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Cardio-oncology research studies often require consideration of potential competing risks, as the occurrence of other

events (eg, cancer-related death) may preclude the primary event of interest (eg, cardiovascular outcome). However,

the decision to conduct competing risks analysis is not always straightforward, and even when deemed necessary,

misconceptions exist about the appropriate choice of analytical methods to address the competing risks. R researchers

are encouraged to consider competing risks at the study design stage and are provided provide an assessment tool to

guide decisions on analytical approach on the basis of study objectives. The existing statistical methods for competing

risks analysis, including cumulative incidence estimations and regression modeling are also reviewed. Cardio-oncology-

specific examples are used to illustrate these concepts and highlight potential pitfalls and misinterpretations. R code is

also provided for these analyses. (J Am Coll Cardiol CardioOnc 2022;4:287–301) © 2022 The Authors. Published by

Elsevier on behalf of the American College of Cardiology Foundation. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
S urvival analyses are commonly used in cancer
research to examine clinical questions,
including treatment efficacy. Overall survival

has historically been the primary focus, in which the
outcome of interest is time to death of all causes.
However, with improving treatments and prognosis
across a wide range of malignancies, considerations
of outcomes other than death are becoming increas-
ingly important. The field of cardio-oncology research
focuses on cardiovascular (CV) outcomes among pa-
tients with cancer, in the setting of a growing array
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of cancer treatments with potential adverse cardiac
effects as well as improved cancer-specific survival.
When an outcome other than overall survival (such
as a CV outcome) is being evaluated, competing risks
become unavoidable as patients can have other
events that preclude the primary event of interest.
For example, when a patient dies of cancer, they
cannot subsequently experience a CV outcome.

The issue of competing risks has been extensively
discussed in statistical research1-10 and more recently
in medical research.11-24 Most of these papers describe
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HIGHLIGHTS

� Cardio-oncology research studies
often require consideration of competing
risks.

� Need for competing risks analysis
should be examined at the study design
stage.

� CIF curves should be interpreted with
simultaneous evaluation of both event
types.

ABBR EV I A T I ON S

AND ACRONYMS

CIF = cumulative incidence

function

csH = cause-specific hazard

csHR = cause-specific HR

CV = cardiovascular

KM = Kaplan-Meier

sdH = subdistribution hazard

sdHR = subdistribution HR

VAD = ventricular assist de
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statistical methods assuming that a
competing risks analysis is needed, but this
decision is not always straightforward, as we
illustrate in this review. We therefore provide
an assessment tool to align analytical ap-
proaches with the study objectives, when
competing risks are a potential concern.
Moreover, once competing risks analysis is
deemed necessary, misconceptions sur-
rounding the appropriate choice of statistical
methods still exist, as some familiar analytical
properties in standard survival analysis are
� Both sdH and csH regression models are
useful depending on the question of
interest.
not valid in the competing risks setting. Therefore, we
review the statistical methods for competing risks
analysis by comparing and contrasting concepts to
standard survival analysis approaches. Throughout
the paper, we illustrate the statistical quantities and
techniques in the context of cardio-oncology research.

The review is structured accordingly. In the next
section we outline considerations to determine
whether competing risks are relevant for a given
study objective. In the third section, we review
various statistical methods for competing risks anal-
ysis, such as cumulative incidence estimation and
regression modeling. We then illustrate these
methods using examples of clinical studies from
cardio-oncology research in the fourth section. We
close with concluding remarks.

COMPETING RISKS OVERVIEW

In survival analysis, a competing risk is defined as an
event whose occurrence precludes observation of the
primary event of interest. The concept of competing
risks should be considered at study design to ensure
that the capture of primary and competing events
over the duration of follow-up aligns with the
research objective. The presence of competing risks is
obvious in some settings but is more ambiguous in
others, as illustrated in the following examples.
Appropriate treatment of potential competing risks
depends on the study objectives; the Central
Illustration outlines an assessment to determine
whether competing risks are relevant and the best
approach for subsequent analysis in each scenario.
Importantly, the research question of interest is the
primary driver of the type of analytical approach.
Once the research question is established, the next
step is to determine the capability of the data to
answer the question. In the figure, Y represents the
primary event of interest, and Z represents a

vice
secondary event that is potentially a competing risk
for Y. Boxes represent various analytical options with
corresponding examples in hypothetical studies.

In example A (classic competing risk), a study aims
to estimate the probability of cardiac-related death
(Y), in the presence of deaths of all other causes (Z),
including cancer-related deaths. In this example, it is
obvious that the occurrence of non-cardiac-related
death precludes the observation of cardiac-related
death (the response to question 1 is yes). Addition-
ally, it is difficult to imagine a setting without the
competing event of non-cardiac-related death (ie, the
response to question 6 unlikely to follow the left ar-
row). Therefore, Z is a competing risk of Y. A similar
example would be a study that aims to estimate the
probability of cancer relapse (Y), in the presence of
all-cause death (Z), in which death is a clear
competing risk of relapse.

In example B (composite outcome), a study aims to
estimate the probability of cardiac-related event(s),
which could be heart attack, stroke, or heart failure.
In this case, the occurrence of 1 event (eg, stroke)
does not preclude the occurrence of the other events
(eg, heart attack), but study follow-up typically stops
at the documented occurrence of the first event (ie,
the answers to both questions 1 and 2 in the Central
Illustration are no). In addition, as all of these
events are unfavorable outcomes, a reasonable
approach would be to combine them into a composite
outcome. The operationalization of the commonly
used endpoint of major adverse cardiac events, typi-
cally defined as the earliest occurrence of heart fail-
ure, stroke, myocardial infarction, or cardiac-related
death, is an example of this composite outcome



CENTRAL ILLUSTRATION Framework for Assessing Competing Risk Conceptually

Li Y, et al. J Am Coll Cardiol CardioOnc. 2022;4(3):287–301.

Here Y represents the primary event of interest, and Z represents the secondary event that is potentially a competing risk for Y. Examples A

(classic competing risk), B (composite outcome), and C (dependent censoring) are further explained in the text (in the section “Competing

Risks Overview”), and examples D (intermediate event) and E (loss to follow-up) are explained in the Supplemental Appendix. Q1¼ Question 1;

Q2 ¼ Question 2; Q3 ¼ Question 3; Q4 ¼ Question 4; Q5 ¼ Question 5; Q6 ¼ Question 6.
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approach. A similar example would be evaluations of
relapse-free survival, a composite endpoint that in-
cludes both death and relapse.

In example C (dependent censoring), a trial aims to
estimate the probability of death (Y) among patients
implanted with ventricular assist devices (VADs) for
treatment of advanced heart failure, but follow-up for
study endpoints ends at the receipt of a heart trans-
plant (Z). In this scenario, the receipt of a heart
transplant does not preclude observation of death (no
to question 1), but the study does not have additional
follow-up for endpoints after the receipt of a heart
transplant (no to question 2). Furthermore, depend-
ing on the research question, it may not always be
appropriate to combine death and heart trans-
plantation into a composite outcome (no to question
4). For example, if the VAD is intended to be a bridge
to heart transplantation, then heart transplantation
becomes the goal for improving survival (ie, a favor-
able outcome), while death is an unfavorable
outcome.

A naive approach commonly used in such scenarios
is to censor patient follow-up at the occurrence of Z
(receipt of heart transplantation) and use standard

https://doi.org/10.1016/j.jaccao.2022.08.002


TABLE 1 Key Concepts in Competing Risks Analysis in Contrast to Standard Survival Analysis

Standard Survival Analysis Competing Risk Analysis

Data structure Outcome categorization D: two values,
event (D ¼ 1) vs censoring (D ¼ 0)

Time variable T: the earliest time of
event or censoring

Outcome categorization D: three values, primary event (D ¼ 1) vs competing
event (D ¼ 2) vs censor (D ¼ 0)

Time variable T: the earliest time of primary event, competing event, or
censoring

Hazard function Hazard of the event, denoted as h(t) Cause-specific hazard for the primary event, denoted as hcs1 ðtÞ
Cause-specific hazard for the competing event, denoted as hcs2 ðtÞ

Failure or survival
functiona

Failure function for the event,
denoted as F(t)

Survival function for the event,
denoted as S(t)

S(t) ¼ 1 � F(t)

Failure function for the primary event, denoted as F1(t)
Failure function for the competing event, denoted as F2(t)
Overall survival function: probability of surviving both events,

denoted as Soverall(t)
Soverall(t) ¼ 1 � F1(t) � F2(t)

Relationship between
hazard and failure
probability

Simple 1-to-1 relationship between
F(t) and h(t)

FðtÞ ¼ 1 � expð � R
hðtÞdtÞ

No simple 1-to-1 relationship between F1(t) and hcs1 ðtÞ; calculation of F1(t)
involves both hcs1 ðtÞ and hcs2 ðtÞ

F1ðtÞ ¼ R
hcs1 ðtÞexpð �

R
hcs1 ðsÞds � R

hcs2 ðsÞdsÞdt
Estimandb of interest in

the study
Hazard and cumulative incidence are

compatible
Requires precise description; must specify whether the estimand is the

(cause-specific) hazard of the event or the cumulative incidence of the
event

aFailure function is equivalent to cumulative incidence function. bEstimand is the target quantity of interest to be estimated.
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survival analysis for censored data (such as Kaplan-
Meier [KM] analysis). However, as question 5 in-
dicates, this approach is appropriate only if censoring
is independent; that is, time to Z is not related to the
time to Y. When this assumption is violated, naive
censoring could introduce a selection bias. In our
specific example C, patients with VADs who have
clinical deterioration related to VAD complications
may be prioritized to undergo heart transplantation to
prolong survival, and thus censoring caused by trans-
plantation is not independent of hazard of death.

Instead, one could consider 2 alternative ap-
proaches depending on the study objective. If the
objective is to estimate the probability of death with a
VAD before undergoing heart transplantation or the
probability of death as the first event before heart
transplantation (ie, follow the right arrow from
question 6), then receipt of a heart transplant should
be treated as a competing risk. Otherwise, if the
probability of death (Y) in a hypothetical setting
without heart transplantation (Z) (ie, the marginal
survival) is of interest (ie, follow the left arrow from
question 6), then censoring at the occurrence of Z is
appropriate only if more advanced methods to handle
dependent censoring are applied. These methods
require modeling of the censoring process as a func-
tion of the observed covariates followed by inverse
probability weighting or multiple imputations to
adjust for the bias induced by the dependent
censoring. We refer readers to several publications for
detailed discussions on the implementation of these
methods.25-29 Note that this approach is valid only
when data on the covariates that determine the
censoring process are collected and available for an-
alyses. This highlights the importance of a well-
defined study question and careful consideration of
analytical approach at the design stage, to ensure that
adequate information is collected to conduct valid
analyses that match the research objective. If the
study objective is to estimate marginal survival but a
competing risks analysis is performed instead, then
the results are not directly interpretable in addressing
the study question of interest.

Additional examples for other analytical options to
answer various study questions are presented in the
Supplemental Appendix. In summary, how to handle
the secondary event Z in the analysis of the primary
event Y requires careful consideration. Treating Z as
censoring allows estimation of marginal quantities,
such as the probability of Y in a hypothetical setting
in which Z does not exist; however, the standard
survival analysis for censored data assumes inde-
pendent censoring and is biased when this assump-
tion is violated. Treating Z as a competing risk could
provide estimation of the probability of Y as the
“first” event (before Z) but does not formally account
for nonindependent censoring. To estimate marginal
survival while accounting for nonindependent
censoring, advanced methods such as inverse proba-
bility weighting (and corresponding data elements)
must be used. Similar discussions on choice of
analytical strategies for different study questions
were also deliberated in van Geloven et al22 and
Stegherr et al24 which we recommend for further
reading. For the remainder of the present review, we
focus on the scenario in which a competing risks

https://doi.org/10.1016/j.jaccao.2022.08.002
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analysis is determined to be necessary (ie, consistent
with the box at the bottom right of the Central
Illustration).

KEY CONCEPTS IN COMPETING RISKS

ANALYSIS IN CONTRAST TO STANDARD

SURVIVAL ANALYSIS

In this section we review key concepts and statistical
quantities in competing risks analysis, with a focus on
how they differ from those in standard survival
analysis (Table 1). In standard survival analysis, there
is only 1 type of event (eg, all-cause death), and time
to this event is the endpoint of interest. As not all
subjects will experience the event of interest (death)
by the end of follow-up, subjects are censored at the
last observed time if the event has not yet occurred.
Thus, the outcome categorization D in standard sur-
vival analysis involves 2 values, indicating occur-
rence of event (D ¼ 1) or censoring (D ¼ 0), and the
time variable T denotes the earliest time of event or
censoring. Note that in this paper we focus on right
censoring, as it is the most common type of
censoring, and we refer readers to other publications
for methods to handle other types of censoring and
truncations in survival times.5,30,31

In contrast, in competing risks analysis, subjects
can experience more than 1 type of event, the primary
event of interest and the competing event. Thus, the
outcome can be categorized by 3 values, indicating
occurrence of the event of primary interest (D ¼ 1),
the competing event (D ¼ 2), or censoring (D ¼ 0), and
the time variable T denotes the earliest time of any
type of event or censoring. Although in this review we
consider only a single competing event for simplicity,
these concepts and methods are generally applicable
to settings with multiple competing events.

CAUSE-SPECIFIC HAZARD. One important function
in the standard survival analysis is the hazard func-
tion, which quantifies the instantaneous rate of the
event at some time t as the probability of failing at
time t, conditional on surviving up until t. That is,

h(t)¼ Prob(event occurs in the next instant, given
that have not experienced the event by t)/Dt.

In this definition, hazard is a ratio of a “condi-
tional” probability and a time interval Dt (where the
time interval is very small), so hazard is an instanta-
neous rate. Conditioning on survival up until time t
means that the hazard is calculated for the risk set of
subjects who have not yet experienced the event by t.

In the competing risk setting, in contrast to stan-
dard survival analysis, the hazard function is
modified to accommodate the possibility of 2 types of
events. The cause-specific hazard (csH) function is
used to quantify the instantaneous rate for the spe-
cific type of event at time t, conditional on surviving
all event types until t. That is,

hcs
j ðtÞ ¼ Prob(the type j event occurs in the next instant,

given that the patient has not experienced any types
of event

by t)/Dt, j ¼ 1, 2

Therefore, hcs
1 ðtÞ denotes the csH for the primary

event, and hcs
2 ðtÞ denotes the csH for the competing

event. This csH definition is very similar to the stan-
dard hazard function, except that the probability of
the event is type specific, and the risk set reflects the
occurrence of all event types. Specifically, the risk set
here includes subjects who have not yet experienced
any type of event and have not been censored, so all
patients with any event (primary event or the
competing event) before time t are removed from the
risk set at that time point. Suppose the observed or-
dered event times (regardless of event type) are t1,
t2,., tL; then at each event time tl, hcs

j ðt1Þ can be
estimated simply as the number of individuals who
experience the type j event at time tl divided by the
number of subjects at risk at time tl.

CUMULATIVE INCIDENCE FUNCTION. Another impor-
tant function in the standard survival analysis is the
survival function, S(t), which quantifies the proba-
bility of surviving (or having not experienced) the
event by time t. A related function is the failure
function, F(t), which quantifies the probability of
having the event by time t. By definition these 2
functions are the complement of each other: S(t) ¼ 1 �
F(t). In research studies, survival probabilities are
more commonly reported than failure probabilities,
but one can easily calculate the failure probability
from a reported survival probability.

In the competing risk setting, because the outcome
has more than 2 categories, 1 survival function and 1
failure function are no longer sufficient to describe
the situation. Failure functions now need to be spe-
cific for the event type, so that Fj(t) represents the
probability of having the type j event by time t. That
is, F1(t) is the probability of having the primary event
by time t, and F2(t) is the probability of having the
competing event by time t. Recall that the 2 types of
events are mutually exclusive of each other, and any
subject can only experience 1 type of event, so that in
the foregoing definition, having the type j event also
implies having this type j event before having the
other type of event. In competing risks analysis, the
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term cumulative incidence function (CIF) is preferred
over the term failure function, but these 2 functions
are the same. We use the term CIF hereafter. Given
that 2 types of events could occur, the standard sur-
vival function is no longer a relevant quantity.
Instead, the overall survival function is defined as the
probability of surviving both events, with a relation-
ship to the CIFs as

Soverall(t) ¼ 1 � F1(t) � F2(t)
Because the CIF is specific to the event type whereas
overall survival function is not, it is more useful to
report the CIF for each event type in the setting of
competing risks. This is an important difference from
standard survival analysis, in which the survival
function is more commonly reported than the failure
function.

In the absence of censoring, CIF for event type j at
each event time tl can be easily estimated as the
proportion of subjects experiencing the type j event
by time tl among all the study subjects. In the pres-
ence of censoring, one can estimate CIF for event type
j at each event time tl as follows3,30:

FjðtlÞ ¼ CIFjðtlÞ ¼
X
i:ti<tl

Soverallðti�1Þ � hcs
j ðtiÞ

Here the estimate is a sum of a series of quantities at ti,
with the summation taken over all the times up to tl.
Each quantity at ti is the product of the overall survival
probability at the previous time point ti�1 and the type j
csH at time ti. The overall survival probability could be
estimated using the KM method, and the csH can be
estimated as described in the section “Cause-Specific
Hazard.” Two alternative estimators have also been
proposed and proved to be equivalent to this one.30

After the CIF at each event time is estimated, the
CIF curve for each event type can be plotted over
time. The estimated CIF curve is a step-up function,
with the steps occurring at the times when the type j
event occurs. From the CIF curves for the primary
event and the competing event, one could easily
evaluate the cumulative probabilities of having had
the primary event, a competing event, and no events
in the presence of each other, and these 3 probabili-
ties sum to 1. One common mistake related to CIF
estimation is the approach that naively censors
subjects at the occurrence of the competing event
and uses the complement of the KM survival
estimate for CIF estimation. As noted by multiple
investigators,3,11,23 this approach overestimates the
cumulative incidence of the primary event.

Last, if comparison between treatment groups is of
interest, the CIF curves can be plotted by groups.
Gray’s test1 can be used to compare CIF curves, in
contrast to the log-rank test for comparing KM curves
in standard survival analysis.

RELATIONSHIP BETWEEN THE csH AND THE CIF.

Both hazard function and survival function (or CIF)
are often the target quantity of interest to be esti-
mated in a study (namely, the estimand), and they are
related and translatable to each other mathemati-
cally. In standard survival analysis, the hazard func-
tion and the CIF have a simple 1-to-1 relationship such
that one function can be easily derived from the
other:

FðtÞ ¼ 1� exp
�
�

Z
hðtÞdt

�

This also implies that any treatment (or exposure or
covariate) effect on one function is consistent with
that on the other function. For example, if a treat-
ment is associated with a higher hazard of the event,
then it is also associated with a higher cumulative
incidence of the event.

However, competing risks complicate the rela-
tionship between the csH and the CIF. For example,
for the primary event, hcs

1 ðtÞ and F1(t) no longer have a
simple 1-to-1 relationship, and instead the calculation
of F1(t) involves both hcs

1 ðtÞ and hcs
2 ðtÞ:

F1ðtÞ ¼
Z

hcs
1 ðtÞexp

�
�

Z
hcs
1 ðsÞds�

Z
hcs
2 ðsÞds

�
dt

This illustrates that the CIF for the primary event is
influenced by both the hazard of the primary event
and the hazard of the competing event. Therefore,
compared with the KM survival curves in the stan-
dard survival analysis, CIF curves can be more com-
plex to interpret. The CIF for the primary event may
appear to be low if the hazard for the competing event
is high. In other words, populations may have a low
cumulative incidence of the primary event, because
they often experience the competing event first,
which leads to a lack of opportunity to experience the
primary event. Therefore, it is recommended to al-
ways examine together the CIF curves for each type of
event and the overall survival to fully understand and
interpret the incidence of various events in a given
study.17,23

Moreover, it is possible to obtain inconsistent
treatment effects between one analysis that focuses
on the csH and another that focuses on the CIF. For
example, the results may suggest no association be-
tween the treatment and the csH, but suggest a higher
CIF associated with the treatment, because of the
association between the treatment and the competing



TABLE 2 Comparison of Cause-Specific Hazard Model and Subdistribution Hazard Model for Competing Risks Analysis

csH Model sdH Model

Risk set for the hazard
of the primary event

Subjects who are still at risk for the primary event (ie,
those not yet censored or not experiencing any type
of event)

Subjects who are still at risk for the primary event and those
who already experienced the competing event (ie, those
not yet censored or not experiencing the primary event)

Interpretation of the
hazard

csH is a hazard function; interpretable sdH is not a true hazard function; direct interpretation is
difficult

Relationship between
hazard and CIF

No simple 1-to-1 relationship, but CIF can be derived
from the csH of the primary and competing events

Covariate’s effect measured by csHR is not always
consistent with its effect on CIF

sdH is designed to have simple 1-to-1 relationship with CIF
Covariate’s effect measured by sdHR is consistent with its

effect on CIF, with respect to direction and significance,
although the magnitude of the effect is not directly
translatable

Estimated hazard ratio
of the primary event
for a covariate

csHR
Although estimated in the same way as in the standard

Cox model, interpretation is different from a standard
HR because it is cause specific

Measures the direct association between the covariate
and the csH of the primary event among the subjects
who are still at risk for the primary event

sdHR
Better to interpret as the covariate effects on the cumulative

incidence (rather than the hazard) of the primary event
Measures the association due to both the association of the

covariate with the primary event and the possibly
differential impact of the competing event on the risk set
for the patients with different covariate values

When to use If interested in estimating etiologic or biological
association between the exposure/
treatment/covariate and the hazard of the primary event

If interested in estimating the prognostic effect of the
exposure/treatment/covariate on the cumulative incidence
of the primary event

CIF ¼ cumulative incidence function; csH ¼ cause-specific hazard; csHR ¼ cause-specific HR; sdH ¼ subdistribution hazard; sdHR ¼ subdistribution HR.
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event. Because of this complexity, it is essential for
investigators to be precise in stating the target esti-
mand (csH or CIF) and delineating study hypotheses
and avoid defaulting to a broad term such as risk,
which is often used and leads to confusion in inter-
pretation of results in the setting of competing risks.
The 2 hypotheses “treatment is associated with lower
(cause-specific) hazard of the event of interest” and
“treatment is associated with lower cumulative inci-
dence of the event of interest” are distinct and may
result in analytical contrasts with different, even
opposing, conclusions depending on the nature and
extent of the competing risks.

REGRESSION MODELS IN COMPETING

RISKS ANALYSIS

To this point, we have framed competing risks in the
context of the measure of outcome occurrence and
the estimation of a probability of the event. However,
it is common in clinical studies to compare outcome
occurrence between groups, where group is defined
by treatment assignment, exposure status, or covari-
ate values. The same considerations of competing
risks extend to such studies, and the measure of as-
sociation is simply the contrast (difference or ratio) of
the treatment (exposure) group-specific event
probabilities.

Although statistical tests (such as the log-rank test
and Gray’s test) can be performed to compare survival
or CIF curves after they are estimated using the
methods described in the section “Key Concepts in
Competing Risks Analysis in Contrast to Standard
Survival Analysis,” such comparisons do not account
for multiple risk factors or address potential con-
founding. Regression models are important tools to
address these issues and quantify the association
between the treatment (or exposure or covariate) and
the outcome while adjusting for other risk factors. In
the standard survival analysis, the most popular
regression model is the Cox proportional hazards
model, in which the treatment effect is summarized
as an HR. In the setting of competing risks, 2 popular
regression models are the csH model2 and the Fine
and Gray subdistribution hazard (sdH) model.4 Key
elements and differences of these 2 models are sum-
marized in Table 2 and reviewed in this section.

csH MODEL. One commonly used csH regression
model takes the same form as the Cox proportional
hazards model for the standard survival analysis,
except that it models the csH instead.2 The model
assumes that the csH function is proportional for the
groups defined by the covariates in the model. With X
representing the covariate and bj representing the
regression coefficient, the model specifies

hcs
j ðtjXÞ ¼ hcs

0jðtÞ� exp
�
X� bj

�
; j ¼ 1; 2

Here hcs
0jðtÞ is the arbitrary baseline csH (similar to the

baseline hazard in Cox proportional hazards model),
where “baseline” means for a subject with covariate
X ¼ 0. One model is constructed for each type of
event, and a covariate effect is estimated for each
type of event. So b1 corresponds to the covariate
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effect on the primary event, b2 corresponds to the
covariate effect on the competing event, and these
effects do not have to be the same. The covariate ef-
fect is then summarized as the cause-specific HR
(csHR), which equals exp(bj) and can be interpreted as
the relative change in the csH for the event type j
corresponding to a 1-unit increase in the covariate X.
When X is binary (eg, exposed vs unexposed), the
csHR is simply the ratio of the csH for one group vs
the other.

Recall that in the definition of csH, the risk set at
time t includes subjects who are still at risk for the
primary event (ie, those who are not yet censored or
have not yet experienced any type of event), so the
subjects who experienced the competing event before
t are removed. Therefore, csHR measures the associ-
ation of the covariate and the csH among the subjects
who are still at risk for the primary event of interest.
When estimating csHR, censoring and competing
risks are treated the same, and therefore csHR is
estimated in the same way as the simple HR from a
standard Cox model. However, the interpretation of
csHR is different from the standard Cox HR because it
is cause specific. In contrast to the standard survival
analysis in which the direction (and statistical sig-
nificance) of the HR implies the direction of cova-
riate’s effect on the cumulative incidence (eg, HR <1
suggests that the treatment reduces the hazard of
event, and equivalently the treatment reduces the
cumulative incidence of the event), in the presence of
competing risks, the direction (and statistical signifi-
cance) of the csHR does not correspond directly to the
covariate effect on the CIF.5,13 Nevertheless, as noted
in the section “Relationship between the csH and the
CIF,” the CIF could be derived based the csH for both
the primary event and the competing event. There-
fore, after csH models are fitted for both event types,
model-based CIF curves could be estimated (see the
Supplemental Appendix for R code to implement
this).
sdH MODEL. The sdH function was proposed by Fine
and Gray,4 for the purpose of having a direct
connection with CIF. The definition of sdH for the
type j event is the instantaneous rate of occurrence of
the type j event at time t in subjects who have not yet
experienced the type j event. That is,

hsd
j ðtÞ ¼ Prob(the type j event occurs in the next instant,
given that the patient has not experienced type j

event by t)/Dt, j ¼ 1, 2

So the rate of the event is assessed in the subjects
who are either event free or have experienced the
competing event. The key difference between the sdH
and the csH lies in the construction of risk set; the
subjects who had the competing event before time t
are removed from the risk set for csH but are included
in the risk set for the sdH. Because the subjects who
had the competing event previously cannot possibly
have the primary event but are included in the risk
set, the sdH is not a true hazard function, and its
direct interpretation is difficult.

Nevertheless, one can construct a proportional
hazards model from the sdH (called the sdH model or
Fine and Gray model) in a similar fashion to the csH
model:

hsd
j ðtjXÞ ¼ hsd

0j ðtÞ� exp
�
X� bj

�
; j ¼ 1; 2

Here hsd
0j ðtÞ is the arbitrary baseline sdH, and bj is the

regression coefficient. Again, 1 model is constructed
for each type of event, so b1 corresponds to the co-
variate effect on the primary event, and b2 corre-
sponds to the covariate effect on the competing
event. The subdistribution HR (sdHR), which equals
exp(bj), summarizes the relative change in the sdH for
the event type j corresponding to a 1-unit increase in
the covariate X. However, when reporting the sdHR,
it is important to bear in mind the definition of the
sdH with the unique risk set construction. For
example, the sdHR for the primary event measures
the association of the covariate and the sdH for the
primary event, among the subjects who have not
experienced any type of event and who have experi-
enced the competing event.

In contrast, the sdHR is designed to have a direct
correspondence with the CIF, so the direction (and
statistical significance) of the sdHR implies the di-
rection of covariates effect on the CIF. For example,
an sdHR for the primary event that is significantly >1
for the exposed vs unexposed group suggests that the
exposed subjects have significantly higher cumula-
tive incidence of the primary event. Given the diffi-
culty of direct interpretation of the sdH and its 1-to-1
correspondence with the CIF, it has been recom-
mended to interpret the results from sdH models as
the covariate effect on the cumulative incidence
(rather than the hazard) of the event.9,23 One caveat is
that the magnitude of the relative effect of the co-
variate on the sdH is different from the magnitude of
the covariate’s relative effect on the CIF, so the
numeric value of the sdHR cannot be directly used.
For example, when sdHR ¼ 2, one cannot infer that
the cumulative incidence of the event for the exposed
group is 2 times of that for the unexposed group.

https://doi.org/10.1016/j.jaccao.2022.08.002
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COMPARISON AND CHOICE OF THE 2 MODELS.

Although both the csHR and the sdHR may be viewed
as measures of association, the associations they
measure are different. csHRj¼1 (the csHR for the pri-
mary event) measures the direct association between
the covariate and the csH of the primary event among
the subjects who are still at risk for the primary event,
and the competing event contributes only by
passively removing subjects from the risk set. In
contrast, sdHRj¼1 (the sdHR for the primary event)
measures the association due to both the association
of the covariate with the primary event and the
possibly differential impact of the competing event
on the risk set for the patients with different covariate
values, and the competing event actively contributes
to the risk set.

Numeric values of csHRj¼1 and sdHRj¼1 are gener-
ally different. The magnitude and direction of the
difference between csHRj¼1 and sdHRj¼1 depend on
how the covariate is associated with the competing
event, and we refer readers to Latouche et al6 and Lau
et al13 for more details. It is possible, for example, that
csHRj¼1 ¼ 1, suggesting no direct association of the
exposure and the csH of the primary event. However,
csHRj¼2 (the csHR for the competing event) <1 sug-
gests that the exposure decreases the csH of the
competing event, and as a result sdHRj¼1 >1, because
the exposed subjects are less likely to experience the
competing event and thus have more opportunity to
experience the primary event. In this example,
although there is no direct exposure association with
the primary event, the exposed subjects are more
likely to have the primary event because of the ex-
posure’s impact on the competing event and its dif-
ferential alteration of the risk set.

Therefore, as noted by others, the choice of model
depends on the study objective.6-9,13,19,20,23 If the
objective is to assess the etiologic or biological asso-
ciation between the exposure (or treatment or co-
variate) and the outcome, then the csH model is more
appropriate. However, if the objective is to assess the
prognostic effect of the exposure (or treatment or
covariate) on the cumulative incidence of outcome,
then the sdH model is more appropriate. Last, if the
objective is to derive a prediction model for the
occurrence of outcomes over time, both models could
be considered. Although the sdH model has the
advantage of the 1-to-1 relation with the CIF, making
prediction on the basis of the sdH model easier, a csH
model may fit the data better with respect to the
proportional hazards assumption and thus yield bet-
ter prediction. Moreover, the predicted CIFs from
Fine and Gray sdH models may lead to a cumulative
total probability of event that exceeds 1 for some
covariate patterns.10 This again highlights the
importance of clear and precise specification of the
study objective and hypothesis in the setting of
competing risks analysis.

ANALYSIS OF THE CARDIO-ONCOLOGY EXAMPLE

We consider a cardio-oncology example of a ran-
domized trial comparing an investigational anti-
androgen agent against standard first-line therapy for
patients with metastatic prostate cancer. One study
outcome of interest is time to the occurrence of a CV
event (ie, major adverse cardiac events as defined
previously). Clearly, cancer-related death is a
competing risk for the outcome of CV events because
the occurrence of cancer-related death precludes any
subsequent CV events. The trial is designed to have 5
years of follow-up, and patients are censored at the
last contact if they are lost to follow-up before 5 years
(most likely for random reasons). Importantly, on the
basis of previous research showing increased cardiac
risk associated with antiandrogen therapy,32-35 it is
expected that the investigational agent may improve
cancer survival (csHR <1) but also increase the risk for
CV event (csHR >1).

We simulate a hypothetical dataset using statistical
software to mimic a randomized clinical trial. The
simulation settings were informed by previously
published clinical trials32-35 to reflect the example
described previously. We assume a total of 1,000 pa-
tients with 1:1 equal randomization to the 2 treatment
arms. Patients are followed for 5 years with the pos-
sibility of random censoring. Five-year cancer-related
death is set to be approximately 60% in the standard
arm,32,34 and the 5-year CV event rate is set to be
approximately 8% in the standard arm.33-35 For the
purpose of illustration, we simulate data under
various true associations between the investigational
agent and the potential outcomes: scenario 1, a strong
positive association with CV event (csHR ¼ 2) and a
strong inverse association with cancer-related death
(csHR ¼ 0.5); scenario 2, a weak positive association
with CV event (csHR ¼ 1.25) and a strong inverse as-
sociation with cancer-related death (csHR ¼ 0.5); and
scenario 3, a weak positive association with CV event
(csHR ¼ 1.25) and a weak inverse association with
cancer-related death (csHR ¼ 0.8).

CIF AND 1 L KM ESTIMATES FOR THE PRIMARY EVENT.

For each scenario, we constructed CIF curves for both
the primary event (CV event) and the competing
event (cancer-related death) by treatment groups,
using the methods described in the section “Cumu-
lative Incidence Function” (Figure 1). We then
focused on the CIF estimate for the primary event at 5



FIGURE 1 CIF Curves of Primary and Competing Events by Treatment Groups

The primary event is a cardiovascular (CV) event, and the competing event is cancer-related death. (A) Scenario 1: the investigational treatment has a strong positive

association with the primary event (cause-specific HR [csHR] ¼ 2) and a strong inverse association with the competing event (csHR ¼ 0.5). (B) Scenario 2: the

investigational treatment has a weak positive association with the primary event (csHR ¼ 1.25) and a strong inverse association with the competing event (csHR ¼ 0.5).

(C) Scenario 3: the investigational treatment has a weak positive association with the primary event (csHR ¼ 1.25) and a weak inverse association with the competing

event (csHR ¼ 0.8).
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years and summarized the estimates and their 95%
CIs under the 3 scenarios (Table 3). For the standard
treatment group, the CIF estimate is the same across
scenarios (8.1%; 95% CI: 5.9%-15.2%) because the true
hazards for both primary and competing events are
unchanged in the simulation settings. Because the
positive association between the investigational
agent and the hazard of the primary event (CV event)



TABLE 3 Estimated 5-Year Cumulative Incidence of Primary Event (CV Event) From CIF and KM Methods

Scenario Treatment Group CIF (95% CI) 1 � KM (95% CI) Illustrated Concept

Scenario 1: primary event (CV event), strong
positive association (csHR ¼ 2);
competing event (cancer death), strong
inverse association (csHR ¼ 0.5)

Standard treatment 8.1% (5.9%-10.7%) 13.2% (9.0%-17.1%) KM method overestimates cumulative
incidence.

Investigational treatment 20.7% (17.2%-24.4%) 26.5% (21.9%-30.0%)

Scenario 2: primary event (CV event), weak
positive association (csHR ¼ 1.25);
competing event (cancer death), strong
inverse association (csHR ¼ 0.5)

Standard treatment 8.1% (5.9%-10.7%) 13.2% (9.0%-17.1%) Compared with scenario 1, CIF estimate of the
primary event (CV event) for the
investigational treatment group is lower,
reflecting weaker positive treatment
association with primary event.

Investigational treatment 12.1% (9.4%-15.2%) 15.6% (11.8%-19.2%)

Scenario 3: primary event (CV event), weak
positive association (csHR ¼ 1.25);
competing event (cancer death), weak
inverse association (csHR ¼ 0.8)

Standard treatment 8.1% (5.9%-10.7%) 13.2% (9.0%-17.1%) Compared with scenario 2, CIF estimate of
the primary event (CV event) for the
investigational treatment group is even
lower, despite no change in the treatment
association with the primary CV event,
because the inverse treatment association
with the competing event (cancer-related
death) changes from strong to weak. This
highlights that the CIF estimate of the
primary event is also influenced by the
hazard of the competing event because
an increasing hazard of the competing
event results in less opportunity to
experience the primary event.

Investigational treatment 10.4% (7.9%-13.3%) 15.3% (11.2%-19.3%)

The CIF method treats cancer-related death as a competing risk and uses the method described in the section “Cumulative Incidence Function.” The naive KM method treats cancer-related death as censoring
and uses 1 � KM to estimate cumulative incidence.

CV ¼ cardiovascular; KM ¼ Kaplan-Meier; other abbreviations as in Table 2.
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is strong (csHR ¼ 2) in scenario 1 and weak
(csHR ¼ 1.25) in scenario 2, the corresponding CV
event CIF estimate for the investigational treatment
group is higher in scenario 1 (20.7%; 95% CI: 17.25%-
24.4%) than in scenario 2 (12.1%; 95% CI: 9.4%-15.2%).

Note that the CIF estimate of the primary event
(CV event) for the investigational treatment group is
lower in scenario 3 (10.4%; 95% CI: 7.9%-13.3%)
than in scenario 2 (12.1%; 95% CI: 9.4%-15.2%), even
though the hazard of the primary event associated
with the investigational agent is the same in the 2
scenarios (csHR ¼ 1.25). This occurs because the
inverse association between the investigational
agent and the hazard of the competing event (can-
cer-related death) is weak (csHR ¼ 0.8) in scenario 3
but strong (csHR ¼ 0.5) in scenario 2. It highlights
that the CIF estimate of the primary event is
affected by the hazard of the competing event, in
addition to the hazard of the primary event itself,
because an increasing hazard of the competing
event results in less opportunity to experience the
primary event.

Table 3 also presents the estimated incidence of the
primary event at 5 years obtained from the naive KM
method by censoring patients at occurrence of the
competing event (the “1 � KM” column). In all 3
scenarios and for both treatment groups, the naive
KM method overestimates the incidence compared
with the CIF method. For example, in the standard
treatment group, the estimated incidence is 13.2%
(95% CI: 9.0%-17.1%) for the naive KM method and
8.1% (95% CI: 5.9%-10.7%) for the CIF method, so the
magnitude of overestimation is substantial (relatively
63%). This illustrates a common drawback of KM
survival analysis when applied inappropriately in the
setting of competing risks.
TREATMENT GROUP COMPARISON AND REGRESSION

MODELS. Next, we estimated the association of the
investigational agent with the primary event (CV
event) and the competing event (cancer-related
death) using 2 competing risks regression models, the
csH model and the sdH model, as described in the
section “Regression Models in Competing Risks
Analysis” (Table 4). In scenario 1, for the primary
event (CV event), the estimated sdHR (2.7; 95%: 1.9-
3.9) is higher than the csHR (2.1; 95% CI: 1.5-3.1)
because the investigational treatment group has a
lower hazard of the competing event (cancer-related
death) and thus more opportunity to experience the
primary CV event. In contrast, focusing on the event



TABLE 4 Estimated Treatment Associations With Primary CV Event and Competing Event of Cancer-Related Death

Scenario Event Type
True Direct Investigational

Treatment Association
csH Model: csHR
(95% CI), P Value

sdH Model: sdHR
(95% CI), P Value Illustrated Concept

Scenario 1 CV event Strong positive (csHR ¼ 2) 2.1 (1.5-3.1), 0.001 2.7 (1.9-3.9), 0.001 Because the investigational
treatment group has the
lower hazard of the
competing event, sdHR is
higher than csHR,
suggesting a stronger
positive association between
the investigational
treatment and the primary
event.

Cancer-related death Strong inverse (csHR ¼ 0.5) 0.46 (0.38-0.56), 0.001 0.44 (0.36-0.53), 0.001

Scenario 2 CV event Weak positive (csHR ¼ 1.25) 1.19 (0.80-1.79), 0.387 1.51 (1.01-2.25), 0.045 When the association of the
investigational treatment is
weak (positive) for the
primary event and strong
(inverse) for the competing
event, sdHR is higher than
csHR, and this difference
could lead to a different
conclusion on the basis of
the statistical significance.

Cancer-related death Strong inverse (csHR ¼ 0.5) 0.48 (0.39-0.58), 0.001 0.48 (0.39-0.58), 0.001

Scenario 3 CV event Weak positive (csHR ¼ 1.25) 1.17 (0.77-1.77), 0.456 1.29 (0.86-1.96), 0.220 When the association of the
investigational treatment is
weak for both the primary
and competing events, sdHR
is similar to csHR.

Cancer-related death Weak inverse (csHR ¼ 0.8) 0.79 (0.67-0.94), 0.006 0.79 (0.66-0.93), 0.005

Abbreviations as in Tables 2 and 3.
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of cancer-related death and considering CV event as a
competing risk, the estimated csHR (0.46; 95% CI:
0.38-0.56) and sdHR (0.44; 95% CI: 0.36-0.53) for
cancer-related death are similar. This is because
although the investigational treatment is associated
with a higher hazard of CV event and also differen-
tially alters the risk set for cancer-related death, the
incidence of CV event (about 8%) is much lower
compared with the cancer-related death (about 60%),
so the differential alteration of the risk set caused by
the occurrence of CV event is nearly negligible.

In scenario 2, for the primary event (CV event),
again the sdHR (1.51; 95% CI: 1.01-2.25; P ¼ 0.045) is
higher than the csHR (1.19; 95% CI: 0.80-1.79;
P ¼ 0.387). Because the true association between the
investigational agent and the primary event (CV
event) is weak in this scenario, such an increase in the
sdHR (compared with the csHR) could lead to a
different conclusion if interpretation focuses on
strictly on statistical significance (ie, P value associ-
ated with the sdHR interpreted as a significantly
positive association).

Last, in scenario 3, when the association of the
investigational treatment is weak for both the pri-
mary event and competing event, the csHR and sdHR
are generally similar. For example, for the CV event,
the csHR is 1.17 (95% CI: 0.77-1.77) and the sdHR is
1.29 (95% CI: 0.86-1.96).

R markdown code for data simulations and ana-
lyses is provided in the Supplemental Appendix.

CONCLUSIONS

Cardio-oncology research studies often require care-
ful consideration of potential competing events.
Appropriate handling of these events is important,
and the choice of analytical method should be guided
by the study objective. As we illustrate in the
assessment tool in the Central Illustration, competing
risks analysis is a commonly used approach, but not
the only one. Because different methods are appro-
priate to address different study objectives, the need
for a competing risks analysis should be evaluated at
the time of study design, rather than at the time of
analysis.

Once a competing risks analysis is deemed
necessary, multiple statistical methods exist and
can be easily implemented in the standard software,
as we have reviewed in this paper. For estimating
cumulative incidence of the outcome, the naive KM
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method leads to inflated estimates; instead, the CIF
method should be used. When reporting and inter-
preting CIF curves, it is essential to evaluate the
CIF for both the primary event of interest and
the competing event, because the CIF estimate of
the primary event is influenced by both the hazard
of the primary event and the competing event. This
also implies that results across studies are not
directly comparable if different events are treated
as competing risks.

When reporting regression models for competing
risks, the sdHR from the Fine and Gray sdH model is
often interpreted as if it is equivalent to an HR from a
standard Cox model. However, as we note in this
paper, sdH is not a true hazard function, and thus the
sdHR should not be directly interpreted as an HR
without noting the unique risk set for sdH. Instead, it
is better to interpret the sdH model results from the
perspective of the treatment (or exposure or covari-
ate) effect on the cumulative incidence (rather than
hazard). Moreover, there is a misconception that the
Fine and Gray sdH model should always be used
when competing risks are present. However, both
sdH and csH models are useful tools and provide
valid estimates of different types of associations.
The sdH model estimates the prognostic association
of the treatment or exposure with the cumulative
incidence of the event, whereas the csH model es-
timates the etiologic or biological association of
treatment or exposure with the csH of the event.
Therefore, in practice, the model that is aligned
with the study objective should be chosen as the
primary analysis, and the other model may be pre-
sented as a secondary analysis, which enables a
more complete understanding and interpretation of
the relationships between the treatment or expo-
sure and the outcome.

We defined a competing risk as an event that pre-
cludes the observation of the primary event of inter-
est; one could also consider it as time to the first
event and the type of the event (either the primary
event of interest or the competing event), as
described by Schmoor et al.18 With this, competing
risks can be viewed as a special case of the multistate
framework that models events as transitions between
states.5,18 The csH is then equivalent to the transition
intensity (the rate of transitioning from one state to
another) in the multistate model. Although
competing risks analyses focus on the first event,
general multistate models are able to model outcomes
after the first nonfatal event, such as death after
transplantation (or relapse).

In this paper we focus on describing methods
that are applicable to the most common scenarios
encountered in studies with potential competing
risks concerns, but other scenarios occur that
require distinct advanced analytical methods, which
we have only briefly mentioned here. One example
is accounting for dependent censoring when the
study objective is to estimate marginal survival, as
in example C described in the section “Competing
Risks Overview.” Another example is handling of
competing risks under types of censoring and
truncation other than the right censoring, as noted
in the section “Key Concepts in Competing Risks
Analysis in Contrast to Standard Survival Analysis.”
The application of appropriate advanced methods in
these settings is necessary to obtain unbiased esti-
mated and make valid inferences. Last, causal
interpretation of the results of a competing risks
analysis is very challenging,36 because the csH may
suffer from the same selection mechanism as the
standard hazard by generating a selective risk set
over time (ie, removing those who experienced the
event differentially between the comparison
groups).37-39 Furthermore, the CIF also does not
reflect the causal effect, as it is influenced by the
effect of the treatment or exposure on the
competing event. Research in this area is ongoing,40

and a detailed discussion is beyond the scope of
this paper.
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