
RESEARCH ARTICLE

gapFinisher: A reliable gap filling pipeline for

SSPACE-LongRead scaffolder output

Juhana I. KammonenID
1*, Olli-Pekka Smolander1¤a, Lars Paulin1, Pedro A. B. Pereira1,2,

Pia Laine1, Patrik Koskinen1¤b, Jukka Jernvall3, Petri Auvinen1

1 DNA Sequencing and Genomics Laboratory, Institute of Biotechnology, University of Helsinki, Helsinki,

Finland, 2 Department of Neurology, Helsinki University Hospital, Helsinki, Finland, 3 Evolutionary

Phenomics Group, Institute of Biotechnology, University of Helsinki, Helsinki, Finland

¤a Current address: Department of Chemistry and Biotechnology: Division of Gene Technology, Tallinn

University of Technology (TalTech), Tallinn, Estonia

¤b Current address: Valuemotive Ltd., Helsinki, Finland

* juhana.kammonen@helsinki.fi

Abstract

Unknown sequences, or gaps, are present in many published genomes across public data-

bases. Gap filling is an important finishing step in de novo genome assembly, especially in

large genomes. The gap filling problem is nontrivial and while there are many computational

tools partially solving the problem, several have shortcomings as to the reliability and correct-

ness of the output, i.e. the gap filled draft genome. SSPACE-LongRead is a scaffolding tool

that utilizes long reads from multiple third-generation sequencing platforms in finding links

between contigs and combining them. The long reads potentially contain sequence informa-

tion to fill the gaps created in the scaffolding, but SSPACE-LongRead currently lacks this

functionality. We present an automated pipeline called gapFinisher to process SSPACE-

LongRead output to fill gaps after the scaffolding. gapFinisher is based on the controlled use

of a previously published gap filling tool FGAP and works on all standard Linux/UNIX com-

mand lines. We compare the performance of gapFinisher against two other published gap fill-

ing tools PBJelly and GMcloser. We conclude that gapFinisher can fill gaps in draft genomes

quickly and reliably. In addition, the serial design of gapFinisher makes it scale well from pro-

karyote genomes to larger genomes with no increase in the computational footprint.

Introduction

Gap filling is one of the final phases of genome assembly, especially in large genomes. First,

assembly algorithms produce contiguous sequences of overlapping sequencing reads known as

contigs. A contig is a continuous DNA sequence entity without any ambiguities or unknown

bases marked as N. Second, the contigs are connected into longer fragments using specialized

sequencing read data in a process called scaffolding. Until the development of long read tech-

nologies, the data for scaffolding used to be primarily mate-pair reads. The mate-pair libraries

sometimes also called jumping libraries [1], are usually made of size selected DNA fragments,

where the fragment size is usually in the order of thousands of base pairs. The ends of the

PLOS ONE | https://doi.org/10.1371/journal.pone.0216885 September 9, 2019 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Kammonen JI, Smolander O-P, Paulin L,

Pereira PAB, Laine P, Koskinen P, et al. (2019)

gapFinisher: A reliable gap filling pipeline for

SSPACE-LongRead scaffolder output. PLoS ONE

14(9): e0216885. https://doi.org/10.1371/journal.

pone.0216885

Editor: Matteo Pellegrini, University of California

Los Angeles, UNITED STATES

Received: February 11, 2019

Accepted: April 30, 2019

Published: September 9, 2019

Copyright: © 2019 Kammonen et al. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The read datasets for

the six bacterial genomes are available at: http://

www.cbcb.umd.edu/software/PBcR/closure/index.

html under the section "Datasets". The gapFinisher

pipeline script and bundled utilities are available on

GitHub: https://github.com/kammoji/gapFinisher.

The read datasets for the unpublished marine

mammal genome (Phocidae family) cannot be

made publicly available before the actual

publication of the genome (the schedule is 2019-

2020). Before this however, these read datasets are

limitedly available from the Saimaa Ringed Seal

http://orcid.org/0000-0002-6914-0111
https://doi.org/10.1371/journal.pone.0216885
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0216885&domain=pdf&date_stamp=2019-09-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0216885&domain=pdf&date_stamp=2019-09-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0216885&domain=pdf&date_stamp=2019-09-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0216885&domain=pdf&date_stamp=2019-09-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0216885&domain=pdf&date_stamp=2019-09-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0216885&domain=pdf&date_stamp=2019-09-09
https://doi.org/10.1371/journal.pone.0216885
https://doi.org/10.1371/journal.pone.0216885
http://creativecommons.org/licenses/by/4.0/
http://www.cbcb.umd.edu/software/PBcR/closure/index.html
http://www.cbcb.umd.edu/software/PBcR/closure/index.html
http://www.cbcb.umd.edu/software/PBcR/closure/index.html
https://github.com/kammoji/gapFinisher


fragments are then sequenced, and the resulting reads are used for creating links between the

contigs. The linked sequences are known as scaffolds, and the unknown sequence between the

contigs is commonly marked with N-characters. Currently, long continuous reads e.g. from

Pacific Biosciences RS II or Sequel third-generation sequencing platforms are commonly used

in scaffolding. While the scaffolding step links and orders the contigs, it usually leaves variable

amounts of unknown sequences in the final product. These unknown sequences are called

gaps. Finally, the gap filling stage aims to resolve these unknown sequences with [2,3] or with-

out [4] additional sequencing data. Even with the gap filling step applied, substantial gaps do

exist in many published genomes. Examples include the Mus musculus (house mouse,

78,088,216 base pairs gaps) and Mustela putorius furo (ferret, 132,851,443 base pairs gaps)

chromosome level assemblies in the ENSEMBL database [5].

In this study, we present an automated gap filling pipeline called gapFinisher. We pursue a

solution to the gap filling problem that utilizes long reads and unaltered draft genomes. We set

strict alignment parameters for the gap filling stage to ensure correctness and uniqueness of

the filled gaps. In addition, we benchmark the performance of gapFinisher against two pub-

lished gap filling tools PBJelly [6] and GMcloser [7]. We selected PBJelly and GMcloser for the

benchmark because of their popularity and ability to process long-read data. We conclude that

applying gapFinisher enables efficient and reliable gap filling by controlling the use of the

FGAP algorithm [8]. Furthermore, gapFinisher computing times prove linear with respect to

the size of the input.

From scaffolding to gap filling

SSPACE-Standard [2] and SSPACE-LongRead (SSPACE-LR) [9] are scaffolding tools for

paired-end (also mate-pair) reads and long continuous reads, respectively. While these tools

are available free for academic users, both are commercial products, and upgrades and most of

the support require a proprietary license. SSPACE-Standard is commonly applied in the first

scaffolding steps where contigs are oriented and ordered into the initial longer connected

sequences. SSPACE-Standard accepts paired-end data from any next-generation sequencing

technology if read-orientation information and mean values and standard deviations of the

insert sizes for each read library are provided [2]. SSPACE-LR utilizes Pacific Biosciences fil-

tered subreads (CLR = Continuous Long Reads) in finding even longer links between contigs

or existing scaffolds and combining them into “superscaffolds” with new gaps introduced

between the sequences [9]. SSPACE-LR first maps the long reads into the contig assembly

using the BLASR aligner specialized for long read alignment [10]. Based on these alignments,

contigs are then linked into scaffolds and N-characters (gaps) are placed between the con-

nected contigs. While the CLR reads contain information of the actual nucleotide sequence in

the gaps, this feature is not exploited in the current version of SSPACE-LR (version 1.1). How-

ever, the software can report the exact information about which reads were associated when

creating the new scaffold and the new gap(s). In the gapFinisher pipeline, we utilize this infor-

mation to fill the gaps in the newly created scaffolds on the go.

A central part of gap filling is the alignment of long sequences against the contigs. This is

challenging due to the relatively high error-rates of contemporary long read data [11] and the

sequencing errors [12,13] and local misassemblies at the contig level [9]. The BLAST local

alignment tool [14] is the most commonly used approach for the identification of areas of high

similarity between multiple sequences. Different scaffolding and gap filling tools apply BLAST

either directly [8], or the method is refined [10] and applied [6,9]. All tools based on BLAST

contain multiple parameters, e.g. for mismatches and gaps, affecting their ability to detect

non-perfect matches and it is not always clear how these should be defined.

gapFinisher: A reliable gap filling pipeline

PLOS ONE | https://doi.org/10.1371/journal.pone.0216885 September 9, 2019 2 / 21

Genome Project (http://www.saimaaringedseal.

org/genome.html) for researchers who meet the

criteria for access to confidential data. Interested

researchers can contact Juhana Kammonen

(juhana.kammonen@helsinki.fi) or Jukka Jernvall,

Petri Auvinen (ge-norppa@helsinki.fi) of the

SRSGP.

Funding: This work was supported by the Saimaa

Ringed Seal Genome Project (SRSGP) research

grants from the Jane and Aatos Erkko Foundation

[4-2013 and 5-2017 to J.J. & P.A] (https://jaes.fi/

en/). This work was also supported by the Helsinki

University Integrated Life Sciences doctoral

programme (ILS) [3-2016 to J.I.K.] (https://www.

helsinki.fi/en/research/doctoral-education/doctoral-

schools-and-programmes/doctoral-school-in-

health-sciences/doctoral-programme-in-

integrative-life-science). The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: Patrik Koskinen, one of the

co-authors of our manuscript, currently is an

employee of Valuemotive Ltd. Finland, a private

company. He has also been an employee of

another private company Blueprint Genetics Ltd.

during 2016-2018. He was employed by the

institution represented by the rest of the authors

(Institute of Biotechnology, University of Helsinki)

at the time when most of the conceptual work on

this study was carried out. The two private

companies mentioned are in no relation to the

study under submission. This does not alter our

adherence to PLOS ONE policies on sharing data

and materials.

https://doi.org/10.1371/journal.pone.0216885
http://www.saimaaringedseal.org/genome.html
http://www.saimaaringedseal.org/genome.html
mailto:juhana.kammonen@helsinki.fi
mailto:ge-norppa@helsinki.fi
https://jaes.fi/en/
https://jaes.fi/en/
https://www.helsinki.fi/en/research/doctoral-education/doctoral-schools-and-programmes/doctoral-school-in-health-sciences/doctoral-programme-in-integrative-life-science
https://www.helsinki.fi/en/research/doctoral-education/doctoral-schools-and-programmes/doctoral-school-in-health-sciences/doctoral-programme-in-integrative-life-science
https://www.helsinki.fi/en/research/doctoral-education/doctoral-schools-and-programmes/doctoral-school-in-health-sciences/doctoral-programme-in-integrative-life-science
https://www.helsinki.fi/en/research/doctoral-education/doctoral-schools-and-programmes/doctoral-school-in-health-sciences/doctoral-programme-in-integrative-life-science
https://www.helsinki.fi/en/research/doctoral-education/doctoral-schools-and-programmes/doctoral-school-in-health-sciences/doctoral-programme-in-integrative-life-science


Several gap filling software tools for short read data exist. GapFiller is a commercial pro-

gram by the authors of the SSPACE-tools [2,9] and is often used with them [3]. GapFiller uses

paired-end read information to fill in sequences at contig ends where overlapping reads reach

into the gap created on the SSPACE-Standard step by mate-pair reads. Where mate-pair links

do not span the whole length of the unknown sequence, the gap is not filled and unknown

bases (N-characters) will remain in the output version of the draft genome [2]. Gap2Seq [15] is

another gap filling tool and provides a purely computational solution to the gap filling problem

for short-read data. Gap2Seq works well on most prokaryote genomes but does not scale to

larger genomes, where repetitive sequences confuse the algorithm and the sheer size of the

genome makes running times infeasibly long [15].

Long-read based gap filling

There are multiple gap filling tools for long read data available today. PBJelly [6] is a scaffold-

ing and gap filling tool integrated into the Pacific Biosciences (PacBio) SMRT Analysis soft-

ware suite, the main user interface for data analysis using PacBio long reads. In comparison to

other gap filling tools, the PBJelly pipeline is run in six separate stages (setup, mapping, sup-

port, extraction, assembly and output) and requires additional software libraries, preferably

the SMRT Portal software suite and BLASR [10]. Although it is possible to run PBJelly in a sin-

gle-core computer, the workflow is clearly designed for high-throughput computing in a grid

where an additional level of automation is available, e.g. the Sun Grid Engine [16]. The single-

core user is required to construct a short XML script to operate PBJelly. The six steps of PBJelly

could be further automated with additional scripting. A peculiar feature of PBJelly is that it by

default inflates short gaps (< 25 bp) to a length of exactly 25 bp with the apparent purpose of

emphasizing the location of the gaps [6].

GMcloser [7] provides a likelihood-based approach and is suitable to both short read and

long read datasets, or even more sophisticated sequence datasets to fill gaps, such as pre-assem-

bled contigs. With GMcloser, the requirements are that user installs a Perl [17] interpreter,

MUMmer [18], Bowtie2 [19] and YASS [20]. The authors of GMcloser state that their software

performs better when applied multiple times to the same draft assembly with the same read

data [7]. Thus, the default setting of GMcloser is to perform three iterations of gap filling in a

single run.

FGAP [8] is a gap filling tool that utilizes various types of read data and BLAST alignments

to find and fill gaps in draft genomes. The BLAST utility is bundled with the release version of

FGAP, but a MATLAB Compiler Runtime is required. Although FGAP efficiently reduces the

number of gaps in various draft genomes [8], the tool sets no limit to the number of times an

input read is used in gap filling should the BLAST alignment return multiple good hits (Fig 1).

With the default setting of FGAP, undesired multiple alignments of query sequences may

occur due to repetitive regions in the draft genome, or overly lenient alignment parameters for

the ends of the query sequences (Fig 1). We could verify this behaviour on an FGAP test run

with an unpublished preliminary draft genome of a marine mammal from the Phocidae family

(S2 Table). Ideally, gap filling should be a unique process in the sense that a single input long

read should find a unique good alignment in the draft genome and fill the gaps in that single

location. The gapFinisher pipeline presented in this paper is based on FGAP and enables more

reliable and controlled gap filling.

Repeat masking, i.e. marking repetitive sequences in the draft genome as gaps, may improve

the scaffolding and gap filling of highly repetitive draft genomes. For example, it has been esti-

mated that more than 60% of the 3.3 Gb modern human (H. sapiens) genome consists of repet-

itive sequences [21]. With the repetitive sequences often found at the contig ends eliminated,

gapFinisher: A reliable gap filling pipeline

PLOS ONE | https://doi.org/10.1371/journal.pone.0216885 September 9, 2019 3 / 21

https://doi.org/10.1371/journal.pone.0216885


the alignment algorithms are less likely to make incorrect alignments. One example of repeat

masking software tools is RepeatMasker [22] which finds short and long interspersed elements

as well as simple repeats in the input genomic sequence. RepeatMasker may mask coding

regions of the input genome, especially those located at the terminal regions of open reading

frames. Furthermore, RepeatMasker may mask some shorter potential element-coding

sequences such as ribosomal RNAs [22]. While repeat masking may lower the inherent risk of

incorrect alignments in specific regions, we pursue a solution that utilizes only unaltered

(unmasked) draft genomes to prevent any loss of data.

Solving short gaps of e.g. 1–20 base pairs in length by simple read alignment maps produced

by e.g. the Burrows-Wheeler Aligner [23] or the Bowtie 2 aligner [19] is not investigated in

detail in this study but may be one of the prospects of solving the gap filling problem for short

gaps. For instance, some singular unknown bases and short N-sequences at gap edges are

solved by the re-assembly stage of the Pilon assembly polishing tool, where an alignment map

file can be supplied as input and a specific option set for gap filling [24].

The rest of this paper is organized as follows: First, we describe the computational tools and

methods we use to perform gap filling. Second, we present the example datasets for this study,

Fig 1. Visualization of the FGAP [8] and gapFinisher workflows. a) FGAP is expected to fill the gap (N-characters)

between two contigs (gray blocks) using a long read (blue bar). b) FGAP allows the alignment of a single long read into

multiple places in the genome. Ideally, a single read should align into a single location in the genome. c) gapFinisher

uses the association of the long read and the scaffold reported by BLASR [10] used by SSPACE-LongRead [9] and

ensures that each long read is only used once in gap filling.

https://doi.org/10.1371/journal.pone.0216885.g001

gapFinisher: A reliable gap filling pipeline

PLOS ONE | https://doi.org/10.1371/journal.pone.0216885 September 9, 2019 4 / 21

https://doi.org/10.1371/journal.pone.0216885.g001
https://doi.org/10.1371/journal.pone.0216885


namely high-throughput sequence data from six bacterial organisms and one eukaryote organ-

ism. Third, we document the results of the gap filling for the example datasets as well as the

outcome of a performance benchmark of gapFinisher. Finally, we discuss the results as well as

the advantages and shortcomings of the methods used.

Materials and methods

The current release of gapFinisher works only on the output of SSPACE-LongRead [9]. The

system requirements are a UNIX/Linux -based operating system, MATLAB Compiler Run-

time (MCR) for FGAP and a Perl [17] interpreter for SSPACE-LR. Besides these, the gapFin-

isher pipeline does not require the user to install any additional software. The basic workflow

of gapFinisher is illustrated in Fig 1C and in further detail below (Fig 2). Before running gap-

Finisher, the user must successfully run SSPACE-LR for a dataset at least once. It is imperative

to have the “-k” option enabled when running SSPACE-LR. This setting will create the critical

“inner-scaffold-sequences” subdirectory that contains for each superscaffold the references to

the actual long read sequences (one or more) that created the scaffold. The gapFinisher pipe-

line will not run if this directory does not exist. When successful, gapFinisher then works as

follows (Fig 2):

1. Index the draft genome FASTA file and the long read FASTA file

2. Generate a list of names of all superscaffolds SSPACE-LR (-k 1 option enabled) has created

3. For each superscaffold in the list:

a. Create a new FGAP working directory for the current superscaffold

b. Fetch all full CLR reads associated with the current superscaffold

c. For each of the CLR reads associated with the current superscaffold:

i. Execute FGAP using the current superscaffold as draft and the CLR read as input

ii. If FGAP filled (one or more) gaps in the current superscaffold, save FGAP output as

the new draft for the current superscaffold

4. Compile results from each working directory as filled_scaffolds.fasta

5. Compile filled_scaffolds.fasta and the unfilled/untouched scaffolds from the original draft

genome as scaffolds_gapfilled_FINAL.fasta

6. [optional] Clean the working directories (to save disk space).

The rapid fetching of reads is based on the operation of the fastaindex (step 1 above) and

fastafetch (step 2b above) utilities of the exonerate toolkit [25] v. 2.4.0. Pre-compiled and por-

table executables of these utilities are bundled with the gapFinisher release and fully integrated

into the workflow of the gapFinisher pipeline.

When using PacBio filtered subreads with SSPACE-LR separate reads originating from the

same well of the PacBio SMRT cell could be aligned into separate places by the BLASR aligner

(Fig 1A and Fig 1B). Filtered subreads from the same well of the SMRT cell always originate

from the same molecule and thus should align to locations close to one another. The legacy

BLASR [10] version that SSPACE-LR is using has no formal assertion for this. Hence, we set

gapFinisher to keep track of the origins of the filtered subreads. This information is contained

in the FASTA headers. The pipeline issues an appropriate warning when gap filling under con-

flicting read origin is about to happen and aborts the filling of the gap in question. Conflicting

gapFinisher: A reliable gap filling pipeline

PLOS ONE | https://doi.org/10.1371/journal.pone.0216885 September 9, 2019 5 / 21

https://doi.org/10.1371/journal.pone.0216885


read origins further indicate potential errors in the scaffolding step. Consequently, the location

and read information of the conflict are included in the warning message and logged.

In this study, we subjected seven separate genomic sequencing read datasets from both bac-

terial and eukaryote organisms (Table 1) to de novo assembly and scaffolding. Finally, we per-

formed gap filling on the created scaffolds with gapFinisher (Table 2). First, we had two

Escherichia coli (E. coli) bacterial genome drafts. Second, we extended the analysis to a set of

further four bacterial genomes: Bibersteinia trehalosi, Mannheimia haemolytica, Francisella
tularensis and Salmonella enterica. The bacterial read data are the same that were used as test

data for the SSPACE-LongRead scaffolder [9] and are available at: http://www.cbcb.umd.edu/

software/PBcR/closure/index.html and the Sequencing Read Archive (SRA) links therein. For

B. trehalosi, we used the reference sequence Bibersteinia trehalosi USDA-ARS-USMARC-188

[26]. A reference genome was available to M. haemolytica [27], although unavailable at the

time of the publication of SSPACE-LongRead [9]. Finally, to get a reference on how gapFin-

isher performs on a much larger genome, we included an in-house unpublished marine mam-

mal (Phocidae family) draft genome in final stage with 236,592 contigs scaffolded into 10,143

Fig 2. A more detailed visualization of the gapFinisher pipeline workflow. a) SSPACE-LR [9] reports the new

scaffolds and these are iterated through one scaffold at a time. b) SSPACE-LR output shows the PacBio reads

associated with the gaps in the scaffolds. c) These reads are then circulated through the FGAP [8] pipeline with only

the single scaffold as input data. This logical step prevents same PacBio reads from being used in parts of the draft

genome other than the current scaffold. Measures are then taken to either d1) replace the unknown sequence with that

of the long read (= fill gap) or d2) reject the alignment and leave the gap to the genome as is.

https://doi.org/10.1371/journal.pone.0216885.g002

gapFinisher: A reliable gap filling pipeline

PLOS ONE | https://doi.org/10.1371/journal.pone.0216885 September 9, 2019 6 / 21

http://www.cbcb.umd.edu/software/PBcR/closure/index.html
http://www.cbcb.umd.edu/software/PBcR/closure/index.html
https://doi.org/10.1371/journal.pone.0216885.g002
https://doi.org/10.1371/journal.pone.0216885


superscaffolds with gaps. The raw sequencing coverage of the mammal draft genome was on

average 25X for the Illumina short reads and 50X for the PacBio CLR reads (Table 1). When

assembled with the miniasm [28] using all the PacBio reads, we got an additional “PacBio-

only” assembled version of the draft genome with 1,314 contigs which we then scaffolded into

1,115 superscaffolds and gap filled (Table 2).

For the Illumina short reads, we further applied the Fast Length Adjustment of SHort

Reads (FLASH) protocol that finds overlaps at the ends of the paired-end reads and joins the

reads if found [29]. Thus, about half of the reads in each dataset could be combined to longer

initial fragments before the contig assembly. This feature is likely to improve the de novo
genome assemblies while longer initial read length may be enough to span short repeats, inser-

tions and deletions. The uncombined reads from the FLASH protocol were supplied as addi-

tional paired-end libraries in all assemblies. The Roche 454 Genome Sequencer data available

for the draft genomes was not utilized here, as our benchmark did not include a suitable

assembler, e.g. Newbler [30] for these data. Furthermore, the performance of Newbler was

extensively evaluated in the SSPACE-LongRead original publication and in most of the cases

Newbler could not perform as well as the other short read assemblers [9].

We assembled the draft genomes with the SPAdes [31] and miniasm [28] assemblers.

SPAdes can employ both Illumina short reads and PacBio CLR reads. In contrast, miniasm

only works properly with PacBio CLR reads or other long reads with a sufficient sequencing

coverage. This is because the read trimming phase of miniasm requires a read-to-read map-

ping length of at least 2,000 bp with a minimum of 100 bp non-redundant bases [28]. This con-

dition is not met by the short-read datasets used in this study. An additional and a highly

useful feature of miniasm is the minidot plot drawing utility and it was used to create the dot-

plots for comparisons to the reference genomes (Fig 3 and S1 Fig).

The bacterial initial assemblies were refined to scaffolds using PacBio filtered subreads. The

scaffolding step included the combined use of SSPACE-LR (academic license, software version

1.1) [9] and the gapFinisher pipeline. We first executed SSPACE-LR for all samples to create

the superscaffold assemblies for the six bacterial genomes and the unpublished Phocidae family

mammal draft genome (Table 2). The same long read data was applied for the scaffolding of

both SPAdes and miniasm contig assemblies. For each scaffold assembly, we then executed

gapFinisher, PBJelly [6] and GMcloser [7] to fill the gaps introduced by the scaffolding step.

Due to the large size (~2.5 gigabases) of the unpublished mammal genome, the SSPACE-LR

Table 1. Next-generation sequencing read statistics and sequencing coverage for the sample datasets.

Illumina MiSeq reads PacBio RS reads (200X)

Organism Total reads Total bases Avg. read length Total reads Total bases Avg. read length

E. coli K12 MG1655 3,046,358 460,000,058 151 383,482 929,129,994 2,422

E. coli O157:H7 3,794,862 548,505,079 144 403,919 1,100,295,861 2,724

B. trehalosi 1,718,212 249,216,010 145 205,096 499,939,066 2,437

M. haemolytica 1,724,414 249,368,724 144 175,953 531,234,319 3,019

F. tularensis 926,716 199,169,591 214 176,376 399,767,452 2,266

S. enterica 1,943,848 279,774,061 143 394,699 1,000,244,555 2,534

Organism Illumina MiSeq reads (25X) PacBio RS reads (50X)

Mammal 329,484,322 62,120,890,467 188 17,695,174 146,961,409,902 8,305

The bacterial data are from 2013 and originate from the Sequencing Read Archive (SRA). The sequencing chemistries were not accurately described in the original

datasets but the bacterial MiSeq read data represent either Illumina sequencing-by-synthesis chemistry v1 or v2. The mammal MiSeq read data are a mixture of Illumina

sequencing-by-synthesis chemistry v2 and v3. The bacterial PacBio RS reads represent PacBio SMRT sequencing chemistries that are earlier than P4-C2 and the

mammal PacBio RS reads are a mixture of PacBio SMRT sequencing chemistries P5-C3 and P6-C4.

https://doi.org/10.1371/journal.pone.0216885.t001

gapFinisher: A reliable gap filling pipeline

PLOS ONE | https://doi.org/10.1371/journal.pone.0216885 September 9, 2019 7 / 21

https://doi.org/10.1371/journal.pone.0216885.t001
https://doi.org/10.1371/journal.pone.0216885


Table 2. De novo assembly, scaffolding and gap filling statistics for the six bacterial draft genomes and the mammal draft genome.

Num. sequences

Organism Tool Expected Final Sum (bp) N50 length Gap # Gap (bp) Gap %

E. coli K12 MG1655 SPAdes 1 35 4 661 027 4 640 853 0 0 0,00%

SSPACE-LR 1 34 4 661 028 4 641 005 1 1 0,00%

gapFinisher 1 34 4 661 028 4 641 005 1 1 0,00%

PBJelly 1 34 4 661 335 4 641 312 1 1 0,00%

GMcloser 1 34 4 661 028 4 641 005 1 1 0,00%

miniasm 1 1 4 793 967 4 793 967 0 0 0,00%

E. coli O157:H7 SPAdes 10 87 5 547 646 3 323 349 3 3 0,00%

SSPACE-LR 10 50 5 568 199 3 323 349 29 18486 0,33%

gapFinisher 10 50 5 568 974 3 323 349 13 5750 0,10%

PBJelly 10 49 5 590 669 3 323 349 13 5411 0,10%

GMcloser 10 50 5 568 199 3 323 349 28 18634 0,33%

miniasm 10 25 5 898 494 537 223 0 0 0,00%

SSPACE-LR 10 16 5 908 008 612 090 9 9514 0,16%

gapFinisher 10 16 5 907 537 612 090 5 2495 0,04%

PBJelly 10 16 5 925 577 612 150 5 3683 0,06%

GMcloser 10 16 5 908 008 612 090 9 7392 0,13%

B. trehalosi SPAdes 1 51 2 376 258 274 711 2 2 0,00%

SSPACE-LR 1 12 2 401 287 438 635 13 2804 0,12%

gapFinisher 1 12 2 401 265 438 599 5 401 0,02%

PBJelly 1 11 2 412 762 1 257 245 4 28 0,00%

GMcloser 1 12 2 401 287 438 635 13 2804 0,12%

miniasm 1 17 2 510 680 221 473 0 0 0,00%

SSPACE-LR 1 10 2 520 563 377 524 7 9883 0,39%

gapFinisher 1 10 2 521 341 377 524 3 4920 0,20%

PBJelly 1 10 2 529 003 378 677 2 1887 0,07%

GMcloser 1 10 2 520 563 377 524 7 9539 0,38%

M. haemolytica SPAdes 1 112 2 664 209 101 958 35 35 0,00%

SSPACE-LR 1 17 2 718 326 1 073 880 80 13504 0,50%

gapFinisher 1 17 2 717 906 1 073 740 38 4498 0,17%

PBJelly 1 17 2 735 092 1 078 177 45 1156 0,04%

GMcloser 1 17 2 718 326 1 073 880 69 13670 0,50%

miniasm 1 10 2 926 783 378 549 0 0 0,00%

SSPACE-LR 1 8 2 928 560 378 549 2 1777 0,06%

gapFinisher 1 8 2 928 834 378 549 1 1155 0,04%

PBJelly 1 8 2 935 736 380 443 2 1110 0,04%

GMcloser 1 8 2 928 560 378 549 2 1674 0,06%

F. tularensis SPAdes 3 135 1 807 729 25 688 0 0 0,00%

SSPACE-LR 3 58 1 855 045 56 838 97 23176 1,25%

gapFinisher 3 58 1 851 864 56 791 24 11254 0,61%

PBJelly 3 28 1 892 167 380 120 28 52 0,41%

GMcloser 3 58 2 173 335 63 394 125 24436 1,12%

miniasm 3 20 2 000 228 15 305 0 0 0,00%

SSPACE-LR 3 9 2 021 978 426 098 11 21750 1,08%

gapFinisher 3 9 2 021 618 425 969 7 16843 0,83%

PBJelly 3 9 2 033 224 425 957 5 7416 0,36%

GMcloser 3 9 2 021 978 426 098 11 19947 0,99%

(Continued)

gapFinisher: A reliable gap filling pipeline

PLOS ONE | https://doi.org/10.1371/journal.pone.0216885 September 9, 2019 8 / 21

https://doi.org/10.1371/journal.pone.0216885


and gap filling stage for the miniasm assembly had to be executed in two consecutive runs with

25X (50% of the total coverage) PacBio reads applied to each part. On the other hand, the scaf-

folding of the mammal SPAdes assembly was executed in five separate stages as part of the

actual genome project of the mammal. About 10X coverage of PacBio reads of insert were

applied at each stage and gapFinisher executed between the stages. Reads of insert are PacBio

reads that have been self-corrected by aligning CLR reads (= filtered subreads) from the same

molecule against themselves, a protocol originally described by Koren and coworkers [32].

This helps to filter out possible random sequencing errors in the long-read data with the

expense of losing some of the read coverage in the process. The results for this assembly show

statistics for the final stage and average CLR reads per scaffold is the average of all five stages

(Table 2 and S1 Table).

We visualized the different stages of the draft assemblies for all genomes by compiling the

minidot plots with the subplot utility of the MATLAB toolkit (Fig 3 and S1 Fig). Furthermore,

we visualized the final stages of the assembly and scaffolding by aligning the reference genomes

and the two drafts from the SPAdes and miniasm assembly pipelines with the progressive-

Mauve algorithm of the Mauve [33] alignment and visualization tool (Fig 4 and S2 Fig).

Mauve reveals the number and similarity of Locally Collinear Blocks (LCBs) between the input

sequences.

Table 2. (Continued)

Num. sequences

Organism Tool Expected Final Sum (bp) N50 length Gap # Gap (bp) Gap %

S. enterica SPAdes 4 217 4 982 997 153 597 653 655 0,01%

SSPACE-LR 4 94 5 026 381 1 020 795 723 10050 0,20%

gapFinisher 4 94 5 028 882 1 020 937 644 2917 0,06%

PBJelly 4 90 5 043 631 1 294 552 688 765 0,02%

GMcloser 4 94 5 026 167 1 020 795 620 14759 0,29%

miniasm 4 16 5 373 212 735 723 0 0 0,00%

SSPACE-LR 4 10 5 384 667 874 322 6 11455 0,21%

gapFinisher 4 10 5 384 057 874 322 2 4641 0,09%

PBJelly 4 10 5 391 204 874 734 3 2446 0,05%

GMcloser 4 10 5 384 667 874 322 6 11372 0,21%

Mammal SPAdes Unknown 236592 2 253 617 865 19 739 0 0 0,00%

SSPACE-LR Unknown 10143 2 462 623 627 599 108 42861 10136364 0,41%

gapFinisher Unknown 10143 2 466 785 189 601 444 40427 6945295 0,28%

PBJelly Unknown 9986 2 504 610 103 612 925 41059 1703559 0,07%

GMcloser Unknown - - - - - -

miniasm Unknown 1314 2 460 097 408 8 668 858 0 0 0,00%

SSPACE-LR 1st run Unknown 1115 2 460 626 045 9 381 548 199 528637 0,02%

gapFinisher 1st run Unknown 1115 2 460 674 964 9 381 548 129 351878 0,01%

PBJelly 1st Unknown 1115 2 462 063 881 9 385 435 152 314033 0,01%

GMcloser 1st Unknown - - - - - -

SSPACE-LR 2nd 2nd run Unknown 1008 2 460 965 525 9 562 827 236 642439 0,03%

gapFinisher 2nd run Unknown 1008 2 460 993 827 9 562 827 218 616617 0,03%

PBJelly 2nd Unknown 1008 2 461 884 336 9 562 882 204 454681 0,02%

GMcloser 2nd run Unknown - - - - - -

For clarity, only the most meaningful results of the benchmark are shown here. The full results are provided as supporting information and the assembly workflows are

also better visualized there (S1 Table). The best gap filling results for each of the draft genomes are presented as bold font figures (columns 7 and 8).

https://doi.org/10.1371/journal.pone.0216885.t002

gapFinisher: A reliable gap filling pipeline

PLOS ONE | https://doi.org/10.1371/journal.pone.0216885 September 9, 2019 9 / 21

https://doi.org/10.1371/journal.pone.0216885.t002
https://doi.org/10.1371/journal.pone.0216885


To assess the performance of the software, the SPAdes, miniasm, SSPACE-LongRead and

the gap filling runs were executed in two separate 64-bit Linux computer environments. First,

the bacterial genomes were assembled, scaffolded and gap filled in a single-processor (4 cores)

computer running Ubuntu Linux 14.04 with 20 GB of RAM, the equivalent to a modern office

workstation with a RAM extension. The 4-core processor was an Intel Core with a frequency

of 3.2 GHz. Second, we built the mammal genome in a multi-core supercomputer running

Ubuntu Linux 14.04 with 1 TB of RAM and using 16 Advanced Micro Devices Opteron pro-

cessing cores with a frequency of 2.5 GHz each. The latter setup is equivalent to a small-scale

local computer cluster. We used a built-in UNIX/Linux utility (/usr/bin/time) to measure the

peak RAM use and elapsed computation times during each of the assembly stages.

We compared gapFinisher, PBJelly [6] and GMcloser [7] in the gap filling stage of the scaf-

folded SPAdes and miniasm assemblies. The PBJelly results are reported for all the six stages of

the pipeline. With PBJelly, we decided to use 4 processing cores in the BLASR alignment step

in the single-processor runs of the bacterial assemblies, as this step of the pipeline was expected

to take an infeasibly long time otherwise. For GMcloser, the results are reported after three

iterations of the tool with the same data that is the default setting.

Results

The results are presented both from the viewpoint of how finished the draft genomes were

before and after the gap filling stage and how gapFinisher performed with respect to PBJelly

Fig 3. minidot [28] plots of the Mannheimia haemolytica draft genome at different stages of the assembly.

Upmost left: Image key and reading direction. Top left: SPAdes contig assembly, top center: scaffold stage of SPAdes

contigs, top right: gap filling stage, of the M. haemolytica draft genome. Bottom left: miniasm [28] contig assembly,

bottom center: scaffold stage of miniasm contigs, bottom right: gap filling stage, of the M. haemolytica draft genome.

The red diagonal lines indicate continuous regions of alignment between the draft assembly and the M. haemolytica
reference sequence. The blue diagonal lines indicate regions with inverted alignment. The red and blue dots indicate

repeats and inverted repeats, respectively. Draft assembly contig/scaffold boundaries are shown as grey vertical lines.

The alignment plots are provided for each of the bacterial genomes (S1 Table).

https://doi.org/10.1371/journal.pone.0216885.g003

gapFinisher: A reliable gap filling pipeline

PLOS ONE | https://doi.org/10.1371/journal.pone.0216885 September 9, 2019 10 / 21

https://doi.org/10.1371/journal.pone.0216885.g003
https://doi.org/10.1371/journal.pone.0216885


[6] and GMcloser [7]. Key statistics of the assembly benchmark results were compiled (Figs 5,

6 and 7) and the alignments of gapFinisher-filled draft genomes to the bacterial reference

genomes were visualized (Figs 3 and 4 and S1 and S2 Figs.). In the tabulation of the results

(Table 2 and S1 Table), the N50 length statistic implies the contig length for which 50% of the

total length of the draft assembly is in contigs greater than or equal to this length. This is a

common and a robust statistic to describe the distribution of sequence lengths in the assembly.

Genomes

Regarding the de novo assembly of the genomes, we noticed similar behaviour of the SPAdes

assembler as reported by the authors of the SSPACE-LongRead [9]. Namely, that the SPAdes

assembly pipeline introduced repeats at the ends of the contigs that evidently prohibited many

CLR reads from aligning into the contig ends and thus the scaffold assembly is left with a

higher number of uncombined sequences (Figs 3 and 4A and Table 2). Nevertheless, scaffold-

ing with SSPACE-LongRead reduced the number of total sequences in all the assemblies. This

was especially evident in the Mannheimia haemolytica draft genome, where SSPACE-Long-

Read reduced the number of sequences in the draft assembly from 112 to 17 (84.8% reduction).

A notable increase in basic assembly statistics, such as the N50 contig length and number of

sequences, was observed throughout (Table 2). The miniasm assembler [28] outperformed the

Fig 4. Mauve [33] alignments of the Mannheimia haemolytica genome. The visualizations are from a) before and b) after

the scaffolding/gap filling stage. The corresponding Locally Collinear Blocks (LCB) in the three genome versions are

indicated by different colors of horizontal bars. The darker lines within the blocks indicate local median similarity while the

light lines show the range of local similarity values. White areas indicate low or no similarity. Blocks below the center line

indicate regions that align in the reverse complement (inverse) orientation. a): M. haemolytica reference sequence (red

bar), SPAdes [31] assembly contig sequences (green bar), and miniasm [28] assembly contig sequences (blue bar). b): M.

haemolytica reference sequence (red bar), and gap filled scaffolds using the SPAdes assembly contig sequences (green bar),

and the miniasm assembly contig sequences (blue bar).

https://doi.org/10.1371/journal.pone.0216885.g004

gapFinisher: A reliable gap filling pipeline

PLOS ONE | https://doi.org/10.1371/journal.pone.0216885 September 9, 2019 11 / 21

https://doi.org/10.1371/journal.pone.0216885.g004
https://doi.org/10.1371/journal.pone.0216885


assemblers used in the SSPACE-LR test assemblies [9] and the SPAdes assembler [31] in our

benchmark in terms of the number of output contigs, N50 and gap length (Table 2). On the

other hand, the median similarity of the alignments to the bacterial reference genomes is lower

across all bacterial draft genomes from the miniasm pipeline (Fig 4B and S2 Fig).

For the E. coli K12 genome, the number of SPAdes assembly contigs was the lowest of the

bacterial assemblies in this study, namely 35 (Table 2). The miniasm assembly of the E. coli
K12 genome was a single sequence (Table 2 and S1 Table) and thus was the only draft genome

not to require scaffolding or gap filling. Furthermore, miniasm was able to construct the full E.

coli K12 genome from PacBio reads in 3 minutes (S1 Table). The final assembly consists of a

single long bacterial genome (Table 2) contained in 4 Locally Collinear Blocks (LCB’s) accord-

ing to progressiveMauve [32] alignment (S2 Fig and S1 Table). The contig assembly results for

the other bacterial genomes were more variable with both SPAdes and miniasm (Table 2 and

Figs 3 and 4).

Fig 5. Performance benchmark of the assembly, scaffolding and gap filling tools used. The exact values are

reported in S1 Table. a) Peak random access memory (RAM) use in gigabytes (GB) in the six bacterial assemblies. b)

Peak RAM use (GB) and runtimes (in hours) of the assembly, scaffolding and gap filling algorithms in the marine

mammal (Phocidae family) genome assembly.

https://doi.org/10.1371/journal.pone.0216885.g005

gapFinisher: A reliable gap filling pipeline

PLOS ONE | https://doi.org/10.1371/journal.pone.0216885 September 9, 2019 12 / 21

https://doi.org/10.1371/journal.pone.0216885.g005
https://doi.org/10.1371/journal.pone.0216885


Of the assemblers included in our benchmark, miniasm consistently reports zero N’s at the

contig assembly stage (Table 2). Furthermore, the miniasm contig assemblies are more contig-

uous in the sense that they consist of less sequences when compared to the SPAdes assemblies

in all cases (Table 2). This also means that the miniasm contigs are longer than SPAdes contigs.

However, the SPAdes contig assemblies reported some gapped sequences with E. coli O157 (3

bp), B. trehalosi (2 bp), M. haemolytica (35 bp) and S. enterica (655 bp) (Table 2).

Regarding the gap filling step, there was not a single tool that would have outperformed all

the other approaches in all of the draft genomes we tested: gapFinisher reduced the number of

N’s in all draft genomes. PBJelly generally performed better than gapFinisher and GMcloser in

terms of the percentage of gaps filled, but in the case of both M. haemolytica assemblies, F.

tularensis SPAdes assembly, S. enterica miniasm assembly and the mammal SPAdes assembly,

gapFinisher filled numerically more gaps than PBJelly (Table 2). In the case of E. coli O157

SPAdes assembly, gapFinisher was the best gap filling tool also percent-wise. The GMcloser

results in gap filling were poor: The scaffolded SPAdes assemblies in all the bacterial genomes

showed that the number of gapped sequence (N’s) in the genome stayed the same or often

increased after GMcloser (Table 2). In the miniasm assemblies 1–5% of gaps were filled by

Fig 6. Gap filling peak RAM use of the bacterial assemblies with gapFinisher, PBJelly and GMcloser. a) Peak RAM

use (as reported by the UNIX/Linux /usr/bin/time utilitity) of the SPAdes assembly scaffolds. b) Peak RAM use (as

reported by the UNIX/Linux /usr/bin/time utilitity) of the miniasm assembly scaffolds. The RAM use data for E.coli
K12-strain are missing (‘NA’) in b) due to the genome being closed to a single sequence with no gaps after the miniasm

assembly.

https://doi.org/10.1371/journal.pone.0216885.g006

gapFinisher: A reliable gap filling pipeline

PLOS ONE | https://doi.org/10.1371/journal.pone.0216885 September 9, 2019 13 / 21

https://doi.org/10.1371/journal.pone.0216885.g006
https://doi.org/10.1371/journal.pone.0216885


GMcloser, a notably lower rate than with gapFinisher and PBJelly (50% or more). GMcloser

was able to numerically reduce more gaps than gapFinisher and PBJelly only in the case of S.

enterica SPAdes assembly, but even there the number of gapped sequence increased from

0.20% to 0.26% of the total length of the assembly (Table 2). The GMcloser run for the draft

mammal genome SPAdes assembly was aborted after it had not finished the first of the default

three iterations in 3122 hrs (ca. 130 days). GMcloser runs were discontinued to the rest of the

mammal genome drafts after this. The performance of PBJelly was outstanding also in the

mammal genome assemblies. This was especially evident in the SPAdes assembly, where

PBJelly reduced the number of gapped sequence by 83.2% (Table 2). The results also show that

in 5 of the 14 assemblies, the final number of sequences in the draft genome was decreased

after PBJelly, which means that PBJelly performs additional scaffolding where possible.

GMcloser and gapFinisher do not have this feature.

Evidently, gapFinisher could fill about 50% of the gapped sequence (Table 2) in the scaf-

folded draft genomes and retained the structure of the genomes in all cases (Figs 3 and 4 and

S1 and S2 Figs). The lowest percentage of gaps filled was with the second stage of the mammal

genome miniasm scaffolding (4.1%) and the highest percentage of gaps filled was with the scaf-

folding of the B. trehalosi SPAdes assembly (85.7%). At the nucleotide level, several kilobases

Fig 7. Gap filling runtimes of the bacterial assemblies with gapFinisher, PBJelly and GMcloser. a) Runtimes (in

minutes) of the SPAdes assembly scaffolds. b) Runtimes (in minutes) of the miniasm assembly scaffolds. The runtimes

for E.coli K12-strain are missing (‘NA’) in b) due to the genome being closed to a single sequence with no gaps after the

miniasm assembly.

https://doi.org/10.1371/journal.pone.0216885.g007

gapFinisher: A reliable gap filling pipeline

PLOS ONE | https://doi.org/10.1371/journal.pone.0216885 September 9, 2019 14 / 21

https://doi.org/10.1371/journal.pone.0216885.g007
https://doi.org/10.1371/journal.pone.0216885


of gapped sequence was filled in all draft genomes (Table 2). No large insertions, deletions or

inversions were introduced by the gap filling stage with gapFinisher (Table 2 and Fig 3 and S1

Fig). There were no cases of gapFinisher warning about separate reads from the same SMRT

cell well attempting to fill disparate gaps in any of the bacterial genomes.

Performance

The gapFinisher pipeline is easier to use compared to PBJelly[6] and GMcloser[7]: Besides

MATLAB Compiler Runtime and a Perl [17] interpreter, gapFinisher does not require any

other software to be installed. Furthermore, the gapFinisher pipeline is contained in a single

phase, namely the actual execution of the gap filling, where e.g. the PBJelly [6] pipeline has six

separate phases.

Due to the serial design of the pipeline, gapFinisher runtime holds quite neatly at about 3–5

wall-clock seconds per CLR read per scaffold (S1 Table and Fig 7). Thus, gapFinisher computa-

tion times prove linear with relation to the number of input scaffolds and the total coverage of

the long reads that participated in the scaffolding. Where the average number of CLR reads

per created scaffold was high, as was the case with the SPAdes-assembled bacterial genomes of

E. coli O157:H7-strain, F. tularensis, M. haemolytica and S. enterica, gapFinisher running time

in single-core mode was notably higher (Fig 7A and S1 Table).

Nevertheless, gapFinisher generally runs quicker than the other tested gap filling tools even

in a single-processor, single-core, setting. In the gap filling of the miniasm assemblies, run-

times were clearly highest for GMcloser (Fig 7B, S1 Table). It further looks like that GMcloser

is not scalable to larger genome: The benchmark run for the draft mammal genome had to be

aborted after it had not finished in a reasonable time (S1 Table).

We studied the random access memory (RAM) use of gapFinisher (Fig 5) and compared

this with the other gap filling tools (Fig 6 and S1 Table). Again, the serial design of gapFinisher

keeps the RAM use of the gap filling stage at all but nominal level (Figs 5 and 6). This feature

applies also to the gap filling of the much larger mammal genome (Fig 5B and S1 Table). In

general, the peak RAM use of less than 1 GB we detected in all cases means that gapFinisher

could be executed for any genome in almost any Linux computer, even most laptops and tab-

lets. Nevertheless, the preceding assembly steps tend to use significantly more RAM (Fig 5B).

The larger mammal genome used more than 500 GB of RAM in the contig assembly stage and

more than 80 GB of RAM in the SSPACE-LongRead stage (Fig 5B and S1 Table).

Discussion

Gap filling is a non-trivial problem with many existing solutions today in the form of software

tools. The correctness of the outputs of different tools is variable. For a large genome under

assembly, the default parameter settings of FGAP [8] clearly are too lenient and may lead to

incorrect gap filling in large draft genomes (S2 Table). Repeat masking before the gap filling

step could be recommended [22], especially because FGAP utilizes BLAST [14] directly for the

long-read alignment.

Typically, contig assemblies do not contain unknown sequences (N-characters) and the

output of miniasm correctly follows this principle (Table 2). However, it is evident from the

SPAdes assembler results that a small number of N’s may be introduced already at the contig

assembly stage (Table 2). This may be due to the N’s present in the sequencing read data that is

not uncommon for Illumina sequencing reads but is more unusual for PacBio long reads. Our

results indicate that both the SPAdes and miniasm assemblers are optimized for the E. coli K12

genome: The number of E. coli K12 SPAdes assembly contigs was the lowest of the bacterial

assemblies (Table 2) and the the E. coli K12 genome miniasm assembly was closed to a single

gapFinisher: A reliable gap filling pipeline

PLOS ONE | https://doi.org/10.1371/journal.pone.0216885 September 9, 2019 15 / 21

https://doi.org/10.1371/journal.pone.0216885


sequence with no need for scaffolding or gap filling (Table 2 and S1 Table). Moreover, the E.

coli K12 SPAdes assembly N50 length is close to the total size of the assembly (Table 2). This

indicates an skewed contig length distribution of the assembly. A closer inspection of the 35

contigs showed one ca. 4.64 Mb contig and 34 low-complexity contigs with lengths between

128 and 2,553 bases (sequences not shown here). The 4.64 Mb contig shows high similarity to

the whole E. coli K12 reference genome, as evident from the alignment dotplot against the ref-

erence (S1 Fig, subfigure a), and the length of the contig is 99,98% of the reference genome

length (Table 2).

gapFinisher is not able to fill all gapped sequences in the draft assembly (Table 2). This is

because the CLR reads of the Pacific Biosciences platform do contain base-call errors [11] and

gapFinisher employs a strict alignment scheme of the long reads and only fills a gap when a

reasonably correct alignment of known sequences at the gap edges is found (Figs 1C and 2).

Consequently, some gaps may be prevented from filling, lacking sufficient evidence. A solution

is to run gapFinisher on less strict parameters and then confirm the correctness of the result

using other alignment tools. Nevertheless, gapFinisher with the default settings can reduce the

amount of gapped sequence in the example draft genomes by about 50% in general (Table 2).

However, in terms of RAM use, gapFinisher clearly outperformed PBJelly and GMcloser, the

two other gap filling tools included in the test benchmark of this study (Fig 6). This was espe-

cially true for the large mammal draft genome (Fig 5B and S1 Table). It is likely that repetitive

sequences in the ends of SPAdes contigs confused the workflow of GMcloser. The result was

the increased amount of gapped sequence in the final scaffolds in most of the scaffolded

SPAdes assemblies (Table 2 and S1 Table).

Regarding the use of filtered subreads in the bacterial genome assemblies of this study, gap-

Finisher did not detect any cases where separate reads from the same SMRT cell well would

have filled disparate gaps in the genomes. In applications where conflicting read origins could

be a problem, it can be circumvented by producing reads of insert from the filtered subreads

with the expense of genome level read coverage. On the other hand, the reads of insert pipeline

improves the overall quality of the reads which leads to more reliable alignments. Checking

the read origin of the filtered subreads is a valuable additional correctness feature of the gap-

Finisher pipeline not available in the other gap filling tools presented in this study.

We found that the runtimes of gapFinisher are approximately linear with respect to the

number of input scaffolds and the number of long reads related to each of the gaps in the scaf-

folds (Fig 5 and S1 Table). While the peak RAM use of gapFinisher stays at a nominal level for

small and large genomes (Fig 5A and Fig 5C), the runtime varies significantly, even in small

genome assemblies (Fig 5B). This feature will be optimized in the future development versions

of gapFinisher. If the user can run gapFinisher in a computer with multiple cores, it is possible

to specify the number of threads (option -t). Consequently, gapFinisher will divide the input

scaffolds into even parts, splitting the total running time of the pipeline by the number of pro-

cessors assigned. The parallelization would have significantly reduced the runtime in the gap

filling of the SPAdes-assembled bacterial genomes of E. coli O157:H7-strain, M. haemolytica
and S. enterica (Fig 5B and S1 Table). The effects of parallelization could be clearly seen in the

case of the mammal genome gap filling where gapFinisher performed the gap filling task in ca.

30 minutes for all the drafts (Fig 5B), PBJelly took more than 100 hours and GMcloser was

unable to finish in reasonable time (S1 Table).

No matter which next-generation sequencing platform is in use, base-call error profiles do

affect the output and the quality of the sequenced reads. Previously, sequence-specific system-

atic miscalls have been reported in the output of Illumina Genome Analyzer II platform) [12,

34]. Evidently, the more recent Illumina MiSeq platform is affected by the same miscall profile

to some extent [13, 35]. The presence of a relatively high error-rate can also not be disputed in

gapFinisher: A reliable gap filling pipeline

PLOS ONE | https://doi.org/10.1371/journal.pone.0216885 September 9, 2019 16 / 21

https://doi.org/10.1371/journal.pone.0216885


current high-throughput sequencing of long reads [11]. High error-rate is also a likely explana-

tion to the observed lower overall similarity of locally collinear blocks (LCBs) in the alignment

of the genomes assembled with long-reads in miniasm (Fig 4 and S2 Fig). Nevertheless, with

ever-improving sequencing chemistries and throughput the issue of high error-rates is likely

to grow smaller in the future. Error profile aware quality control methods could also help to

counter the various miscalls and other artefactual errors produced by most NGS platforms.

The sequencing coverage, and the length of the long-reads plays an important role in the

finalization of the genomes: In the SSPACE-LR bacterial genome study, it was found that Pac-

Bio coverage from around 60X upwards did not further improve genome closure on the contig

level [9]. Regarding read error-rates, it is already possible to self-correct PacBio CLR reads by

using the reads of insert pipeline of the SMRT Analysis toolkit. For each sequenced molecule,

an improved consensus sequence is obtained by aligning all the produced subreads together

which cancels out the random errors in individual reads. The final quality of the sequence

depends on the number of subreads obtained for each single molecule. Thanks to the nearly

random error profile of the PacBio RS II instrument, single nucleotide miscalls in the reads

will not be propagated to the reads of insert output, that is, the circular consensus (CCS) reads.

Furthermore, the new Sequel instrument of Pacific Biosciences reportedly has 7-fold through-

put as compared to the earlier RS II platform. This has major ramifications also for the total

throughput of corrected reads from the platform.

There may be additional approaches to the gap filling problem. In theory, a simple gap-tol-

erant alignment of sequencing reads of variable lengths using existing mapping tools would be

able to reliably span at least short gaps, say 1–20 bp in length. This is one of the near-future

prospects of solving the gap filling problem, especially as the average read lengths of next-gen-

eration sequencing platforms are likely to only increase in the future.

Conclusions

Despite the recent developments in next-generation sequencing technologies, unknown

sequences continue to exist in published draft assemblies of small and large genomes [5]. Here,

we presented an automated pipeline to solve the gap filling problem using the output of SSPA-

CE-LongRead [9] and FGAP [8] in a controlled manner and wrapping these methods together

in a pipeline called gapFinisher. Our pipeline utilizes both masked and unmasked draft

genomes with gaps and ensures the uniqueness of the BLAST alignments returned by the

FGAP algorithm by iterating through the read data one read and one input scaffold at a time.

The serial design of gapFinisher keeps the computational footprint at a nominal level (Table 2

and Figs 5B, 6 and 7). As evident from the result statistics (Table 2) and the visualizations of

the draft genomes (S1 and S2 Figs), gapFinisher performs efficient and reliable gap filling.

Compared to PBJelly and GMcloser, gapFinisher generally performs faster and always has a

smaller Random Access Memory footprint (Fig 6 and S1 Table). The performance of gapFin-

isher scales up to a large mammal genome (Fig 5B and S1 Table).

The use of gapFinisher is currently limited to SSPACE-LongRead academic license version

output and requires the user to be able to run SSPACE-LongRead at least once. Nevertheless,

SSPACE-LongRead currently is the only publicly available scaffolding software that can pro-

duce information about the sequences spanning the gaps in the final scaffolds. Should other

utilities with this key feature become available, we will further develop gapFinisher for full

compatibility. Our pipeline contributes to filling long gaps and solving the gap filling problem

after scaffolding draft genomes of multiple organisms. While no present application can solve

the gaps completely in the draft genomes, gapFinisher contributes to the gap filling step of

both prokaryote and eukaryote genomes, even in published genome assemblies.

gapFinisher: A reliable gap filling pipeline

PLOS ONE | https://doi.org/10.1371/journal.pone.0216885 September 9, 2019 17 / 21

https://doi.org/10.1371/journal.pone.0216885


The read datasets for the bacterial genomes used in this study are available at: http://www.

cbcb.umd.edu/software/PBcR/closure/index.html. The gapFinisher script to run the pipeline is

made public under GNU’s general public license (GPL) version 3.0 and the binary distribu-

tions of the bundled utilities according to their specified licenses. gapFinisher can be down-

loaded at: http://www.github.com/kammoji/gapFinisher

Supporting information

S1 Fig. minidot [28] plots of the six bacterial genomes at different stages of the assembly.

a) E. coli K12, b) E. coli O157:H7, c) B. trehalosi, d) M. haemolytica, e) F. tularensis, f) S. enter-
ica. Top left: Image key and reading direction. Top row (in all subfigures): SPAdes [31] contig

assembly, scaffolding and gap filling (gapFinisher) stages of the assembly. Bottom row (in all

subfigures): miniasm [28] contig assembly, scaffolding and gap filling (gapFinisher) stages of

the assembly. The scaffolding and gap filling stages are missing for the E. coli K12 assembly

(a)) since the genome was in a single sequence (i.e. closed) after miniasm.

(PNG)

S2 Fig. Mauve [33] alignments of the six bacterial genomes at different stages of the assem-

bly. a) E. coli K12, b) E. coli O157:H7, c) B. trehalosi, d) M. haemolytica, e) F. tularensis, f) S.

enterica. Top part (in all subfigures): progressiveMauve alignment of the respective bacterial

reference genome (red bar), the SPAdes [31] contig draft genome (green bar) and the miniasm

(Li, 2016) contig draft genome (blue bar). Bottom part (in all subfigures): progressiveMauve

alignment of the respective bacterial reference genome (red bar), the SPAdes assembly pipeline

gap filled (gapFinisher) scaffolds (green bar) and the miniasm assembly pipeline gap filled

(gapFinisher) scaffolds (blue bar). Only the contig assembly stage (top part) is shown for the E.

coli K12 assembly (subfigure a)) since the genome had no gaps after miniasm.

(PNG)

S1 Table. All de novo assembly, scaffolding and gap filling statistics for the six bacterial

draft genomes and the mammal draft genome. In addition, the performance benchmark sta-

tistics are included in the last three columns.

(XLSX)

S2 Table. Gap filling data used and FGAP [8] default test results reported for an unpub-

lished draft genome of a marine mammal from the Phocidae family. An admittedly small

number of Pacific Biosciences RS II platform circular consensus reads (reads of insert) with

summed length of about 280 kbp filled 45.5 million unknown bases in the draft genome, a

result reported by FGAP with the default alignment settings. By changing the FGAP command

line options, one can adjust the number of BLAST [14] hits returned. By default, this is 200

hits. We ran another test, where we reduced this amount to 2 so that only the best two BLAST

hits would be considered in the gap filling. Still, more than 4.5 million N’s were reportedly

filled with our test set, a far greater number of bases than contained by the original read data

used. The default BLAST alignment parameters of FGAP for opening and extending a gap are

both set to the value 1. The default values in command line applications of BLAST for opening

and extending a gap are set as 5 and 2, respectively, as written in the BLAST user guide [36].

Depending on the total score of the alignment, gap opening in the alignment is up to 80% and

gap extension up to 50% more likely than the BLAST defaults. The minimum raw score of a

BLAST hit in FGAP is set to value 25, a typical raw score value of highly dissimilar sequences

irrespective of the gap penalty parameters. Moreover, a maximum of 200 BLAST results may

be returned for a 70 percent identity in alignment length of 300 bp by default. In general, the

default parameters of FGAP appear too lenient and may fill gaps based on alignments that are

gapFinisher: A reliable gap filling pipeline

PLOS ONE | https://doi.org/10.1371/journal.pone.0216885 September 9, 2019 18 / 21

http://www.cbcb.umd.edu/software/PBcR/closure/index.html
http://www.cbcb.umd.edu/software/PBcR/closure/index.html
http://www.github.com/kammoji/gapFinisher
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0216885.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0216885.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0216885.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0216885.s004
https://doi.org/10.1371/journal.pone.0216885


incorrect and may appear multiple times where unique alignments are desired.

(XLSX)

Acknowledgments

The authors would like to thank all supporting organizations and collaborators. The authors

would like to thank Dr. Carolin Kolmeder and Dr. Ari Löytynoja for constructive comments

and improvement suggestions on the manuscript text.

Author Contributions

Conceptualization: Juhana I. Kammonen, Lars Paulin, Patrik Koskinen.

Data curation: Juhana I. Kammonen, Olli-Pekka Smolander, Pedro A. B. Pereira, Pia Laine,

Patrik Koskinen.

Formal analysis: Juhana I. Kammonen, Olli-Pekka Smolander.

Funding acquisition: Jukka Jernvall, Petri Auvinen.

Investigation: Olli-Pekka Smolander, Pia Laine, Petri Auvinen.

Methodology: Juhana I. Kammonen, Lars Paulin.

Project administration: Lars Paulin, Jukka Jernvall, Petri Auvinen.

Resources: Pedro A. B. Pereira, Petri Auvinen.

Software: Juhana I. Kammonen.

Supervision: Olli-Pekka Smolander, Lars Paulin, Jukka Jernvall.

Validation: Pedro A. B. Pereira, Pia Laine, Patrik Koskinen, Jukka Jernvall, Petri Auvinen.

Visualization: Juhana I. Kammonen, Pia Laine, Petri Auvinen.

Writing – original draft: Juhana I. Kammonen, Olli-Pekka Smolander, Pedro A. B. Pereira,

Pia Laine, Petri Auvinen.

Writing – review & editing: Juhana I. Kammonen, Olli-Pekka Smolander, Lars Paulin, Pedro

A. B. Pereira, Pia Laine, Patrik Koskinen, Jukka Jernvall, Petri Auvinen.

References
1. Vasilinetc I, Prjibelski AD, Gurevich A, Korobeynikov A & Pevzner PA. Assembling short reads from

jumping libraries with large insert sizes. Bioinformatics, 2015 Oct 15; 31(20):3262–8. https://doi.org/10.

1093/bioinformatics/btv337 PMID: 26040456

2. Boetzer M, Henkel CV, Jansen HJ, Butler D & Pirovano W. Scaffolding pre-assembled contigs using

SSPACE. Bioinformatics 2011; 4(27): 578–579.

3. Boetzer M & Pirovano W. Toward almost finished genomes with GapFiller. Genome Biology 2012; 13

(6): R56. https://doi.org/10.1186/gb-2012-13-6-r56 PMID: 22731987

4. Li YI & Copley RR. Scaffolding low quality genomes using orthologous protein sequences. Bioinformat-

ics 2013; 29(2): 160–165. https://doi.org/10.1093/bioinformatics/bts661 PMID: 23162087

5. Zerbino DR, Achuthan P, Akanni W, Amode MR, Barrell D, Bhai J, et al. Ensembl 2018. Nucleic Acids

Research, 2018, 4; 46(D1):D754–D761. https://doi.org/10.1093/nar/gkx1098 PMID: 29155950

6. English AC, Richards S, Han Y, Wang M, Vee V, Qu J et al. Mind the gap: upgrading genomes with

Pacific Biosciences RS long-read sequencing technology. PloS ONE, 2012; 7(11), e47768. https://doi.

org/10.1371/journal.pone.0047768 PMID: 23185243

7. Kosuqi S, Hirakawa H & Tabata S. GMcloser: closing gaps in assemblies accurately with a likelihood-

based selection of contig or long-read alignments. Bioinformatics, 2015; 31(23):3733–41. https://doi.

org/10.1093/bioinformatics/btv465 PMID: 26261222

gapFinisher: A reliable gap filling pipeline

PLOS ONE | https://doi.org/10.1371/journal.pone.0216885 September 9, 2019 19 / 21

https://doi.org/10.1093/bioinformatics/btv337
https://doi.org/10.1093/bioinformatics/btv337
http://www.ncbi.nlm.nih.gov/pubmed/26040456
https://doi.org/10.1186/gb-2012-13-6-r56
http://www.ncbi.nlm.nih.gov/pubmed/22731987
https://doi.org/10.1093/bioinformatics/bts661
http://www.ncbi.nlm.nih.gov/pubmed/23162087
https://doi.org/10.1093/nar/gkx1098
http://www.ncbi.nlm.nih.gov/pubmed/29155950
https://doi.org/10.1371/journal.pone.0047768
https://doi.org/10.1371/journal.pone.0047768
http://www.ncbi.nlm.nih.gov/pubmed/23185243
https://doi.org/10.1093/bioinformatics/btv465
https://doi.org/10.1093/bioinformatics/btv465
http://www.ncbi.nlm.nih.gov/pubmed/26261222
https://doi.org/10.1371/journal.pone.0216885


8. Piro VC, Faoro H, Weiss VA, Steffens MB, Pedrosa FO, Souza EM et al. FGAP: an automated gap clos-

ing tool. BMC Research Notes 2014; 7:371. https://doi.org/10.1186/1756-0500-7-371 PMID: 24938749

9. Boetzer M & Pirovano W. SSPACE-LongRead: scaffolding bacterial draft genomes using long read

sequence information. BMC Bioinformatics 2014; 15(1): 211.

10. Chaisson MJ & Tessler G. Mapping single molecule sequencing reads using basic local alignment with

successive refinement (BLASR): application and theory. BMC Bioinformatics 2012; 13:238. https://doi.

org/10.1186/1471-2105-13-238 PMID: 22988817

11. Laver T, Harrison J, O’Neill PA, Moore K, Farbos A, Paszkiewicz K et al. Assessing the performance of

the Oxford Nanopore Technologies MinION. Biomolecular Detection and Quantification 2015; 3(3):1–8.

12. Nakamura K, Oshima T, Morimoto T, Ikeda S, Yoshikawa H, Shiwa Y et al. Sequence-specific error pro-

file of Illumina sequencers. Nucleic Acids Research, 2011; 13(39): e90.

13. Schirmer M, Ijaz UZ, D’Amore R, Hall N, Sloan WT & Quince C. Insight into biases and sequencing

errors for amplicon sequencing with the Illumina MiSeq platform. Nucleic Acids Research, 2015; 6(43),

e37.

14. Altschul SF, Gish W, Miller W, Myers EW & Lipman DJ. Basic local alignment search tool. Journal of

Molecular Biology, 1990; 215(3):403–10. https://doi.org/10.1016/S0022-2836(05)80360-2 PMID:

2231712

15. Salmela L, Sahlin K, Mäkinen V & Tomescu A. Gap Filling as Exact Path Length Problem. Journal of

Computational Biology 2016; 23(5):347–61. https://doi.org/10.1089/cmb.2015.0197 PMID: 26959081

16. Gentzsch W. Sun Grid Engine: Towards Creating a Compute Power Grid. In: CCGRID ’01: Proceedings

of the 1st International Symposium on Cluster Computing and the Grid. 2001;35.

17. Christiansen T, Orwant J, Wall L, Foy B. Programming Perl. O’Reilly Media 2012.

18. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C et al. Versatile and open software

for comparing large genomes. Genome biology 2004; 5(2):R12. https://doi.org/10.1186/gb-2004-5-2-

r12 PMID: 14759262

19. Langmead B & Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nature Methods, 2012; 9

(4):357–359. https://doi.org/10.1038/nmeth.1923 PMID: 22388286

20. Noé L & Kucherov G. YASS: enhancing the sensitivity of DNA similarity search. Nucleic Acids Research

2005 33(1): W540–3.

21. de Koning AJ, Gu W, Castoe TA, Batzer MA & Pollock DD. Repetitive elements may comprise over

two-thirds of the human genome. PLoS Genetics, 2011; 7(12), e1002384. https://doi.org/10.1371/

journal.pgen.1002384 PMID: 22144907

22. Smit AFA, Hubley R & Green P. 2013–2015. RepeatMasker Open-4.0. Retrieved from: Smit, AFA, Hub-

ley, R & Green, P. RepeatMasker Open-4.0. 2013–2015. Available from: http://www.repeatmasker.org

(11 Feb 2019, date last accessed)

23. Li H & Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformat-

ics, 2009; 25(14):1754–1760. https://doi.org/10.1093/bioinformatics/btp324 PMID: 19451168

24. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S et al. Pilon: An Integrated Tool for

Comprehensive Microbial Variant Detection and Genome Assembly Improvement. PLoS ONE 2014; 9

(11): e112963. https://doi.org/10.1371/journal.pone.0112963 PMID: 25409509

25. Slater GS & Birney E. Automated generation of heuristics for biological sequence comparison. BMC

Bioinformatics 2005; 6:31. https://doi.org/10.1186/1471-2105-6-31 PMID: 15713233

26. Harhay GP, McVey DS, Koren S, Phillippy AM, Bono J, Harhay DM et al. Complete Closed Genome

Sequences of Three Bibersteinia trehalosi Nasopharyngeal Isolates from Cattle with Shipping Fever.

Genome announcements 2014; 2(1): e00084–14. https://doi.org/10.1128/genomeA.00084-14 PMID:

24526647

27. Eidam C, Poehlein A, Brenner Michael G, Kadlec K, Liesegang H, Brzuszkiewicz E et al. Complete

Genome Sequence of Mannheimia haemolytica Strain 42548 from a Case of Bovine Respiratory Dis-

ease. Genome announcements 2013; 1(3): e00318–13. https://doi.org/10.1128/genomeA.00318-13

PMID: 23723408

28. Li H. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformat-

ics 2016; 32(14):2103–10. https://doi.org/10.1093/bioinformatics/btw152 PMID: 27153593

29. Magoč T & Salzberg SL. FLASH: fast length adjustment of short reads. Bioinformatics 2011; 27(21):

2957–2963. https://doi.org/10.1093/bioinformatics/btr507 PMID: 21903629

30. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA et al. Genome sequencing in

microfabricated high-density picolitre reactors. Nature, 2005; 437:376–380. https://doi.org/10.1038/

nature03959 PMID: 16056220

gapFinisher: A reliable gap filling pipeline

PLOS ONE | https://doi.org/10.1371/journal.pone.0216885 September 9, 2019 20 / 21

https://doi.org/10.1186/1756-0500-7-371
http://www.ncbi.nlm.nih.gov/pubmed/24938749
https://doi.org/10.1186/1471-2105-13-238
https://doi.org/10.1186/1471-2105-13-238
http://www.ncbi.nlm.nih.gov/pubmed/22988817
https://doi.org/10.1016/S0022-2836(05)80360-2
http://www.ncbi.nlm.nih.gov/pubmed/2231712
https://doi.org/10.1089/cmb.2015.0197
http://www.ncbi.nlm.nih.gov/pubmed/26959081
https://doi.org/10.1186/gb-2004-5-2-r12
https://doi.org/10.1186/gb-2004-5-2-r12
http://www.ncbi.nlm.nih.gov/pubmed/14759262
https://doi.org/10.1038/nmeth.1923
http://www.ncbi.nlm.nih.gov/pubmed/22388286
https://doi.org/10.1371/journal.pgen.1002384
https://doi.org/10.1371/journal.pgen.1002384
http://www.ncbi.nlm.nih.gov/pubmed/22144907
http://www.repeatmasker.org
https://doi.org/10.1093/bioinformatics/btp324
http://www.ncbi.nlm.nih.gov/pubmed/19451168
https://doi.org/10.1371/journal.pone.0112963
http://www.ncbi.nlm.nih.gov/pubmed/25409509
https://doi.org/10.1186/1471-2105-6-31
http://www.ncbi.nlm.nih.gov/pubmed/15713233
https://doi.org/10.1128/genomeA.00084-14
http://www.ncbi.nlm.nih.gov/pubmed/24526647
https://doi.org/10.1128/genomeA.00318-13
http://www.ncbi.nlm.nih.gov/pubmed/23723408
https://doi.org/10.1093/bioinformatics/btw152
http://www.ncbi.nlm.nih.gov/pubmed/27153593
https://doi.org/10.1093/bioinformatics/btr507
http://www.ncbi.nlm.nih.gov/pubmed/21903629
https://doi.org/10.1038/nature03959
https://doi.org/10.1038/nature03959
http://www.ncbi.nlm.nih.gov/pubmed/16056220
https://doi.org/10.1371/journal.pone.0216885


31. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS et al. SPAdes: a new genome

assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology,

2012; 19(5): 455–477. https://doi.org/10.1089/cmb.2012.0021 PMID: 22506599

32. Koren S, Schatz M, Walenz B, Martin J, Howard J, Ganapathy G et al. Hybrid error correction and de

novo assembly of single-molecule sequencing reads. Nature Biotechnology, 2012; 30: 693–700.

https://doi.org/10.1038/nbt.2280 PMID: 22750884

33. Darling ACE, Mau B, Blattner FR & Perna NT. Mauve: Multiple Alignment of Conserved Genomic

Sequence With Rearrangements. Genome Research, 2004; 14(7): 1394–1403. https://doi.org/10.1101/

gr.2289704 PMID: 15231754

34. Dohm JC, Lottaz C, Borodina T & Himmelbauer H. Substantial biases in ultra-short read data sets from

high-throughput DNA sequencing. Nucleic Acids Research 2008; 16(36): e105.

35. Kammonen JI, Smolander OP, Sipilä T, Overmyer K, Auvinen P & Paulin L. Increased transcriptome

sequencing efficiency with modified Mint-2 digestion-ligation protocol. Analytical Biochemistry, 2015;

477:38–40. https://doi.org/10.1016/j.ab.2014.12.001 PMID: 25513723

36. Camacho C, Madden T, Coulouris G, Avagyan V, Ma N, Tao T et al. BLAST command line applications

user manual. National Center for Biotechnology Information. https://www.ncbi.nlm.nih.gov/books/

NBK279690 (11 Feb 2019, date last accessed)

gapFinisher: A reliable gap filling pipeline

PLOS ONE | https://doi.org/10.1371/journal.pone.0216885 September 9, 2019 21 / 21

https://doi.org/10.1089/cmb.2012.0021
http://www.ncbi.nlm.nih.gov/pubmed/22506599
https://doi.org/10.1038/nbt.2280
http://www.ncbi.nlm.nih.gov/pubmed/22750884
https://doi.org/10.1101/gr.2289704
https://doi.org/10.1101/gr.2289704
http://www.ncbi.nlm.nih.gov/pubmed/15231754
https://doi.org/10.1016/j.ab.2014.12.001
http://www.ncbi.nlm.nih.gov/pubmed/25513723
https://www.ncbi.nlm.nih.gov/books/NBK279690
https://www.ncbi.nlm.nih.gov/books/NBK279690
https://doi.org/10.1371/journal.pone.0216885

