent alterations

of a metabolite profile. Nonetheless, the impact of urease pretreatment has not been clearly

elucidated yet. We found that activities of urease and endogenous urinary enzymes and

metabolite contaminants from the urease preparations introduce artefacts into metabolite

profiles, thus leading to misinterpretation.

Introduction

Urine is one of the most commonly used biological matrices for clinical tests owing to nonin-

vasive and convenient collection and the presence of abundant metabolites reflecting biologi-

cal and metabolic status [1–7]. Most of metabolic diseases such as gout and diabetes alter

metabolism, thus resulting in changes in urinary metabolites [8,9]. The study on global

changes of metabolite profiles of living organisms and biological matrices such as blood and

urine is called metabolomics [10,11], and this approach is frequently exploited to find bio-

markers and unknown pathology in diseases [2,3,7].

In metabolomics, to obtain accurate, reproducible, and reliable metabolome data, opti-

mized standard protocols are needed for metabolome sample preparation [11–14]. For the

urinary metabolomics based on a chromatography–mass spectrometry system, a standard pro-

tocol has been suggested and widely used [2], and this standard protocol includes collecting

urine samples; storage below −20˚C; urease pretreatment for degrading urea using a plant ure-

ase from jack beans [2,15]; extraction of metabolites; precipitation of DNA, RNA, and proteins
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with methanol; analysis of metabolites using a chromatography–mass spectrometry system;

and biological interpretation based on statistical analyses [2]. On the other hand, the urease

pretreatment step is likely to alter metabolite profiles, thereby leading to misinterpretation of

metabolomic data. This is because urease pretreatment involving incubation with the enzyme

ironically contradicts the standard metabolome sample preparation concept, according to

which arresting any metabolic reactions and minimizing artefacts are key to obtaining repre-

sentative and reproducible metabolite profiles [10,13,14,16]. In addition, even in clinical labo-

ratories, urinalysis is performed immediately after sampling to avoid possible metabolic

alterations in urine samples [1,17]. Therefore, controversy has been raised about the standard

protocol of sample preparation for urinary metabolomics based on a chromatography–mass

spectrometry system [18,19].

During urinary metabolome sample preparation, pretreatment of urine with urease is the

first step. Urease pretreatment was introduced in the 1960s to degrade urea into ammonia and

CO2 in urine samples when chromatography was conducted alone to analyze urinary metabo-

lites [20–23]. The original purposes of removing urea from urinary metabolome samples were

to minimize severe disturbances of chromatographic analysis [24–26], possible incomplete

derivatization [19,20], and the risk of column overloading [27], owing to high concentrations

of urea in urine. Since then, urinary metabolomic tools advanced to mass spectrometry-based

analyses, in which metabolites can be analyzed and identified by means of mass spectra,

despite overlapping peaks in chromatograms [18]. Therefore, urease pretreatment became an

unessential step for urine metabolomics, but most urinary metabolomic studies follow the

standard protocol [2] and still include urease pretreatment [4–6,19,28]. Only a few urinary

metabolomic analyses have been performed without urease pretreatment [18,29]. Although

significant changes of metabolite profiles were observed after urease pretreatment [18,19],

actual causes of changes in metabolite profiles have not been suggested. Webb-Robertson et al.

[19], showed that metabolite changes occur when urine samples are incubated with or without

urease. However, they did not consider the cause of the changes and suggested that the benefits

of urease pretreatment outweighed the adverse effects of potential artefacts. Kind et al. [18] has

observed decreases in the intensity of certain metabolites after the urease pretreatment. How-

ever, they did not consider the causes of the changes and removed the urease pretreatment

from the urine metabolite preparation steps. Therefore, systematic evaluation of the effects of

urease pretreatment on metabolite profiles and assessment of the necessity of urease pretreat-

ment for urinary metabolomics are necessary to decide whether or not to keep the urease

pretreatment.

The second step of urinary metabolome sample preparation is extraction of urinary metab-

olites with a solvent. To obtain representative and reproducible metabolome samples, the

extraction solvent should be carefully selected so that it can ensure high performance on the

effectiveness and reproducibility of metabolite extraction and effectiveness of precipitation of

DNA, RNA, and proteins, which could be sources of artefacts in metabolite profiles and may

interfere with metabolite derivatization [2,12–14,16]. In the standard protocol of urinary meta-

bolome sample preparation [2] and most urinary metabolomic studies [4–6], methanol is the

most common solvent. Ethanol is also frequently used for urinary metabolite extraction [30].

Other solvents such as a mixture of acetonitrile and water; a mixture of water, isopropanol,

and methanol; and acidified methanol are frequently employed for metabolome extraction of

various biological tissues and organisms [11,12,31]. Although optimization and evaluation of

extraction solvents have been performed for various organisms and biological samples

[13,14,16], for urinary metabolite extraction, solvents have not been systematically evaluated

and recommended yet.
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The controversial urease pretreatment has long been used as an essential step in the stan-

dard urinary metabolome sample preparation. In this study, the effects of urease pretreatment

on metabolite profiles and the necessity of urease pretreatment were investigated along with

the systematic evaluation of solvents for urinary metabolite extraction. To accomplish these

tasks, metabolites were extracted from 68 human urine samples, and gas chromatography with

time-of-flight mass spectrometry (GC/TOF–MS) was carried out for identification and quanti-

fication of metabolites. These results appear to resolve the controversy regarding the necessity

of urease pretreatment and seem to help to establish a more reliable standard protocol for uri-

nary metabolome sample preparation.

Materials and methods

Collection of urine samples

A total of 68 human urine samples from healthy volunteers (31 males and 37 females) at ages

in the 30s to 60s were obtained from the Samsung Medical Center in Seoul, South Korea (S1

Table). Following the standard sterile procedures, midstream urine samples were collected

from all the fasting volunteers in the morning. Urine samples were centrifuged at 16,100 × g
and 4˚C for 30 min, and then supernatants were immediately frozen and stored at −80˚C. The

experimental protocols used in this study were approved by the Institutional Review Boards of

Samsung Medical Center (2018-03-147-001) and Kangbuk Samsung Hospital (KBSMC2013-

01-023), and informed consent for the enrollment in this study was provided by the volunteers.

This study was conducted in accordance with the Declaration of Helsinki.

Preparation of pooled urine samples with or without thermal treatment

Sixty-eight urine samples as 1 ml aliquots were mixed to make a urine pool. To inactivate

endogenous urinary enzymes by thermal treatment, a half of the urine pool was autoclaved at

121˚C for 15 min. To prevent any possible changes in metabolites, urinary metabolites were

immediately extracted from pooled urine samples which were thermally not treated (NT) or

thermally treated (TT). Each entire procedure was independently repeated six times.

Preparation of urinary metabolite extracts depending on urease

pretreatment

Urine samples from individuals or pooled urine samples were thawed on ice for 120 min and

vortexed for 1 min. To extract metabolites from urine samples incubated with urease, 100 μl of

each urine sample was mixed with 10 μl of urease, which is equivalent to 100 U of Type 3 ure-

ase (U1500; Sigma-Aldrich, St. Louis, MO), and the mixture was incubated at 37˚C for 60 min.

After that, 890 μl of methanol was added to the mixture, the latter was thoroughly vortexed for

5 min and centrifuged at 16,100 × g and 4˚C for 10 min. From the supernatant, 400 μl was col-

lected, vacuum-dried in a vacuum concentrator (Labconco, Kansas City, MO), and stored at

−80˚C until further analysis to prevent the changes in metabolites. Each entire procedure was

independently repeated six times.

To extract metabolites from pooled urine samples incubated with water without urease,

100 μl of individual urine samples was mixed with 10 μl of distilled water, and incubated at

37˚C for 60 min. To directly extract metabolites from pooled urine samples without incuba-

tion, 100 μl of individual urine samples was mixed with 10 μl of distilled water. The rest of the

experimental procedure was the same as that for the urine samples incubated with urease.

Each entire procedure was independently repeated six times.
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Preparation of urinary metabolite samples using the two types of ureases

To study the introduction of metabolite contaminants from urease preparations into urinary

metabolome samples during urease pretreatment, 0, 0.001, 0.01, 0.1, 1, 10, and 20 μl of a solu-

tion of Type 3 urease (U1500; Sigma-Aldrich) or Type 4 urease (U4200; Sigma-Aldrich),

which were equivalent to 0, 0.01, 0.1, 1, 10, 100, and 200 U of urease, were mixed with 100 μl of

distilled water and incubated at 37˚C for 60 min. After that, 890 μl of methanol was added to

the mixture, and the latter was thoroughly vortexed for 5 min and centrifuged at 16,100 × g
and 4˚C for 10 min. Five hundred microliters of the supernatant, which was equivalent to 0,

0.005, 0.05, 0.5, 5, 50, and 100 U of the Type 3 or 4 urease, was collected, vacuum-dried, and

stored at −80˚C until further analysis. Each entire procedure was independently repeated eight

times.

Extraction of urinary metabolites with five extraction solvents

One hundred microliters of a thermally not treated urine pooled sample was mixed with

900 μl of different extraction solvents, 50ACN (acetonitrile:water at 1:1, v/v), AM (formic acid:

methanol at 0.125:99.875, v/v), MeOH (pure methanol), WiPM (water:isopropanol:methanol

at 2:2:5, v/v/v), and EtOH (pure ethanol) at −20˚C. The mixture was thoroughly vortexed for 5

min, and centrifuged at 16,100 × g and 4˚C for 10 min. From each supernatant, 400 μl was col-

lected, vacuum-dried, and stored at −80˚C until further analysis to prevent the changes in

metabolites. Each entire procedure was independently repeated six times.

A comparison of precipitating capabilities of the extraction solvents

One milliliter each of thermally not treated urine pooled samples was mixed at −20˚C with 9

ml of one of the following extraction solvents: 50ACN, AM, MeOH, WiPM, and EtOH. The

mixtures were thoroughly vortexed for 5 min, and centrifuged at 16,100 × g and 4˚C for 10

min. The supernatants were removed, and precipitates were dried and weighed. Each entire

procedure was independently repeated four times.

Analysis of urinary metabolites by GC/TOF-MS

Before urinary metabolite analysis by GC/TOF-MS, metabolites were derivatized by methoxi-

mation and silylation. For the methoximation, metabolite samples were incubated with 10 μl

of 40 mg/ml methoxyamine hydrochloride (Sigma-Aldrich) in pyridine at 30˚C for 90 min.

The methoximated samples were then incubated with 50 μl of N-methyl-N-trimethylsilyl-tri-

fluoroacetamide (Fluka, Buchs, Switzerland) at 37˚C for 30 min for the silylation. Then, 2 μl of

a mixture of authentic standard methyl esters of C8, C9, C10, C12, C14, C16, C18, C20, C22,

C24, C26, C28, and C30 fatty acids (Sigma-Aldrich) was added to the derivatized metabolite

samples as retention index markers.

For identification and relative quantification of metabolites, an Agilent 7890B GC (Agilent

Technologies, Santa Clara, CA) coupled with a Pegasus HT-TOF MS (LECO, St. Joseph, MI)

was used. A derivatized metabolite sample (0.5 μL) was injected into the GC in splitless mode.

The injected metabolite sample was separated on an RTX-5Sil MS column (30 m length, 0.25

mm inner diameter, and 0.25 μm film thickness; Restek, Bellefonte, PA) with a 10 m guard col-

umn. Oven temperature was set to 50˚C for 1 min, ramped to 330˚C at a rate of 20˚C/min,

and held at 330˚C for 5 min. Mass spectra were recorded in the m/z range of 85–500 at an

acquisition rate of 10 spectra/s. The ion source and transfer line temperatures were set to 250

and 280˚C, respectively, and the ionization by electron impact was performed at 70 eV.
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For accurate analysis of metabolites by GC/TOF-MS without external interference, daily

quality control was carried out. Two blank method samples and four calibration curve samples

consisting of 31 pure reference compounds including amino acids, organic acids, and sugars

were all derivatized by the same procedures as those used for the urinary metabolite analysis

described above [32]. To avoid batch effects, samples in each experiment were randomly

ordered and then analyzed all at once. To avoid the effects of impurities in the solvent, pure

acetonitrile was analyzed via the same protocol once every 10 samples.

Data processing for GC/TOF-MS and statistical analyses

For detection and deconvolution of mass spectra, LECO Chroma TOF software (C version;

LECO) was used for preprocessing of mass spectral data. The preprocessed data were next pro-

cessed by means of the BinBase in-house software [33]. BinBase identified peaks by referring

mass spectra and retention indices of peaks to Fiehn, NIST, and in-house libraries [33,34]. The

peaks with mass spectral similarity above 700 with the authentic standards were considered

identified metabolites. Quantities of the identified metabolites were reported as peak heights

of their unique ion intensities. For each positively detected spectrum, the lowest background

intensity was subtracted from the intensity of the quantified ion in its retention time region ±
5 s using the MZmine software [33].

Raw peak intensities without any normalization or transformation were subjected to multi-

variate and nonparametric statistical analyses, PCA, PLS-DA, the Mann–Whitney U test, the

Wilcoxon signed-rank test, the Kruskal–Wallis test followed by post hoc Mann–Whitney U test

with FDR adjusted via the Benjamini–Hochberg correction, heat map construction, and the

MetaMapp analysis. PCA and PLS-DA were performed in the SIMCA-P+ software (version

12.0; Umetrics AB, Umea, Sweden), and the heat map was visualized in the MultiExperiment

Viewer application [35]. The Mann–Whitney U test, Wilcoxon signed-rank test, and Kruskal–

Wallis test were performed in Metabox [36]. The MetaMapp analysis was performed in Meta-

Mapp and Cytoscape software packages [37].

Results

Effects of urease pretreatment on urinary metabolite profiles

In this study, we analyzed 68 urine samples collected from 31 healthy males and 37 healthy

females (S1 Table). To investigate possible changes and alterations of urinary metabolites after

pretreatment of urine with urease, urine metabolome samples were prepared by three pretreat-

ment methods. First, according to the standard protocol [2], urine samples were incubated

with urease and extracted with a solvent, pure methanol (Group UI), where urease pretreat-

ment is the key step of the standard protocol of urine metabolome sample preparation. Second,

to investigate the effects of urease pretreatment, urine samples were incubated with water with-

out urease and extracted with pure methanol (Group WI). Third, to assess the effects of incu-

bation at the urease pretreatment temperature, urine samples were directly extracted with pure

methanol without urease pretreatment (Group DE). With all the different pretreatment meth-

ods, a total of 107 metabolites were identified by GC/TOF–MS in extracted metabolome sam-

ples (S3 Table).

To find any differences in metabolite profiles among urinary metabolome samples sub-

jected to the three different pretreatment methods, a multivariate analysis, i.e., partial least-

squares discriminant analysis (PLS-DA), was performed on the 106 identified metabolites

excluding urea (Fig 1A and 1B). The score plot (Fig 1A) and loading plot (Fig 1B) of the

PLS-DA model showed complete separation of group UI from the other groups. Groups DE
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and WI were separated partially. The PLS-DA model showed high fitness [R2X (cumulative) of

0.369 and R2Y (cumulative) of 0.565] and a high predictive ability: Q2 (cumulative) of 0.552.

To find significant changes in metabolite abundance depending on the pretreatment meth-

ods, the Kruskal–Wallis test with the post hoc U test was performed. As a result, the abundance

levels of 103 metabolites were found to significantly change (false discovery rate [FDR]-

adjusted p value <0.05; S4 Table). In a comparison of groups UI and WI, 53 metabolites were

significantly more abundant in group UI, and 16 metabolites were significantly more abun-

dant in group WI. In a comparison of groups UI and DE, 87 metabolites were significantly

Fig 1. PLS-DA and a heat map of metabolite profiles of urinary metabolome samples obtained from 68 healthy individuals by different

pretreatment methods. (A) A score plot and (B) loading plot of the PLS-DA model of 106 identified metabolites excluding urea. The urinary

metabolome samples were prepared as follows: group UI, incubated with urease and extracted with pure methanol; group WI, incubated with water

without urease and extracted with pure methanol; group DE, extracted using pure methanol without urease pretreatment. The color of each metabolite

indicates the chemical class (amine; red, fatty acid; blue, organic acid; purple, sugar and sugar alcohols; orange, miscellaneous; gray) of the metabolite.

https://doi.org/10.1371/journal.pone.0230072.g001
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more abundant in group UI, and six metabolites significantly more abundant in group DE. In

a comparison of groups DE and WI, 92 metabolites were significantly more abundant in

group DE, and only one metabolite was significantly more abundant in group WI.

Effects of urease pretreatment on the gender-discriminating ability of the

urinary metabolome

Urine is known to uniquely contain gender-discriminating biomarkers [19,38,39]. In this

study, it was tested how urine pretreatment affects the gender-discriminating ability of the uri-

nary metabolome. To this end, PLS-DA models of 106 metabolites prepared by the three urine

pretreatment methods (UI, WI, and DE) were set up for individual urine samples of males and

females. Among the three urine pretreatment methods, group UI showed an overlap of urine

samples between the genders. Accordingly, the urease-pretreated group (UI) showed the low-

est discriminating ability: the lowest values of R2X (cumulative 0.314), R2Y (cumulative 0.753),

and Q2 (cumulative 0.568; Fig 2A and 2B). In contrast, group WI showed complete separation

of males and females (Fig 2C and 2D). Accordingly, group WI showed the highest discriminat-

ing ability among the three groups, namely, the highest values of R2X (0.355), R2Y (0.838), and

Q2 (0.739). Group DE also showed complete separation of males and females (Fig 2E and 2F).

Accordingly, group DE showed the second highest discriminating ability, i.e., high values of

R2X (0.369), R2Y (0.810), and Q2 (0.719). The variable importance in projection (VIP) values

Fig 2. PLS-DA scores plots (A,C,E) and loading plots (B,D,F) of metabolite profiles for 106 metabolites (excluding urea) identified in urinary

metabolome samples obtained from 31 male and 37 female individuals by the following pretreatment methods. UI_Male, the male urine sample group

incubated with urease and extracted with pure methanol; UI_Female, the female urine sample group incubated with urease and extracted with pure methanol;

WI_Male, the male urine sample group incubated with water without urease and extracted with pure methanol; WI_Female, the female urine sample group

incubated with water without urease and extracted with pure methanol; DE_Male, the male urine sample group extracted using pure methanol without urease

pretreatment; DE_Female, the female urine sample group extracted by means of pure methanol without urease pretreatment.

https://doi.org/10.1371/journal.pone.0230072.g002
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of metabolites in the PLS-DA models are listed in S5 Table. Overall, the urease pretreatment

was found to significantly reduce the gender-discriminating ability of urinary metabolomics.

Effects of endogenous urinary enzymes on urinary metabolite profiles

According to the standard sample preparation protocol for urinary metabolomics [2], during

urine pretreatment with urease, urine samples are incubated at 37˚C to induce the enzymatic

reaction driven by urease. Because endogenous urinary enzymes maintain their activities in

urine after sample collection [40,41], not only added urease but also endogenous urinary

enzymes present in urine may act on urinary metabolites during the incubation process after

sample collection. In this study, possible effects of urinary enzymes on metabolite profiles dur-

ing the incubation process were investigated. For this purpose, 68 urine samples were pooled

together, and the pooled samples were thermally not treated (NT) or thermally treated (TT) to

inactivate endogenous urinary enzymes in urine (Table 1). Metabolome samples from these

two urine sample groups were next pretreated in one of the following two ways: i) incubated

with water without urease and then extracted with pure methanol (WI); ii) directly extracted

with the solvent without urease pretreatment (DE). Therefore, the following four urinary

metabolome sample groups were established: combining NT and WI (group NT&WI), com-

bining NT and DE (group NT&DE), combining TT and WI (group TT&WI), and combining

TT and DE (group TT&DE). In the GC/TOF–MS analysis of these pooled metabolome sam-

ples, a total of 113 metabolites were identified (S6 Table).

To study the effects of water incubation on metabolite profiles, groups NT&WI and

NT&DE were compared, as were groups TT&WI and TT&DE. The comparisons were con-

ducted by the Wilcoxon signed-rank test and visualized by means of MetaMapp (S7 Table, Fig

3). In MetaMapp (which visualizes differences in metabolite abundance), the thermally not

treated groups (NT) showed the abundance levels of 87 metabolites to be significantly lower in

group NT&WI than in group NT&DE (Fig 3A). In contrast, no significant differences were

observed between groups TT&WI and TT&DE, which were both thermally treated to inacti-

vate endogenous urinary enzymes (Fig 3B). In summary, endogenous urinary enzymes were

found to significantly affect the metabolite profiles after incubation when urine samples were

not thermally inactivated.

Effects of urease itself on urinary metabolite profiles

To study the effects of urease itself on the metabolite profiles of urine metabolome samples,

the pooled and thermally treated urine samples were incubated with urease and extracted with

Table 1. The study design regarding the effect of endogenous enzymes.

Sample Enzyme inactivation Group Remarks

Urine pool from 68 healthy

volunteers

Thermally not

treated

Extraction after incubation with water (NT&WI;

n = 6)

Changes represent activities from urinary

enzyme

Direct extraction (NT&DI; n = 6)

Thermally treated Extraction after incubation with water (TT&WI;

n = 6)

Changes represent experimental artefacts

Direct extraction (TT&DI; n = 6)

To compare metabolite profiles of the four groups—NT&WI, NT&DE, TT&WI, and TT&DE—principal component analysis (PCA) was performed (S1A and S1B Fig).

The thermally not treated sample groups (NT), NT&WI and NT&DE, were completely separated from each other. On the other hand, in the thermally treated sample

groups (TT)—TT&WI and TT&DE—the PCA model showed similar metabolite profiles regardless of WI or DE. The PCA model showed a high explanatory value of

R2X (cumulative 0.705) and a high predictive value of Q2 (cumulative 0.640; S2A and S2B Fig).

https://doi.org/10.1371/journal.pone.0230072.t001
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pure methanol (group TT&UI). The metabolite profiles of group TT&UI were compared with

those of the pooled, thermally treated, incubated with water, and pure methanol-extracted

samples (group TT&WI) or the pooled, thermally treated, and directly pure methanol-

extracted samples (group TT&DE) by PCA (S2A and S2B Fig). In the PCA model of the ther-

mally treated groups (TT), the urease-treated group, TT&UI, was well separated from groups

TT&WI and TT&DE, which were both not treated with urease (S2A Fig). The PCA model

yielded a high explanatory value of R2X (0.688) and a high predictive value; the Mann–Whit-

ney U test was performed, and the results were visualized in MetaMapp (S7 Table, Fig 4). Of

the metabolites in group TT&UI, 66 metabolites were significantly more abundant and 16

metabolites significantly less abundant than their corresponding metabolites in group

TT&WI.

To investigate possible contamination by innate ingredients of urease preparations, Type 3

and Type 4 ureases, which are commonly used for urease pretreatment, were extracted with

methanol, and these methanol extracts were analyzed. The Kruskal–Wallis test indicated that

intensities of 12 metabolites (arabitol, galactonate, galactose, glucose, glycerol, glycolate, lac-

tose, mannose, phosphate, succinate, sucrose, and trehalose) significantly increased as the

loading amounts of the Type 3 urease in methanol extraction increased (S8A Table). In the

methanol extract of the Type 4 urease, 11 metabolites (excluding galactonate), which increased

in abundance with an increase in the loading amounts of the Type 3 urease during methanol

extraction as mentioned above, significantly increased in abundance as the loading amounts of

the Type 4 urease increased (S8B Table). The abundance levels of the upregulated metabolites

were converted into relative abundance levels by dividing the abundance of each metabolite

by the highest abundance of each metabolite across the samples, and these values were then

visualized via a heat map (Fig 5A). The heat map revealed the abundance increases of 12

metabolites in the methanol extract of the Type 3 urease and the abundance increases of 11

metabolites in the methanol extract of the Type 4 urease, as the loading amounts of these

Fig 3. MetaMapp analysis of the effects of water incubation on the profiles of 113 metabolites identified in pooled urinary metabolome samples

which were (A) thermally not treated or (B) thermally treated. Group NT&WI: thermally not treated, incubated with water without urease, and

extracted with pure methanol; group NT&DE: thermally not treated and extracted with pure methanol without urease pretreatment; group TT&WI:

thermally treated, incubated with water without urease, and extracted with pure methanol; group TT&DE: thermally treated and extracted with pure

methanol without urease pretreatment. Classes of metabolites are represented by shapes. Significant increases and decreases in the abundance of

metabolites after incubation with water are indicated by colors (p< 0.05, based on the Wilcoxon signed-rank test with FDR adjusted via the Benjamini–

Hochberg correction). Magnitudes of fold changes are represented by the sizes of symbols and labels; biochemical and structural similarities are

represented by orange and gray edges, respectively.

https://doi.org/10.1371/journal.pone.0230072.g003
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ureases in the methanol extract of the ureases increased (Fig 5A). Among the upregulated

metabolites, 10 metabolites (arabitol, galactonate, glucose, glycerol, glycolate, lactose, man-

nose, phosphate, sucrose, and trehalose) were also more abundant in group TT&UI than in

group TT&WI (Fig 4). Peak intensities of phosphate and lactose, which showed the highest

peak intensities among the upregulated metabolites in the methanol extracts of both ureases,

reached saturation values when the loading amounts of both ureases increased to 5 units

(Fig 5B).

Evaluation of solvents on extraction of metabolites from urine

To identify an ideal solvent for extracting urinary metabolites, five extraction solvents that pos-

sess distinctive solvent properties and are commonly used for metabolite extraction, namely,

50ACN (acetonitrile:water = 1:1, v/v), AM (acidified methanol, i.e., formic acid:methanol

at 0.125:99.875, v/v), MeOH (pure methanol), WiPM (water:isopropanol:methanol at 2:2:5,

v/v/v), and EtOH (pure ethanol), were evaluated in this study. These five solvents were applied

to extraction of metabolites from thermally not treated pooled urine samples. To evaluate the

metabolite extraction capabilities of the five extraction solvents, sums of identified peak inten-

sities for each chemical class and the total for identified metabolites were compared using

box and whisker plots (Fig 6A). Overall, solvents 50ACN and AM showed greater sums of

peak intensities than did the other solvents. Especially in the classes of amines and fatty acids,

50ACN and AM both showed similarly greater sums of peak intensities than did those of other

solvents. 50ACN manifested the largest sums of intensities in the classes of amino acids and

Fig 4. MetaMapp analysis of the effects of urease itself on the profiles of 113 metabolites identified in thermally treated pooled urinary

metabolome samples. Group TT&WI: thermally treated, incubated with water without urease, and extracted with pure methanol; group TT&UI:

thermally treated, incubated with urease, and extracted with pure methanol. Classes of metabolites are represented by shapes. Significant increases and

decreases in the abundance of metabolites after incubation with urease are illustrated by colors (p< 0.05, based on the Mann–Whitney U test with FDR

adjusted via the Benjamini–Hochberg correction). Magnitudes of fold changes are represented by the sizes of symbols and labels; biochemical and

structural similarities are represented by orange and gray edges, respectively.

https://doi.org/10.1371/journal.pone.0230072.g004
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organic acids. AM showed the largest sums of intensities in the classes of sugars and sugar

alcohols and miscellaneous.

To evaluate metabolite extraction reproducibility of the five solvents, the percent coeffi-

cients of variance (%CVs) of metabolite abundance levels in each metabolite class were com-

pared by means of box and whisker plots (Fig 6B). AM showed the lowest %CV in the classes

of amines, amino acids, organic acids, sugars, and sugar alcohols as well as miscellaneous

Fig 5. Increases in the abundance of metabolites in response to increasing the loading units (U) of Type 3 and Type 4 ureases. (A) A heat map of

the 12 significantly upregulated metabolites that were derived from the Type 3 urease and the significantly upregulated 11 metabolites that were derived

from the Type 4 urease, with an increase in the urease loadings (p< 0.05, according to the Kruskal–Wallis test with FDR adjusted via the Benjamini–

Hochberg correction). (B) Total ion chromatograms for different loading units (U) of the Type 3 urease.

https://doi.org/10.1371/journal.pone.0230072.g005
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metabolites and in the total of identified metabolites compared with those of other solvents.

Only the class of fatty acids showed similar %CVs among the extraction solvents.

To evaluate the capabilities of precipitation of DNA, RNA, and proteins among the five sol-

vents during metabolite extraction, centrifuged precipitates were dried and weighed (Fig 7).

Fig 6. Box and whisker plots for the comparison of (A) the sum of peak intensities of the identified metabolites in each chemical class

and (B) %CVs of peak intensities of the identified metabolites in each chemical class, in which the identified metabolites were extracted

at −20˚C from thermally not treated pooled urine samples by means of acetonitrile–water (50ACN; 1:1, v/v), formic acid–methanol

(acidified methanol, AM; 0.125:99.875, v/v), pure methanol (MeOH), water–isopropanol–methanol mixture (WiPM; 2:2:5, v/v/v), or

pure ethanol (EtOH).

https://doi.org/10.1371/journal.pone.0230072.g006
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EtOH showed the highest precipitation capability, and AM and MeOH showed the second

highest precipitation capabilities. WiPM showed much lower precipitation capability than did

EtOH, AM, and MeOH. 50ACN did not precipitate DNA, RNA, and proteins.

Discussion

The urease pretreatment step included in the standard urinary metabolome sample prepara-

tion, which involves incubation of samples with urease, has been a controversial topic [18,19]

and contradicts the general concept of standard metabolome sample preparation, which

Fig 7. A comparison of extraction solvents on obtaining precipitates from urine samples. (A) Box and whisker plots of the amounts and (B) the

photographs of dried precipitates. Thermally not treated pooled samples of urine were extracted with acetonitrile–water (50ACN; 1:1, v/v), formic acid–

methanol (AM; 0.125:99.875, v/v), pure methanol (MeOH), water–isopropanol–methanol mixture (WiPM; 2:2:5, v/v/v), or pure ethanol (EtOH) at

−20˚C, and the precipitates were centrifuged and dried.

https://doi.org/10.1371/journal.pone.0230072.g007
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requires immediate arrest of metabolic and enzymatic reactions [10,13,14,16]. In the present

study, we found that urease pretreatment significantly alters human urinary metabolite pro-

files. For the first time, it was revealed that both urease and endogenous urinary enzymes con-

vert urinary metabolites, thus significantly altering urinary metabolite profiles, leading to

misinterpretation of metabolic status. Metabolites contained in urease preparations were also

found to contaminate urinary metabolome samples. To recommend an optimal extraction sol-

vent for human urinary metabolome sample preparation, five extraction solvents were assessed

next. Among them, AM was found to be the best solvent with the highest capability and repro-

ducibility of metabolite extraction and showed good capacity for precipitating DNA, RNA,

and proteins.

In this study, urease, which is added to degrade urea from urine, was found to enzymatically

act not only on urea but also on other metabolites, thus altering metabolite profiles (Fig 1A

and 1B). After urease pretreatment, the gender-discriminating capabilities of urinary metabo-

lomics significantly decreased (Fig 2). As for the metabolite profile changes after urease pre-

treatment, others also observed this effect [18,19] but did not find possible causes. In this

study, after thermally treated urine samples were incubation with urease, the abundance levels

of 82 metabolites significantly changed (Fig 4). The abundance changes of these 82 metabolites

were likely to be mainly caused by the action of urease. Ureases used for pretreatment are

extracted from the jack bean and are known to degrade not only urea into ammonia and CO2

but also other metabolites such as formamide, acetamide, and N-methylurea [42]. Besides, ure-

ase may have shown enzymatic promiscuity while being incubated with urine, where promis-

cuity means the ability of an enzyme to catalyze alternative reactions other than its native

reaction [43,44]. Among these 82 metabolites, 10 upregulated metabolites were also detected

as the contaminants originating from Type 3 and Type 4 ureases; amounts of these metabolites

increased as the loading amounts of ureases in methanol extraction increased (Fig 5). There-

fore, the increases in the abundance of these 10 metabolites were likely to be caused by the con-

taminants in urease preparations, whereas abundance changes in the other 72 metabolites may

be attributed to the activity of urease.

Similar to urease pretreatment groups, in thermally not treated urine samples, endogenous

urinary enzymes were found to enzymatically act on many urinary metabolites (Fig 3A). After

thermal treatment of urine samples for inactivation of urinary enzymes, significant changes in

metabolite profile were not observed even after incubation with water (Fig 3B and S1A Fig).

Although the thermal treatment resulted in changes in the metabolite concentration possibly

due to the Millard reaction and redox reaction [45,46], it was confirmed that the same types of

metabolites were retained over a certain concentration before and after the thermal treatment

(S1B Fig). These results suggest that even without urease, incubation of urine samples allows

endogenous urinary enzymes to act on urinary metabolites. Therefore, not only urease itself

but also the incubation process needs to be regarded as one of the main factors altering urinary

metabolite profiles. Others have also observed metabolite abundance changes after incubation

of urinary metabolome samples with water [19], but they did not find possible causes of these

changes. Thus, the changes in metabolite profiles and in abundance levels of urinary metabo-

lites appear to be caused by both urease pretreatment and endogenous urinary enzymes.

Not only the activities of urease and endogenous urinary enzymes discussed above but also

contaminants from urease preparations can cause alterations in metabolite abundance and

profiles, thus leading to misinterpretation of metabolomic information. For example, in the

gender-discriminating PLS-DA model of group UI, the VIP value of lactose (which was also

found to be a contaminant derived from the stabilizing agent in urease [19,47]) was only 0.309

(Fig 2 and S5 Table). Nonetheless, in the gender-discriminating PLS-DA model of group DE,

the VIP value of lactose was 0.862 (Fig 2E and 2F and S5 Table). The significantly lower value
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of VIP in group UI than in group DE was due to the lactose contaminant from urease. Urease

pretreatment increased the abundance of lactose, resulting in a similarity in lactose abundance

between male and female urine samples, thus decreasing the VIP value in group UI. This

decreased VIP value of group UI eventually reduced the gender-discriminating ability of the

PLS-DA model (Fig 2A and 2B) because of the decreased VIP value (S5 Table).

The high concentrations of urea in urine samples are typical [2]. Therefore, urease pretreat-

ment for degrading urea has been the key prerequisite for chromatographic analysis on the

basis of the following assumptions: the large amounts of urea can cause overlapping of the

peak of urea with peaks of other metabolites in chromatograms [24–26]; can result in over-

loading of chromatographic columns [27]; and can cause incomplete derivatization [19,20],

thus interfering with identification of metabolites. On the other hand, because mass spectrom-

etry was developed to be combined with chromatography, the peak overlaps between urea and

other metabolites stopped being a problem in metabolite identification and quantification per-

formed by means of their specific mass spectra [18]. Furthermore, the column overloading

caused by urea can be minimized by controlling the volume of urine samples [18]. Results of

metabolite derivatization, such as trimethylsilylation of urinary metabolites, were not found to

be affected by urea in urine samples [18,29]. Overall, urinary metabolomic analysis without

urease pretreatment does not worsen identification of metabolites, but rather urease pretreat-

ment introduces artefacts and misinterpretations into urinary metabolomic analysis. There-

fore, urease pretreatment should be removed from the standard protocol.

In the present standard protocol for preparation of urinary metabolome samples [2], after

urine is pretreated with urease, the urine sample is extracted with a solvent. Among the five

tested extraction solvents in this study, AM was found to be the best solvent for urinary metab-

olite extraction, with the highest scores on metabolite extraction capability and reproducibility,

along with a good ability to precipitate DNA, RNA, and proteins, which need to be removed to

prevent interference with metabolite analysis [48]. Both AM and 50ACN showed the highest

(similar) capabilities for extraction of urinary metabolites (Fig 6A), but only AM showed the

highest performance on both extraction reproducibility and precipitation capability (Figs 6B

and 7). The substance serving as the solvent for many metabolites in urine is water [27]. There-

fore, most urinary metabolites are dissolved in water, and most of them are polar, and only a

few, such as fatty acids bound to protein, are nonpolar [27,49]. Thus, organic solvents with

high polarity are most suitable for the extraction of urinary metabolites. The polarity of the sol-

vents at 25˚C is as follows: acetonitrile, 0.460; ethanol, 0.654, isopropanol, 0.546; methanol,

0.762; and water, 1.000 [50]. Given that the extraction solvents used in this study are complex

mixtures of the above solvents, the exact polarity of each extraction solvent is difficult to calcu-

late. Nevertheless, owing to the high polarity of methanol and water, the approximate polarity

values can be presumably compared as follows in these two groups, AM > MeOH > EtOH

and 50ACN > WiPM. In this study, the metabolite extraction capabilities of the extraction sol-

vents were ranked in the following order 50ACN� AM > MeOH > WiPM > EtOH (Fig 6A);

these capabilities, to a certain extent, correspond to their relative polarity. Therefore, 50ACN

and AM were found to possess the highest capabilities for extraction of urinary metabolites in

this study.

In the comparison of 50ACN and AM on extraction (Fig 6B) and precipitation capabilities

(Fig 7), AM showed much higher performance than 50ACN. The precipitation capability of an

extraction solvent is inversely related to the dielectric constant of this solvent; the higher the

dielectric constant, the lower the ability to precipitate DNA, RNA, and proteins [51]. The

dielectric constants of the solvents are as follows: acetonitrile, 37.50; ethanol, 24.30; isopropa-

nol, 18.30; methanol, 32.63; and water, 80.37 at 25˚C [52]. Among the extraction solvents,
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acetonitrile has the lowest polarity but possesses the second highest dielectric constant. Thus,

owing to the low precipitation capability of 50ACN, high-molecular-weight impurities dis-

solved in the solvent could be partially derivatized, thus resulting in irregular increases of peak

intensities (Fig 7) [46]. This phenomenon explains the irregularly high intensities of amines

and amino acids—the main components of DNA, RNA, and proteins—in 50ACN (Fig 6A). In

contrast, the dielectric constant of acidified methanol is lower than that of 50ACN, causing

AM to show a high precipitation capability (Fig 7) and extraction reproducibility (Fig 6B).

Thus, owing to the high polarity and low dielectric constant of methanol, AM is the most suit-

able solvent for the extraction of urinary metabolites.

In conclusion, for accurate and reliable analysis of urinary metabolites, we propose to

remove the controversial urease pretreatment step from the current standard urine metabo-

lome preparation protocol, which was established for a chromatographic system a long time

ago and has been used until today. In addition, we recommend AM as the ideal solvent for uri-

nary metabolite extraction.

Supporting information

S1 Fig. PCA scores plots (A) and loading plots (B) of metabolite profiles for 113 metabo-

lites identified in urinary metabolome samples obtained from 31 pooled male urine sam-

ples and 37 pooled female urine samples by the following different pretreatment methods.

Group NT&WI, thermally not treated, incubated with water without urease, and extracted

with pure methanol; group NT&DE, thermally not treated and extracted with pure methanol

without urease pretreatment; group TT&WI, thermally treated, incubated with water without

urease, and extracted with pure methanol; group TT&DE, thermally treated and extracted

with pure methanol without urease pretreatment.

(TIF)

S2 Fig. PCA score plots (A) and loading plots (B) of metabolite profiles of 113 metabolites

identified in urinary metabolome samples obtained from 31 pooled and thermally treated

male urine samples and 37 pooled and thermally treated female urine samples by the fol-

lowing different pretreatment methods. Group TT&UI, thermally treated, incubated with

urease, and extracted with pure methanol; group TT&WI, thermally treated, incubated with

water without urease, and extracted with pure methanol; group TT&DE, thermally treated and

extracted with pure methanol without urease pretreatment.

(TIF)

S1 Table. Characteristics of 68 healthy volunteers.

(XLSX)

S2 Table. Metabolome data analyzed by GC/TOF–MS.
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S3 Table. Identified 107 metabolites in 68 individual human urine samples.

(XLSX)

S4 Table. The Kruskal-Wallis test with post-hoc U test for the abundance comparison of

metabolites identified from pooled urine samples pretreated by using the following differ-

ent methods. UI, urine samples, incubated with urease and extracted with pure methanol; WI,

incubated with water without urease and extracted with pure methanol; DE, extracted with

pure methanol without urease pretreatment.

(XLSX)
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S7 Table. Non-parametric paired W test and U test for the comparisons of different urine

pretreatment methods. NT&WI, pooled urine samples, thermally not treated, incubated with

water without urease and then extracted with a solvent, pure methanol; NT&DE, pooled urine

samples, thermally not treated and directly extracted with the solvent without urease pretreat-

ment; TT&UI, pooled urine samples, thermally treated, incubated with urease and extracted

with the solvent; TT&WI, pooled urine samples, thermally treated, incubated with water with-

out urease and then extracted with the solvent; TT&DE, pooled urine samples, thermally

treated and directly extracted with the solvent without urease pretreatment.

(XLSX)

S8 Table. A. The Kruskal-Wallis test with post-hoc U test for the comparison of 12 metab-

olites depending on enzyme loading units of the Type 3 urease. B. The Kruskal-Wallis test

with post-hoc U test for the comparison of 11 metabolites depending on enzyme loading
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