
Fast and memory-efficient scRNA-seq k-means clustering with 
various distances

Daniel N. Baker,
Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA

Nathan Dyjack,
Department of Biostatistics, Johns Hopkins University, Bloomberg, School of Public Health, 
Baltimore, MD, USA

Vladimir Braverman,
Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA

Stephanie C. Hicks,
Department of Biostatistics, Johns Hopkins University, Bloomberg, School of Public Health, 
Baltimore, MD, USA

Ben Langmead
Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA

Abstract

Single-cell RNA-sequencing (scRNA-seq) analyses typically begin by clustering a gene-by-cell 

expression matrix to empirically define groups of cells with similar expression profiles. We 

describe new methods and a new open source library, minicore, for efficient k-means++ center 

finding and k-means clustering of scRNA-seq data. Minicore works with sparse count data, 

as it emerges from typical scRNA-seq experiments, as well as with dense data from after 

dimensionality reduction. Minicore’s novel vectorized weighted reservoir sampling algorithm 

allows it to find initial k-means++ centers for a 4-million cell dataset in 1.5 minutes using 20 

threads. Minicore can cluster using Euclidean distance, but also supports a wider class of measures 

like Jensen-Shannon Divergence, Kullback-Leibler Divergence, and the Bhattachaiyya distance, 

which can be directly applied to count data and probability distributions.

Further, minicore produces lower-cost centerings more efficiently than scikit-learn for scRNA-seq 

datasets with millions of cells. With careful handling of priors, minicore implements these distance 

measures with only minor (<2-fold) speed differences among all distances. We show that a 

minicore pipeline consisting of k-means++, localsearch++ and mini-batch k-means can cluster a 

4-million cell dataset in minutes, using less than 10GiB of RAM. This memory-efficiency enables 

atlas-scale clustering on laptops and other commodity hardware. Finally, we report findings on 

which distance measures give clusterings that are most consistent with known cell type labels.

This work is licensed under a Creative Commons Attribution International 4.0 License.

dnb@cs.jhu.edu . 

HHS Public Access
Author manuscript
ACM BCB. Author manuscript; available in PMC 2021 November 12.

Published in final edited form as:
ACM BCB. 2021 August ; 2021: . doi:10.1145/3459930.3469523.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://creativecommons.org/licenses/by/4.0/


Keywords

clustering; single cell; importance sampling; SIMD

1 INTRODUCTION

Single-cell RNA-sequencing (scRNA-seq) is capable of measuring transcriptome-wide 

gene expression in millions of cells per experiment. With the arrival of multi-million-cell 

datasets [10, 13], and larger efforts like the Human Cell Atlas [30] on the horizon, the 

need for methods that rapidly analyze and cluster (empirically group) cells is growing. 

This necessitates computational advances in methods for unsupervised clustering and 

summarizing large collections of cells.

k-means is one popular clustering framework. It is classically formulated as an expectation 

maximization problem that starts from an initial set of k data points that act as “centers” 

[23], iterating to obtain final centers. These centers induce a clustering of the observations 

into k classes. k-means++ [2] improves how the initial centers are found, yielding clear 

mathematical guarantees for the overall clustering. Besides their direct application as 

clustering methods, k-means and k-means++ are useful as individual components of other 

methods, including for data quantization [23], spectral clustering [11], outlier detection [35], 

machine learning [1] and construction of sketches and coresets [16, 25]. For example, in 

scRNA-seq analysis, sketching – the selection of a possibly weighted subset of cells to use 

– can be used to identify rare cell types. The Geometric sketching [18], Hopper [14], and 

submodular sketch [37] methods all employ some form of center-finding as a subroutine.

We describe a new open source, highly efficient software library called minicore, which 

implements an array of algorithms to find the “center” of a group of cells – essentially 

a rough clustering – and for performing k-means clustering seeded by those centers. The 

advantages of minicore are threefold. First, minicore uses a new vectorized weighted 

reservoir sampling algorithm for its initial center-finding step, making it far more efficient 

than competing k-means++ implementations, such as scikit-learn [29] or pyclustering [28]. 

Second, Minicore implements a variety of distance measures, including the widely-used 

squared Euclidean distance, but also including others like Jensen-Shannon Divergence, 

Kullback-Leibler Divergence, and Bhattacharyya distance, which can be directly applied 

to count data or probability distributions. Third, minicore is able to process both dense, 

dimensionality-reduced data – the typical input for scRNA-seq clustering methods – as well 

as full, sparse, non-reduced matrices of counts. Minicore is unique in its ability to handle 

scRNA-seq data in both sparse and dense forms, and its support for distance measures that 

account for the original count-based nature of the data.

On real scRNA-seq datasets with up to millions of cells and using squared Euclidean 

distance, minicore is substantially faster than scikit-learn and achieves lower objective

function cost. Further, minicore can produce centers using a wide variety of distance 

measures with only minor differences in the overall running time, facilitating use of distance 

measures that are better attuned to the count nature of the data and do not require prior 

transformations [33]. Finally, we show that a complete pipeline consisting of minicore’s 

Baker et al. Page 2

ACM BCB. Author manuscript; available in PMC 2021 November 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



implementations of k-means++, localsearch++ and mini-batch k-means can cluster a 4

million cell dataset in minutes using 20 threads and a maximum resident set size (RAM) of 

less than 10 GiB.

2 RELATED WORK

Due to its wide applicability, several methods for accelerating k-means algorithms have been 

introduced. These include reducing point-center comparisons, reducing the cost of centroid 

calculation, and approximation, whether by sampling or dimensionality reduction.

For distance metrics and ρ-metrics, the triangle inequality can provide substantial runtime 

improvements without altering the result [15]. Other approaches use nearest neighbor 

oracles [8] or LSH tables [22] to select points for centroids [8]. These can provide 

asymptotic improvements with high probability, though they are dependent on the success of 

neighbor retrieval.

For ℓ2, data dimensionality can be reduced before clustering, as in [26], and applied to 

scRNA-seq in [34] which works with high probability. This uses all data points at each 

iteration, but in reduced dimensions. Alternatively, the points can be sampled during 

centroid calculation, as in [6], [31], which minicore supports. In fact, for applications in 

Euclidean space, these techniques could be used together.

However, many of the dissimilarity measures that motivate our work, including KLD, 

and ISD, and JSD, do not satisfy the triangle inequality or support fast and effective 

LSH querying. Also, dimension reduction transformations typically operate in Euclidean 

space, not capturing the count nature of scRNA-seq data. For this reason, we prioritized 

accelerating distance calculations in the sparse high-dimensional setting, though advances in 

neighbor retrieval may allow us to make further runtime improvements.

3 RESULTS

We collected scRNA-seq datasets of varying size: (a) the PBMC dataset consisting of 68,579 

peripheral blood mononuclear cells (PBMC) from human [39], (b) the Cao et al. mouse 

organogenesis dataset (Cao2m) consisting of 2,058,652 cells [10], and (c) the Cao et al. 

human fetal gene expression dataset (Cao4m) consisting of 4,062,980 cells [9]. In all cases, 

the original form of the data is a sparse matrix of gene-by-cell nonnegative integer counts. 

For datasets not originally represented in compressed-sparse-row (CSR) format, we convert 

them to that format prior to our experiments. Each of the three datasets has an associated 

set of cell-type labels, obtained by the original authors through an analysis that combined an 

initial clustering with foreknowledge of specific marker genes [9, 10, 39]. While these label 

assignments are not “ground truth,” they capture some biological foreknowledge and so we 

use them to evaluate our final clusterings below.

While minicore can cluster sparse counts directly, we also generated a dense version of 

each of the three datasets after applying a dimensionality reduction method. Specifically, 

we used the truncated Singular Value Decomposition (SVD) from scikit-learn. Rows of the 

final matrix consist of the original data’s projection into the first 500 principal components. 

Baker et al. Page 3

ACM BCB. Author manuscript; available in PMC 2021 November 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We note that a standard PCA has a “centering” step where the mean is subtracted from 

each feature. We used a non-centered SVD since centering causes the matrix to lose its zero 

entries and become dense, in turn requiring terabytes of memory for an SVD computation 

over millions of cells. While non-centered SVD avoids this problem by keeping the matrix 

sparse, a drawback is that the resulting principal components are selected based not just on 

the amount of variability but also on the magnitudes of the values. This is addressed further 

in Discussion.

3.1 Fast and accurate center finding with minicore k-means++

We used minicore v0.3 and compared it to scikit-learn’s v0.24 function for k-means++ 

center finding (sklearn.cluster.kmeans_plusplus). We considered various values for 

the number of centers, k. We note that scikit-learn supports only the squared Euclidean 

distance measure and does not support the use of multiple threads in parallel. For the most 

direct comparison, we used a single thread and the squared Euclidean distance only. In all 

cases, we measured the running time and squared-Euclidean objective cost of the resulting 

set of centers. In the case of minicore, we benchmarked both the k-means++ method (MC), 

as well as the k-means++ method augmented by localsearch++ (MCLS). The scikit-learn 

results are labeled SKL.

Using the three datasets, we found that our minicore k-means++ (MC) implementation 

is significantly faster when compared to scikit-learn k-means++ (SKL) using both sparse 

and dense data (Figure 1, Table 3.2). For dense input data, the MC mode of minicore 

had a dramatic speed advantage, achieving 100–150 times greater speed for the PBMC 

dataset compared to scikit-learn, about 50–100 times greater for Cao2m, and about 240–280 

times greater for Cao4m. For sparse data, the MC mode of minicore was 3–9 times faster 

than scikit-learn depending on the experiment. Our implementation of minicore k-means++ 

augmented by the localsearch++ procedure (MCLS) was also always faster than SKL, and 

was only about 2.5–5 times slower than the MC mode, depending on the experiment.

Further, we found that both of our minicore k-means++ implementations (MC and MCLS) 

obtained comparable or lower costs of the objective function compared to SKL (Table 3.2). 

MCLS obtained the lowest objective in nearly all cases across the three datasets (both dense 

and sparse).

Overall, the results showed that minicore produces high-quality centers and readily scales to 

multi-million cell datasets, even in their original sparse form. For example, the MC mode 

used about 2h:15m (single-threaded) to find k = 100 centers for the 4-million cell Cao4m 

dataset.

Similarly, minicore makes economical use of memory even when working directly on sparse 

representations. The 4-million cell dataset can be clustered using less than 10 GiB RAM, 

allowing it to run on commodity hardware.

Baker et al. Page 4

ACM BCB. Author manuscript; available in PMC 2021 November 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.2 minicore supports distance metrics for both continuous and count data, and 
probability distributions

To evaluate minicore’s speed for distance measures beyond the commonly used 

squared Euclidean distance (SQE), we ran minicore using other measures, including 

the Bhattacharyya Metric (BAT), Kullback-Leibler Divergence (KLD), Jensen-Shannon 

Divergence (JSD), and cosine distance (COS). While these measures involve 

computationally demanding operations like logarithms and square roots, minicore optimizes 

these inner loops using the SLEEF library and vectorization [32]. An additional challenge 

is the need to handle 0 counts, which can result in infinite divergence for measures like the 

KLD. To address this, we use a lazily applied prior that avoids having to instantiate a dense 

version of the matrix at any point. See Methods for more details on both these points.

Using the 2 million and 4 million Cao et al. datasets, we found that the choice of distance 

metric used for minicore’s k-means++ algorithm does impact speed, but not dramatically 

(Figure 2). Specifically, we found that the Bhattacharyya Metric (BAT) required less time 

than squared Euclidean in all cases, whereas KLD required roughly the same amount of time 

as SQE, and JSD generally required the most time. Importantly, the slowest measure (often 

the JSD) never requires more than 61% more computation time than the fastest measure.

3.3 minicore supports k-means and mini-batch k-means clustering algorithms

The minicore library also supports both full k-means clustering using Lloyd’s algorithm 

[24], and the faster mini-batch k-means algorithm [17, 31]. We sought to measure the 

efficiency and accuracy of a full k-means clustering pipeline built from the k-means++, 

localsearch++, and mini-batch k-means components of the minicore library. We chose mini

batch k-means rather than Lloyd’s algorithm because the mini-batch approach has recently 

been shown to be significantly faster for large datasets and provides similar results [17]. 

In all cases, we used k = 25, a mini-batch k-means batch size of 10,000, 25 rounds of 

localsearch++, and a prior of 0.01

We again analyzed the PBMC, Cao2m and Cao4m datasets. We evaluated the clusterings 

using the cell-type labels provided by the authors of the datasets [9, 10, 39]. Specifically, we 

used our k-means clusters as empirical cell labels, using the Adjusted Rand Index (ARI) to 

compare these to the provided labels. Notably, the provided labels are not “ground truth,” 

but were derived using a combination of K-nearest-neighbor graph clustering and marker 

gene analysis. While the ARIs we measured were generally low (sometimes negative), we 

caution against over-interpreting these values since the given labeling is only somewhat 

biologically meaningful.

While we began with the full sparse matrix, we subsampled the rows to consist of the 

500 most variable genes [7], as this often achieved greater Adjusted Rand Index compared 

to analyzing the entire matrix. We tried several distance measures: Bhattacharyya Metric 

(BATMET), Jensen-Shannon Divergence (JSD), the Kullback-Leibler Divergence (KLD), 

and Squared Euclidean Distance (SQE). We ran minicore using 20 simultaneous threads.

Baker et al. Page 5

ACM BCB. Author manuscript; available in PMC 2021 November 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We found that minicore was able to cluster the cells in all three datasets in minutes, with the 

slowest experiment taking about 12 minutes (Figure 3). For the Cao2m and Cao4m datasets, 

timings were in the range of 325–365 seconds and 200–700 seconds respectively.

For both Cao2m and Cao4m, the Bhattacharyya Metric (BAT-MET) was superior to the 

Kullback-Leibler Divergence (KLD) and Squared Euclidean distance (SQE), achieving both 

greater speed and a higher Adjusted Rand Index for its final clustering. In the case of 

Cao2m, the JSD was superior to BATMET on both speed and ARI, but this relationship is 

reversed for the Cao4m dataset.

We measured minicore’s peak memory footprint (resident set size) when processing the 

Cao4m dataset and found that it was less than 10GiB RAM. In short, we found that minicore 

was capable of analyzing a 4-million cell dataset in a few minutes using computational 

resources consistent with a typical commodity laptop.

4 DISCUSSION

We introduced a new library called minicore for k-means clustering of scRNA-seq datasets. 

An efficient, vectorized sampling kernel fuels both its k-means++ center finding algorithm 

and its localsearch++ algorithm for refining centers. Combined with an efficient mini-batch 

k-means implementation, these components form a complete and efficient pipeline for k

means clustering of scRNA-seq data, requiring about 3.5 minutes to cluster a >4 million cell 

dataset when using 20 threads and less than 10GiB RAM. This low memory requirement 

brings even atlas-scale clustering within reach of laptops and other commodity hardware. 

While we applied minicore to scRNA-seq here, its algorithms are readily adaptable to other 

applications, for instance in data quantization, outlier detection and spectral clustering [11, 

23, 35].

4.1 Applications

Minicore’s fast implementations of various distance measures, gives users the flexibility to 

tailor the distance measure to the data. Different measures might be appropriate depending 

on whether cells are best viewed as vectors of real numbers, vectors of counts, or probability 

distributions. We showed that distance measures other than squared Euclidean can perform 

substantially better when evaluated using given cell type labels. In future work, we plan 

to explore how minicore can be applied beyond to work, for example, with graph-induced 

metrics [4].

Another likely application of the algorithms in minicore is to build “sketches” of large 

single-cell data compendia. A sketch is a weighted subset of cells that effectively span the 

gene-expression space and – like centers – facilitate the identification of accurate predicted 

cluster labels downstream. Sketching approaches have been applied to the problem of 

obtaining cluster labels that accurately capture empirical groupings of rare cell types [14, 18, 

38].

Baker et al. Page 6

ACM BCB. Author manuscript; available in PMC 2021 November 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Finally, we further seek to explore whether our optimized weighted sampling kernel may 

also be applicable in the mini-batch k-means algorithm, specifically for the importance 

sampling required to drive the gradient-descent version of mini-batch k-means [6] [27].

In some experiments described here, we used a non-centered version of the truncated 

Singular Value Decomposition (SVD) to project datasets into their first 500 principal 

components. We avoided the mean centering in order to keep the data sparse in preparation 

for the SVD. This has the drawback that the truncated SVD was selecting components based 

not only on variability, but also on the magnitudes of the points. In the future, we would like 

to address this by implementing or otherwise integrating a sparse version of a centered SVD 

computation into minicore. This could become an optional first step allowing users to create 

smaller, dense representations.

5 METHODS

5.1 k-means++ algorithms in minicore

k-means gives an efficient way to choose an initial set of centers in preparation for the more 

work-intensive k-means optimization procedure. Unlike the simple strategy of choosing 

centers uniformly at random, k-means++ guarantees that the objective achieved by the 

downstream k-means procedure will be within a multiplicative O(log k) factor of the optimal 

cost objective.

The k-means++ algorithm involves choosing one center per step across k steps. In the first 

step, a center is chosen from among the data points uniformly at random. In subsequent 

steps, a new center is chosen in a weighted random fashion, with the probability of selecting 

a given point being proportional to its cost, specifically the distance to the nearest already

selected center. The algorithm therefore is a weighted sampling procedure. We now describe 

in detail, as similar sampling procedures form the core of multiple components of minicore.

5.1.1 Sampling kernel.—In a given step of k-means++, a simple sampling strategy 

would be to calculate the cost of each as-yet-unchosen data point (potential “center” gene) 

then draw a random variate from a multinomial distribution weighted by those costs. 

Computationally, this can be accomplished in four steps: first, calculate a cost for each 

point, next calculate a prefix sum over the array of all costs, next generate a uniform random 

variate in [0, C] where C is the total cost, then perform binary search over the prefix-sum 

array to identify the point corresponding to the random variate. While binary search is fast, 

the costs, and therefore the prefix sum, must be at least partially re-computed in each of 

the k steps. Further, the prefix sum computation has an inherent dependence structure that 

inhibits parallelization, though O(n log n)-time parallel solutions exist.

Minicore instead uses a parallelized reservoir-sampling approach that extends an algorithm 

by Hübschle-Schneider & Sanders [19]. That algorithm uses the fact that weighted 

sampling without re-placement is equivalent to generating an exponential random variate 

for each data point, then selecting the point(s) with minimal variates. Importantly, 

variates can be drawn in parallel batches using single instruction multiple data (SIMD) 

instructions, providing instruction-level parallelism. Specifically, we use the SIMD

Baker et al. Page 7

ACM BCB. Author manuscript; available in PMC 2021 November 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



accelerated Polynomial Congruential Generator (PCG) SIMDPCG [12, 21]. Because 

variates are drawn independently for each point, minicore can additionally use multiple 

simultaneous threads to generate variates in parallel across processors.

While drawing the random variates involves a computationally expensive logarithm, we used 

the SLEEF library to compute batches of logarithms accurately and in parallel using SIMD 

instructions. As described in [19], exponential random variates can be sampled equivalently 

either by generating a random value υ ~ U(0, 1) and exponentiating by the inverse of 

the weight υ
1
w , or, equivalently logging and dividing by the weight −lnυ

w , which is more 

numerically stable. We found this numerically stable alternative to be about 3 times as fast as 

exponentiating.

It is common for k-means++ implementations to select more than one potential new center 

in a single step, ultimately choosing the center that yields the lowest overall cost. Our 

parallel implementation accomplishes this using a per-thread heap data structure. SIMD 

instructions are used to determine which from among the random variates in a chunk are 

small enough to be added to the heap. If any are small enough, a serial loop extracts the 

variates and adds them. As a thread proceeds along the array of variates, heap updates 

become rarer, allowing the vast majority of the computation to remain SIMD parallelized. 

Finally, the samples in the per-thread heaps are combined to obtain an overall sample.

We can eliminate a significant number of branches in building the heap using Population 

Counts (popcount) and Count Trailing Zeros (CTZ) instructions. For each vector of new 

candidate variates, we compare it to the broadcasted ceiling, convert to a bitmask, and 

popcount, and switch on the value of the popcount, performing the heap update once per 

nonzero in the bitmask. We access the “current” bit by counting trailing zeros and indexing 

the relevant variate.

This sampling kernel is a core feature of our library, accessible with C and C++ APIs in the 

free and MIT-licensed [3] library. While we described the sampling approach in the context 

of k-means++, it also forms the core of the localsearch++ algorithm described below.

5.1.2 localsearch++.—Lattanzi and Sohler suggested an augmentation of k-means++ 

that adds sampling with local search heuristics [20]. At each iteration in localsearch++, 

the center whose removal increases the objective the least is removed, and a new point is 

sampled in proportion to its cost. We re-use the previous sampling kernel to implement the 

weighted sampling required by this approach. To our knowledge, this is the first application 

of localsearch++ to distance measures beyond squared Euclidean distance.

5.2 Distances, and sparsity in minicore

While k-means++ is most commonly implemented using squared Euclidean distance, it 

has also been shown that the k-means++ procedure yields a O(logk)-approximate solution 

in expectation when using other distance measures and divergences [5]. Specifically, 

this applies to the class known as Bregman divergences. This class includes relevant 

measures such as Kullback-Leibler Divergence (KLD), Squared Euclidean distance (SQE), 

Baker et al. Page 8

ACM BCB. Author manuscript; available in PMC 2021 November 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Itakura-Saito divergence. Other relevant distances are convex combinations of these (Jensen

Shannon Divergence) and . Given this fact, we decided to implement the four distance 

measures detailed in Table 2.

An important concern when implementing these other measures is how they handle 0 

values in the data matrix. KL Divergences can be infinite for zero-valued entries, and other 

measures can have issues with numerical stability in these cases. This can be addressed 

by the use of a “prior” [36] of a Gamma(β, β) distribution, with a value β > 0. The a 
posteriori estimates are then Ni + β, ensuring no 0-valued entries. These are effectively 

“pseudo-counts,” a common way to adjust scRNA-seq data. Selecting β = 1 corresponds to 

a Dirichlet prior, while smaller values will penalize missing or low-count observations, and 

larger values will move points closer together for probability distribution-based distances.

This in turn creates another concern: a matrix adjusted by the prior will have no zero

valued entries, essentially becoming a dense matrix. This greatly increases the space and 

time required, making these distances impractical for large datasets. We instead compute 

distances with a lazy prior adjustment for all features, accounting for the zero-count features 

in aggregate. This is particularly advantageous for sparse matrices with a small number of 

nonzero values (nnz). In particular, we can perform distance computations in O(nnz) space 

and time rather than O(d), where d is the number of features. The general pseudocode for 

our distance computations is in Algorithm 1 1. For perspective, the 4-million cell dataset 

with 63,561 columns would require 960GiB of memory, nearly 100 times the 9.8GiB of 

the Compressed-Sparse Row (“CSR”) representation when using 16-bit indices and data 

fields. In this way, minicore can cluster atlas-scale datasets in reasonable working memory, 

operating directly on the sparse data.

5.3 Other optimizations

While minicore can cluster datasets in a fraction of the space the dense instantiation would 

require, it can scale even further while managing memory requirements through the use 

of memory-mapping. This can be done in Python by loading the input data from disk via 

numpy.memmap instead of numpy.fromfile, applied either to the original matrix (in the case 

of dense data) or on the “data”, “indices”, and “indptr” arrays (in the case of CSR arrays).

Because these arrays are often traversed in predictable fashion, typically sequential, we can 

off-load to disk, running transparently on datasets which significantly exceed machine RAM 

even in compressed form.

We also use memory-mapping by default in localsearch++, as an array of size (k, npoints) 
may exceed available memory, and its sequential access patterns are convenient for memory

mapped data.

Baker et al. Page 9

ACM BCB. Author manuscript; available in PMC 2021 November 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ACKNOWLEDGMENTS

We thank Daniel Lemire and Wenzel Jakob for their fast SIMD Polynomial Congruential Generator Pseudorandom 
Number Generators.

Part of this research project was conducted using computational resources at the Maryland Advanced Research 
Computing Center (MARCC).

6 FUNDING

DNB and BL were supported by NIH/NIGMS grants R01GM118568 and R35GM139602 to BL. SCH and ND 
were supported by NIH/NHGRI R00HG009007 to SCH. This work was also supported by CZF2019-002443 (SCH) 
from the Chan Zuckerberg Initiative DAF, an advised fund of Silicon Valley Community Foundation.

Availability:

The open source library is at https://github.com/dnbaker/minicore. Code used for 

experiments is at https://github.com/dnbaker/minicore-experiments.

Baker et al. Page 10

ACM BCB. Author manuscript; available in PMC 2021 November 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/dnbaker/minicore
https://github.com/dnbaker/minicore-experiments


REFERENCES

[1]. Ahn Euijoon, Kumar Ashnil, Feng Dagan, Fulham Michael J., and Kim Jinman. 2019. 
Unsupervised Feature Learning with K-means and An Ensemble of Deep Convolutional Neural 
Networks for Medical Image Classification. CoRR, arXiv:1906.03359 (2019). arXiv:1906.03359

[2]. Arthur David and Vassilvitskii Sergei. 2007. K-Means++: The Advantages of Careful Seeding. 
SODA (2007), 1027–1035.

[3]. Baker Daniel. 2008. libsimdsampling. http://github.com/dnbaker/libsimdsampling. [Online; 
accessed 7 Feb, 2021].

[4]. Balcan Maria-Florina F, Ehrlich Steven, and Liang Yingyu. 2013. Distributed k-means and k
median Clustering on General Topologies. Advances in Neural Information Processing Systems 
26 (2013), 1995–2003.

[5]. Banerjee Arindam, Merugu Srujana, Dhillon Inderjit S., and Ghosh Joydeep. 2005. Clustering 
with Bregman Divergences. Journal of Machine Learning Research 6, 58 (2005), 1705–1749. 
http://jmlr.org/papers/v6/banerjee05b.html

[6]. Bottou Leon and Bengio Yoshua. 1995. Convergence properties of the k-means algorithms. In 
Advances in neural information processing systems. 585–592.

[7]. Brennecke P, Anders S, Kim JK, Kolodziejczyk AA, Zhang X, Proserpio V, Baying B, Benes V, 
Teichmann SA, Marioni JC, and Heisler MG. 2013. Accounting for technical noise in single-cell 
RNA-seq experiments. Nat Methods 10, 11 (11 2013), 1093–1095. [PubMed: 24056876] 

[8]. Broder Andrei, Garcia-Pueyo Lluis, Josifovski Vanja, Vassilvitskii Sergei, and Venkatesan 
Srihari. 2014. Scalable K-Means by Ranked Retrieval. In Proceedings of the 7th ACM 
International Conference on Web Search and Data Mining (New York, New York, USA) 
(WSDM ’14). Association for Computing Machinery, New York, NY, USA, 233–242. 
10.1145/2556195.2556260

[9]. Cao J, O’Day DR, Pliner HA, Kingsley PD, Deng M, Daza RM, Zager MA, Aldinger KA, 
Blecher-Gonen R, Zhang F, Spielmann M, Palis J, Doherty D, Steemers FJ, Glass IA, Trapnell C, 
and Shendure J. 2020. A human cell atlas of fetal gene expression. Science 370, 6518 (11 2020).

[10]. Cao J, Spielmann M, Qiu X, Huang X, Ibrahim DM, Hill AJ, Zhang F, Mundlos S, Christiansen 
L, Steemers FJ, Trapnell C, and Shendure J. 2019. The single-cell transcriptional landscape of 
mammalian organogenesis. Nature 566, 7745 (02 2019), 496–502. [PubMed: 30787437] 

[11]. Chen Xinlei and Cai Deng. 2011. Large Scale Spectral Clustering with Landmark-Based 
Representation. In Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence 
(San Francisco, California) (AAAI’11). AAAI Press, 313–318.

[12]. Jakob Wenzel Lemire Daniel. 2013. SIMDPCG. https://github.com/lemire/simdpcg.

[13]. Datlinger Paul, Rendeiro André F, Boenke Thorina, Krausgruber Thomas, 
Barreca Daniele, and Bock Christoph. 2019. Ultra-high throughput single-cell 
RNA sequencing by combinatorial fluidic indexing. bioRxiv (2019). https://
doi.org/10.1101/2019.12.17.879304 arXiv:https://doi.org/10.1101/2019.12.17.879304https://
www.biorxiv.org/content/early/2019/12/18/2019.12.17.879304.full.pdf arXiv: https://
www.biorxiv.org/content/early/2019/12/18/2019.12.17.879304.full.pdf

[14]. DeMeo B and Berger B. 2020. Hopper: a mathematically optimal algorithm for sketching 
biological data. Bioinformatics 36 (07 2020), i236–i241. [PubMed: 32657375] 

[15]. Elkan Charles. 2003. Using the Triangle Inequality to Accelerate K-Means. In Proceedings 
of the Twentieth International Conference on International Conference on Machine Learning 
(Washington, DC, USA) (ICML’03). AAAI Press, 147–153.

[16]. Feldman Dan and Langberg Michael. 2011. A Unified Framework for Approximating and 
Clustering Data. CoRR abs/1106.1379 (2011). arXiv:1106.1379 http://arxiv.org/abs/1106.1379

[17]. Hicks Stephanie C., Liu Ruoxi, Ni Yuwei, Purdom Elizabeth, and Risso Davide. 2021. 
mbkmeans: Fast clustering for single cell data using mini-batch k-means. PLOS Computational 
Biology 17, 1 (1 2021), 1–18. 10.1371/journal.pcbi.1008625

[18]. Hie B, Cho H, DeMeo B, Bryson B, and Berger B. 2019. Geometric Sketching Compactly 
Summarizes the Single-Cell Transcriptomic Landscape. Cell Syst 8, 6 (6 2019), 483–493. 
[PubMed: 31176620] 

Baker et al. Page 11

ACM BCB. Author manuscript; available in PMC 2021 November 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://github.com/dnbaker/libsimdsampling
http://jmlr.org/papers/v6/banerjee05b.html
https://github.com/lemire/simdpcg
http://arxiv.org/abs/1106.1379


[19]. Hübschle-Schneider Lorenz and Sanders Peter. 2020. Communication-Efficient (Weighted) 
Reservoir Sampling from Fully Distributed Data Streams. CoRR (2020). arXiv:1910.11069 
[cs.DS]

[20]. Lattanzi Silvio and Sohler Christian. 2019. A Better k-means++ Algorithm via Local Search. In 
Proceedings of the 36th International Conference on Machine Learning (Proceedings of Machine 
Learning Research, Vol. 97), Chaudhuri Kamalika and Salakhutdinov Ruslan (Eds.).PMLR, 
3662–3671. http://proceedings.mlr.press/v97/lattanzi19a.html

[21]. Lemire Daniel. 2016-2018. SIMDPCG. https://lemire.me/blog/2018/06/07/vectorizing-random
number-generators-for-greater-speed-pcg-and-xorshift128-avx-512-edition/.

[22]. Li Qiuhong, Wang Peng, Wang Wei, Hu Hao, Li Zhongsheng, and Li Junxian. 2014. An Efficient 
K-means Clustering Algorithm on MapReduce. In Database Systems for Advanced Applications, 
Bhowmick Sourav S., Dyreson Curtis E., Jensen Christian S., Lee Mong Li, Muliantara Agus, 
and Thalheim Bernhard (Eds.). Springer International Publishing, Cham, 357–371.

[23]. Lloyd Stuart P.. 1982. Least squares quantization in pcm. IEEE Transactions on Information 
Theory 28 (1982), 129–137.

[24]. Lloyd Stuart P.. 1982. Least squares quantization in PCM. IEEE Trans. Information Theory 28 
(1982), 129–136.

[25]. Lucic Mario, Bachem Olivier, and Krause Andreas. 2016. Strong Coresets for Hard and 
Soft Bregman Clustering with Applications to Exponential Family Mixtures. CoRR (2016). 
arXiv:1508.05243 [stat.ML]

[26]. Makarychev Konstantin, Makarychev Yury, and Razenshteyn Ilya P.. 2018. Performance of 
Johnson-Lindenstrauss Transform for k-Means and k-Medians Clustering. CoRR abs/1811.03195 
(2018). arXiv:1811.03195 http://arxiv.org/abs/1811.03195

[27]. Needell Deanna, Srebro Nathan, and Ward Rachel. 2015. Stochastic Gradient Descent, Weighted 
Sampling, and the Randomized Kaczmarz algorithm. arXiv:1310.5715 [math.NA]

[28]. Novikov Andrei. 2019. PyClustering: Data Mining Library. Journal of Open Source Software 4, 
36 (4 2019), 1230. 10.21105/joss.01230

[29]. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer 
P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, and 
Duchesnay E. 2011. Scikit-learn: Machine Learning in Python. Journal of Machine Learning 
Research 12 (2011), 2825–2830.

[30]. Rozenblatt-Rosen O, Stubbington MJT, Regev A, and Teichmann SA. 2017. The Human Cell 
Atlas: from vision to reality. Nature 550, 7677 (10 2017), 451–453. [PubMed: 29072289] 

[31]. Sculley D. 2010. Web-Scale k-Means Clustering. In Proceedings of the 19th International 
Conference on World Wide Web (Raleigh, North Carolina, USA) (WWW’10). Association for 
Computing Machinery, New York, NY, USA, 1177–1178. 10.1145/1772690.1772862

[32]. Shibata Naoki and Petrogalli Francesco. 2020. SLEEF: A Portable Vectorized Library of C 
Standard Mathematical Functions. IEEE Transactions on Parallel and Distributed Systems 31, 6 
(6 2020), 1316–1327. 10.1109/tpds.2019.2960333

[33]. Townes FW, Hicks SC, Aryee MJ, and Irizarry RA. 2019. Feature selection and dimension 
reduction for single-cell RNA-Seq based on a multinomial model. Genome Biol 20, 1 (12 2019), 
295. [PubMed: 31870412] 

[34]. Wan Shibiao, Kim Junil, and Won Kyoung Jae. 2020. SHARP: hyper-fast and 
accurate processing of single-cell RNA-seq data via ensemble random projection. 
Genome Research (2020). https://doi.org/10.1101/gr.254557.119 arXiv:https://doi.org/10.1101/
gr.254557.119http://genome.cshlp.org/content/early/2020/01/28/gr.254557.119.full.pdf+html 
arXiv: http://genome.cshlp.org/content/early/2020/01/28/gr.254557.119.full.pdf+html

[35]. Wei Yuanyuan, Jang-Jaccard Julian, Sabrina Fariza, and McIntosh Timothy R. 2019. MSD
Kmeans: A Novel Algorithm for Efficient Detection of Global and Local Outliers. CoRR abs/
1910.06588 (2019). arXiv:1910.06588 http://arxiv.org/abs/1910.06588

[36]. Witten Daniela M.. 2011. Classification and clustering of sequencing data using a Poisson model. 
The Annals of Applied Statistics 5, 4 (12 2011), 2493–2518. 10.1214/11-aoas493

[37]. Yang Wei, Bilmes Jeffrey, and Noble William Stafford. 2020. Submodular Sketches of Single
Cell RNA-Seq Measurements. In Proceedings of the 11th ACM International Conference 

Baker et al. Page 12

ACM BCB. Author manuscript; available in PMC 2021 November 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://proceedings.mlr.press/v97/lattanzi19a.html
https://lemire.me/blog/2018/06/07/vectorizing-random-number-generators-for-greater-speed-pcg-and-xorshift128-avx-512-edition/
https://lemire.me/blog/2018/06/07/vectorizing-random-number-generators-for-greater-speed-pcg-and-xorshift128-avx-512-edition/
http://arxiv.org/abs/1811.03195
http://arxiv.org/abs/1910.06588


on Bioinformatics, Computational Biology and Health Informatics (Virtual Event, USA) 
(BCB ’20). Association for Computing Machinery, New York, NY, USA, Article 61, 6 pages. 
10.1145/3388440.3412409

[38]. Yang Wei, Schreiber Jacob, Bilmes Jeffrey, and Noble William Stafford. 2020. 
Submodular sketches of single-cell RNA-seq measurements. bioRxiv (2020). https://
doi.org/10.1101/2020.05.01.066738 arXiv:https://doi.org/10.1101/2020.05.01.066738https://
www.biorxiv.org/content/early/2020/05/07/2020.05.01.066738.full.pdf arXiv: https://
www.biorxiv.org/content/early/2020/05/07/2020.05.01.066738.full.pdf

[39]. Zheng GX, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, Ziraldo SB, Wheeler TD, 
McDermott GP, Zhu J, Gregory MT, Shuga J, Montesclaros L, Underwood JG, Masquelier DA, 
Nishimura SY, Schnall-Levin M, Wyatt PW, Hindson CM, Bharadwaj R, Wong A, Ness KD, 
Beppu LW, Deeg HJ, McFarland C, Loeb KR, Valente WJ, Ericson NG, Stevens EA, Radich 
JP, Mikkelsen TS, Hindson BJ, and Bielas JH. 2017. Massively parallel digital transcriptional 
profiling of single cells. Nat Commun 8 (01 2017), 14049. [PubMed: 28091601] 

Baker et al. Page 13

ACM BCB. Author manuscript; available in PMC 2021 November 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CCS CONCEPTS

• Applied computing → Computational transcriptomics; • Computing methodologies 

→ Vector / streaming algorithms; Massively parallel algorithms; • Mathematics of 

computing → Mathematical software performance.

Baker et al. Page 14

ACM BCB. Author manuscript; available in PMC 2021 November 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: 
minicore k-means++ is faster than scikit-learn k-means++. Performance evaluation (y-axis) 

of elapsed time (seconds) for sparse data (top) and log10 transformed time for dense data 

(bottom) for increasing sizes of k (x-axis) for the PBMC dataset with 68k cells (left), Cao 

et al. dataset with 2 million cells (middle), and Cao et al. dataset with 4 million cells 

(right). Results for minicore k-means++ are in red (standard) and green (with localsearch+

+); scikit-learn k-means++ is blue.

Baker et al. Page 15

ACM BCB. Author manuscript; available in PMC 2021 November 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: 
The choice of distance has minor impact on the speed of minicore k-means++. Performance 

evaluation (y-axis) of elapsed time (seconds) for sparse data for increasing sizes of k (x-axis) 

for Cao et al. dataset with 2 million cells (left), and Cao et al. dataset with 4 million cells 

(right). For a given dataset and k, the slowest measure never requires more than 61% more 

time than is required by the fastest measure. All experiments used 16 simultaneous threads 

and the localsearch++ improvement was not run.

Baker et al. Page 16

ACM BCB. Author manuscript; available in PMC 2021 November 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: 
Clustering accuracy (ARI, vertical) versus running time (seconds, horizontal) for various 

datasets and distance measures. All experiments used the 500 most variable genes, k = 25, a 

mini-batch k-means batch size of 10,000, 25 rounds of localsearch++, and a prior of 0.01.

Baker et al. Page 17

ACM BCB. Author manuscript; available in PMC 2021 November 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Baker et al. Page 18

Table 3.2

Dense Sparse

Dataset k Method Time Cost Time Cost

PBMC 10 MC 0.43 2.10e+08 6.67 2.57e+08

MCLS 1.49 2.06e+08 23.92 2.52e+08

SKL 61.77 2.13e+08 24.50 2.57e+08

25 MC 1.07 1.85e+08 15.74 2.33e+08

MCLS 3.38 1.76e+08 54.53 2.24e+08

SKL 144.16 1.83e+08 59.47 2.39e+08

50 MC 2.94 1.69e+08 34.46 2.20e+08

MCLS 7.50 1.60e+08 107.64 2.17e+08

SKL 317.10 1.67e+08 146.53 2.20e+08

100 MC 4.51 1.57e+08 74.12 2.12e+08

MCLS 15.06 1.50e+08 226.45 2.03e+08

SKL 668.40 1.55e+08 299.97 2.08e+08

Cao2m 10 MC 13.47 3.80e+09 277.72 5.34e+09

MCLS 51.70 3.32e+09 970.49 5.39e+09

SKL 1, 389.78 4.38e+09 1, 244.76 5.81e+09

25 MC 44.35 3.12e+09 916.31 5.05e+09

MCLS 132.44 2.99e+09 3, 069.49 5.04e+09

SKL 2, 599.96 3.01e+09 3, 673.07 5.28e+09

50 MC 89.98 2.96e+09 1,240.03 5.00e+09

MCLS 267.69 2.67e+09 4, 115.19 4.95e+09

SKL 5, 241.62 2.76e+09 6, 849.92 4.96e+09

100 MC 128.20 2.61e+09 2,519.19 4.69e+09

MCLS 416.85 2.51e+09 7, 843.00 4.60e+09

SKL 9, 985.61 2.60e+09 13, 176.25 4.78e+09

Cao4m 10 MC 31.90 1.71e+10 478.84 2.60e+10

MCLS 110.01 1.68e+10 2, 158.43 2.35e+10

SKL 7, 863.25 1.74e+10 4, 350.81 2.61e+10

25 MC 71.26 1.43e+10 1,378.24 2.03e+10

MCLS 235.75 1.29e+10 6, 839.51 1.95e+10

SKL 19, 889.98 1.45e+10 10, 160.67 2.02e+10

50 MC 156.88 1.20e+10 5,229.03 1.91e+10

MCLS 482.96 1.20e+10 14, 629.39 1.77e+10

SKL 41, 450.85 1.26e+10 17, 937.88 1.86e+10

100 MC 285.76 1.09e+10 8,085.92 1.67e+10

ACM BCB. Author manuscript; available in PMC 2021 November 12.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Baker et al. Page 19

Dense Sparse

Dataset k Method Time Cost Time Cost

MCLS 913.19 1.02e+10 22, 974.58 1.64e+10

SKL 79, 269.90 1.04e+10 40, 560.60 1.70e+10

ACM BCB. Author manuscript; available in PMC 2021 November 12.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Baker et al. Page 20

Table 2:

Formulas for distance measures implemented in minicore. Let Xi, Yi denote the ith observation (gene) for cells 

X and Y. Let Xi and Y i denote the scaled (normalized by total cell-wide count) version of this entry. These 

all belong to the class of Bregman divergences, except the JSD which is a convex combination of Bregman 

divergences.

Name Abbreviation Formula

Squared Euclidean SQE i (Xi Y i)2

Kullbeck-Liebler Divergence KLD
i
Xi log

Xi
Y i

Jensen-Shannon Divergence JSD
1
2 × (KLD(X, X + Y

2 ) + KLD(Y , X + Y
2 ))

Bhattacharyya Metric BATMET 1 − X · Y

ACM BCB. Author manuscript; available in PMC 2021 November 12.


	Abstract
	INTRODUCTION
	RELATED WORK
	RESULTS
	Fast and accurate center finding with minicore k-means++
	minicore supports distance metrics for both continuous and count data, and probability distributions
	minicore supports k-means and mini-batch k-means clustering algorithms

	DISCUSSION
	Applications

	METHODS
	k-means++ algorithms in minicore
	Sampling kernel.
	localsearch++.

	Distances, and sparsity in minicore
	Other optimizations

	References
	Figure 1:
	Figure 2:
	Figure 3:
	Table 3.2
	Table 2:

