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Background: Parkinson’s disease (PD) is a neurodegenerative disease in which the

neostriatum, including the caudate nucleus (CN) and putamen (PU), has an important role

in the pathophysiology. However, conventional magnetic resonance imaging (MRI) lacks

sufficient specificity to diagnose PD. Therefore, the study’s aim was to investigate the

feasibility of using a radiomics approach to distinguish PD patients from healthy controls

on T2-weighted images of the neostriatum and provide a basis for the clinical diagnosis

of PD.

Methods: T2-weighted images from 69 PD patients and 69 age- and sex-matched

healthy controls were obtained on the same 3.0T MRI scanner. Regions of interest (ROIs)

were manually placed at the CN and PU on the slices showing the largest respective

sizes of the CN and PU. We extracted 274 texture features from each ROI and then

used the least absolute shrinkage and selection operator regression to perform feature

selection and radiomics signature building to identify the CN and PU radiomics signatures

consisting of optimal features. We used a receiver operating characteristic curve analysis

to assess the diagnostic performance of two radiomics signatures in a training group and

estimate the generalization performance in the test group.

Results: There were no significant differences in the demographic and clinical

characteristics between the PD patients and healthy controls. The CN and PU radiomics

signatures were built using 12 and 7 optimal features, respectively. The performance of

the two radiomics signatures to distinguish PD patients from healthy controls was good.

In the training and test groups, the AUCs of the CN radiomics signatures were 0.9410

(95% confidence interval [CI]: 0.8986–0.9833) and 0.7732 (95% CI: 0.6292–0.9173),

respectively, and the AUCs of the PU radiomics signature were 0.8767 (95% CI:

0.8066–0.9469) and 0.7143 (95% CI: 0.5540–0.8746), respectively. Vertl_GlevNonU_R

appeared simultaneously in both the CN and PU radiomics signatures as an optimal

feature. A t-test analysis revealed significantly higher levels of texture values of the CN

and PU in the PD patients than healthy controls (P < 0.05).

Conclusion: Neostriatum radiomics signatures achieved good diagnostic performance

for PD and potentially could serve as a basis for the clinical diagnosis of PD.
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INTRODUCTION

Parkinson’s disease (PD) is a progressive neurodegenerative
disease characterized by rigidity, tremor, slowed movements,
and other non-motor symptoms. PD affects 2–3% of elderly
people >65 years old worldwide and has a significant impact
on patients’ quality of life (1). PD mainly causes degeneration
of the dopaminergic neurons of the nigrostriatal system (2). As
part of the nigrostriatal system, the neostriatum includes both
the caudate nucleus (CN) and putamen (PU) (3). Abnormal
deposition of cytoplasmic inclusions (Lewy bodies) containing
a-synuclein and ubiquitin in the neostriatum has been proven
pathologically (4). Additionally, iron deposition in the brain,
including the neostriatum, has been proposed as having an
important role in the pathophysiology of PD (5, 6). Additionally,
converging evidence has demonstrated the existence of striatal
microstructural changes (7, 8).

The clinical diagnosis of PD essentially relies on a set
of clinical presentations that do not provide high accuracy
(9). In neuroimaging, based on the above-mentioned
pathophysiological changes in PD, some advanced magnetic
resonance imaging (MRI) sequences, such as neuromelanin-
sensitive MRI (10) and quantitative susceptibility mapping (11),
have been reported to be useful for diagnosis of PD. Resting-state
functional MRI and diffusion tensor imaging (DTI) also have
demonstrated abnormalities in the neostriatum in PD patients
(7, 8, 12). Unfortunately, the limitations of these techniques,
such as complicated sequences and time-consuming procedures,
have hindered their clinical application. As a basic radiological
examination, conventional MRI is widely used in clinical
neurology. However, conventional MRI only serves to exclude
underlying pathologies (e.g., cerebrovascular disease) and lacks
specificity in diagnosis (13).

Radiomics, which use mathematical methods to examine
a large set of texture features and extract mineable high-
dimensional data from the texture features, can provide non-
visual information of medical images, such as microstructural
alterations and even pathological changes (14). The “texture
features” are the interrelationships of image pixel gray-levels
and patterns, which are hard to see directly by radiologists.
According to the calculation method, these could be divided
into first-, second-, or higher-order features. After texture
feature extraction, radiomics use machine learning or advanced
statistical methods to analyze the high-dimensional feature data
to identify the optimal features. Finally, a radiomics signature,
a clinical classifier model consisting of the optimal features, was
built (14). In the early years of radiomics, this new approach has
been widely applied in oncology fields and has shown potential
benefits for tumor grading and pathological classification (15,
16). However, given its power in capturing the microstructural
changes in tissues and its correlation with clinical endpoints (17)
and age progression (18, 19), the use of radiomics is expected
to increase in neurodegenerative disorders (20). Presently,
radiomics has been applied to the diagnosis of neurodegenerative
diseases, including Alzheimer’s disease (AD), amyotrophic lateral
sclerosis, and Machado–Joseph disease with conventional MRI
(21–25), which have similar pathological changes with PD, such

as atrophy, abnormal proteins, or iron deposition in many
brain regions. In a longitudinal study, radiomics successfully
detected microstructural changes in invisible normal-appearing
white matter on conventional T2 fluid-attenuated inversion-
recovery (FLAIR) images (18). In addition, recent studies
indicated that radiomics features derived from DAT SPECT
images can serve as a biomarker for PD progression tracking
(26, 27). Notably, a previous texture analysis study demonstrated
that texture features based on T2-weighted imaging (T2WI)
differed between PD patients and healthy controls in many
brain regions (28). However, there is no published study that
investigated the diagnosis of PD on conventional MRI by using
a radiomics approach.

Therefore, the study aim was to investigate the feasibility of
using a radiomics approach for discrimination of PD patients
from healthy controls on T2WI, which may provide a basis for
the clinical diagnosis of PD and guide management for precision
medicine. To this end, we developed two T2WI-based radiomics
signatures, each consisting of optimal features for either CN or
PU, and then estimated the generalization performance in the test
group by using receiver operating characteristic (ROC) analysis.

MATERIALS AND METHODS

Participants
This retrospective study was approved by the Ethics Committee
at the First Affiliated Hospital of JinzhouMedical University, and
the requirement for written informed consent was waived by the
Ethics Committee. MRI and clinical data were retrospectively
and anonymously collected from the Picture Archiving and
Communication System and medical records of our hospital. All
the data were anonymized and de-identified prior to analysis.
The inclusion criteria for PD patients was a clinical diagnosis
of idiopathic PD per the UK Parkinson Society Brain Bank
criteria (29). The exclusion criteria for PD patients were history of
other neurological and psychiatric diseases, secondary or atypical
Parkinsonism, history of alcohol and/or drug abuse, and history
of head injury. The healthy controls with age and sex matched
to the PD patients were recruited from the medical examination
center of the hospital. All healthy controls had no history of any
neurological or psychiatric disorders, alcohol and/or drug abuse,
or head injury. All participants underwent conventional MRI
examinations with T2WI on the same 3.0T MRI scanner. The
T2W images from each participant were evaluated for artifacts
that may have affected the feature extraction. Satisfactory image
quality for further analysis was obtained for all participants.
Sixty-nine PD patients (40 male; 72.4± 9.1 years) and 69 healthy
controls (35 male; 70.09 ± 5.6 years) were reviewed, according
to the above criteria, from February 2017 to December 2018.
The PD patients and healthy controls were randomly allocated to
training (n= 48) and test groups (n= 21) at a proportion of 7:3.

MRI Acquisition
All MRI images were acquired on the same 3.0T Verio
Siemens scanner (Siemens, Erlangen, Germany) equipped with
an eight-channel head coil. The acquisition parameters were
as follows: (1) axial T1 weighted scan (T1WI) [repetition time
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(TR)/echo time (TE)/inversion time (TI), 2,000/9/860ms]; (2)
axial T2WI (TR/TE, 6,000/96ms); (3) axial FLAIR (TR/TE/TI,
8,500/94/2,440ms); These three sequences shared the following
parameters: field of view (FOV), 240 × 204mm; matrix, 320 ×

240 pixels; section thickness, 5mm; (4) sagittal T1WI (TR/TE/TI,
2,000/9/860ms; FOV, 240 × 216mm; matrix, 320 × 240 pixels;
section thickness, 5.5 mm) (Figure 1A).

Image Selection and Region of Interest
(ROI) Delineation
The T2W images were used for feature extraction, and T1W
and FLAIR images were used as anatomical references for the
ROI delineation and placement. The T2W image quality was
evaluated, and the slices for feature extraction were determined
by two neurological radiologists (SZ and XZ) who had 9 and 28
years of experience, respectively. To extract the texture features
more comprehensively and reduce the partial volume effect
due to slice thickness, two slices showing the largest respective
sizes of CN and PU in each participant were selected for
feature extraction. In cases of disagreement of image selection,
consensus was reached through discussion (the outcome of

the consensus between the two radiologists can be found in
Supplementary Table 1).

ROI delineation and texture extraction were performed
by using the available MaZda software (MaZda Version
4.6; Technical University of Lodz, Poland). To minimize
confounding effects in the image, image gray-level intensity
normalization was performed by discarding the image intensities
not within µ ± 3δ (µ: mean of gray-level value, δ: standard
deviation of gray-level value) (30).

Since different ROI sizes can affect the results of texture
extraction (31), to ensure the stability of texture extraction, an
ROI was delineated as a rotundity with the same size. In addition,
the ROI cannot exceed or coincide the edges of the CN or PU to
ensure that it is within the region of the CN or PU. Further, two
ROIs were exported as ∗.roi files with a size of 1,257 pixels and
2,552 pixels for the CN and PU, respectively. Next, we imported
the selected CN and PU slices in the MaZda software and then
loaded the respective ∗.roi files. The ROIs were manually placed
on the bilateral CN and PU by two neurological radiologists
(SZ and XZ, respectively), (Figure 1B). Radiologist SZ placed the
ROIs again within a 2 weeks interval.

FIGURE 1 | Workflow of this study. (A) All T2-weighted imaging (T2WI) images were acquired on the same MRI scanner. (B) Regions of interest (ROIs) were manually

placed on the bilateral caudate nucleus (CN) and putamen (PU). (C) A total of 274 radiomics features were extracted from each ROI. (D) On the R software platform

with the glmnet package installed, least absolute shrinkage and selection operator (LASSO) regression was used to optimal features selection and radiomics signature

building. (E) Receiver operating characteristic (ROC) curves were used to evaluate classification performance, and t-test analysis and box plots were used to compare

the co-occurring optimal feature values.

Frontiers in Neurology | www.frontiersin.org 3 April 2020 | Volume 11 | Article 248

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Liu et al. PD Diagnosis Using Radiomics

Texture Extraction
The MaZda software “Analysis” module was used for texture
extraction. A total of 274 texture features were extracted from
each ROI, and the results were exported as ∗.sel files (Figure 1C).

Radiomics Signatures Building
LASSO regression with filter, which is a sparse learning method
suitable for high-dimensional data (32), was used to optimal
feature selection and radiomics signatures building. LASSO
regression reduced the penalty term lambda to set the coefficients
of diagnostic-unrelated features to zero and retain optimal
features with non-zero coefficients. To select optimal features
in LASSO regression, we employed 10-fold cross-validation with
binomial deviance following minimization criteria to determine
the optimal penalty term lambda (33). With lambda determined,
the radiomics signature was generated by the multivariate
LASSO-logistic regression analysis. To be specific, the radiomics
signature was a linear equation consisting of an intercept and
optimal features multiplied by their respective coefficients. For
each participant in the training group, we substituted the optimal
feature values into the equation to obtain their radiomics score
(Figure 1D).

Validation of the Radiomics Signatures
The ROC curve is widely used to evaluate performance of
supervised classification (34) and is a common method for the
measurement of radiomics signature performance in the field
of radiomics research (35). The classification performance of
our radiomics signature was measured by a ROC curve and the
corresponding AUC in this study, and sensitivity and specificity
were also calculated. We plotted the ROC curve of the radiomics
score and calculated the AUC, sensitivity, and specificity in the
training group. To estimate the generalization performance of
our radiomics signatures, we used the same image selection and
ROI delineation methods to extract the texture features of the
CN and PU in the test group. In the same way, the radiomics
score was calculated for each participant in the test group using
our radiomics signatures by substituting optimal feature values
into the equation. The ROC curve of the test group’s radiomics
score was plotted to show the generalization performance of the
signature, and then the AUC, sensitivity, and specificity were
calculated (Figure 1E).

Statistical Analysis
All statistical analyses were performed by using SPSS statistical
software (Version 20.0; SPSS Inc., Chicago, IL, USA), R
software (Version 3.4.3; R Foundation for Statistical Computing,
Vienna, Austria), and GraphPad Prism (Version 8.0.2; GraphPad
Software, Inc., San Diego, CA). The differences in age, sex,
duration of disease, and modified Hoehn–Yahr stage between the
study groups were investigated by performing the Chi-square,
Student’s t, and Mann–Whitney U tests. LASSO regression was
performed by using the “glmnet” package in R software. The
Hosmer–Lemeshow test was performed to evaluate the goodness-
of-fit of radiomics signatures. ROC curves were used to evaluate
the diagnostic classification performance of radiomics signatures.
The differences in co-occurring optimal feature values between

the PD patients and healthy controls were analyzed by using
Student’s t-test. The inter- and intraobserver agreements of
feature extraction reproducibility were evaluated by inter- and
intra-class correlation coefficients (ICCs). The interobserver ICC
was calculated by using each texture feature for agreement
between SZ and XZ, and the intraobserver ICC was calculated
by using each texture feature for agreement between two
performances by SZ. The threshold for statistical significance was
set to P < 0.05, and all reported P-values were two-sided.

RESULTS

Demographics and Clinical Characteristics
The demographic and clinical characteristics of the participants
for the training and test group are shown inTable 1. We found no
significant differences in age and sex between the healthy controls
and PD patients in the training and test groups. Among the PD
patients, there were no significant differences in demographic
characteristics, modified Hoehn–Yahr stage, and duration of
disease between the two groups.

Feature Extraction and Radiomics
Signature Building
A total of 274 texture features were extracted from each
ROI. The interobserver ICCs ranged from 0.745 to 0.901,
and the intraobserver ICCs ranged from 0.776 to 0.924,
suggesting favorable reproducibility of feature extraction.
Figure 2 shows the dimensionality reduction after LASSO
regression. Figures 2A,C shows the trace plots of the texture
feature coefficients fit by LASSO. As shown, more coefficients
of diagnostic-unrelated features were set to zero with increasing
value of the penalty term lambda, which left fewer optimal
features with non-zero coefficients in the equation. Figures 2B,D
shows the determination of the penalty term lambda based on
10-fold cross-validation. To determine the minimization criteria
of binomial deviance, we picked the optimized lambda at the left
dotted vertical lines: a lambda value of 0.037 with log (lambda)
= −3.310 and a lambda value of 0.052 with log (lambda) =

−2.963 were selected for the CN and PU radiomics signatures,
respectively. After the dimensionality reduction, there were 12
and seven optimal features with non-zero coefficients remaining
in the CN and PU radiomics signatures, respectively (Table 2).
All optimal features were derived from image histogram,
run-length matrix, and co-occurrence matrix texture features
(Table 2). Finally, two neostriatum radiomics signatures were
built on the basis of LASSO-logistic regression analysis; the
optimal features, coefficients, and intercept are shown in Table 2.

Texture Feature Analysis
Vertl_GlevNonU_R, a second-order run-length matrix texture
feature, appeared simultaneously in both the CN and PU
signatures as an optimal feature (Table 2, marked with an
asterisk), which means this feature has high diagnostic value in
both CN and PU. The t-test analysis revealed significantly higher
levels of texture values for both the CN and PU in the PD patients
than in the healthy controls (P < 0.05) (Figure 3).
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TABLE 1 | Comparison of demographic and clinical characteristics between patients with PD and healthy controls in the training and test groups.

Characteristics Training group Test group HC-Training vs.

HC-Test

P value

PD-Training vs.

PD-Test

P-value
HC

(n = 48)

PD

(n = 48)

P-value HC

(n = 21)

PD

(n = 21)

P-value

Age (years, mean ± SD) 70.48 ± 5.43 72.91 ± 9.89 0.124a 69.19 ± 5.94 71.38 ± 9.54 0.377a 0.381a 0.544a

Gender (male/female) 25/23 27/21 0.838b 10/11 13/8 0.535b 0.937b 0.863b

Duration of disease# (years,

mean ± SD)

4.75 ± 2.92 3.71 ± 2.19 0.111a

Modified H&Y stage

(median, IQR

or mean ± SD)

2.5 (2.0, 3.0) 2.52 ± 0.97 0.711c

HC, healthy controls; HC-Training, healthy controls in the training group; HC-Test, healthy controls in the test group; PD, patients with Parkinson’s disease; PD-Training, Parkinson’s

disease patients in the training group; PD-Test, Parkinson’s disease patients in the test group; SD, standard deviation; Modified H&Y stage, modified Hoehn–Yahr stage; IQR, interquartile

range. #Themean disease duration of PD patients, defined as the time betweenwhen a patient subjectively noticed his or her first symptoms and themoment of assessment. aTwo-sample

Student’s t-test; bChi-square test; cMann–Whitney U-test.

FIGURE 2 | Dimensionality reduction with LASSO regression. (A,C) The coefficients of texture features, represented by each colored line, were plotted vs. log

(lambda) in the caudate nucleus (CN) and putamen (PU) radiomics signatures, respectively. (B,D) The binomial deviances were plotted vs. log (lambda) in the CN and

PU radiomics signatures, respectively. Using 10-fold cross-validation, the red points indicate average values of deviance for each lambda, and the left and right dotted

vertical lines correspond to lambda in the minimum criteria and the one standard error of the minimum criteria, respectively.
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TABLE 2 | Optimal features after the dimensionality reduction.

Optimal features Coefficient/Intercept

CN radiomics signature −15.160413946

Histogram Perc.50%_R −0.027683304

Run-length matrix Vertl_GlevNonU_R* 0.112951984

Vertl_GlevNonU_L 0.019889353

45dgr_RLNonUni_L 0.001556838

135dr_RLNonUni_R 0.005421572

Co-occurrence matrix S (1,0)Correlat_L 8.118174099

S (1,0)Correlat_R 9.221141623

S (0,1)SumVarnc_R 0.001540649

S (1,1)Contrast_R −2.039856941

S (1,−1)Contrast_L −0.142200691

S (4,−4)InvDfMom_L 0.750813907

S (5,5)InvDfMom_R 0.462795637

PU radiomics signature 2.705271e+ 00

Histogram Kurtosis_L 4.774812e− 01

Perc.01%_R −3.950184e− 02

Run-length matrix Vertl_GlevNonU_R* 1.979927e− 02

45dgr_RLNonUni_L 4.756729e− 06

Co-occurrence matrix S (2,-2)Contrast_L −1.047061e− 02

S (5,0)InvDfMom_L −4.534430e+ 00

S (0,5)Contrast_R −5.781975e− 03

CN, caudate nucleus; PU, putamen.

*Appeared simultaneously in two neostriatum radiomics signatures.

Diagnostic Performance of Two
Neostriatum Radiomics Signatures
Figure 4A presents the performance of the CN radiomics
signature for distinguishing PD from healthy controls in the two
groups. In the training group, the AUC, sensitivity, and specificity
were 0.9410 (95% confidence interval [CI]: 0.8986–0.9833), 81.25,
and 95.83%, respectively. In the test group, the AUC, sensitivity,
and specificity were 0.7732 (95% CI: 0.6292–0.9173), 95.24, and
61.90%, respectively. The Hosmer–Lemeshow test showed an
acceptable goodness-of-fit of CN radiomics signature in the
training and test groups (P = 0.404, 0.591, respectively).

Figure 4B shows the performance of the PU radiomics
signature for distinguishing PD from healthy controls in the
two groups. In the training group, the AUC, sensitivity, and
specificity were 0.8767 (95% CI: 0.8066–0.9469), 91.67, and
75.00%, respectively. In the test group, the AUC, sensitivity,
and specificity were 0.7143 (95% CI: 0.5540–0.8746), 76.19,
and 66.67%, respectively. The Hosmer–Lemeshow test showed
an acceptable goodness-of-fit of PU radiomics signature in the
training and test groups (P = 0.285, 0.508, respectively).

DISCUSSION

Using T2W images with feature extraction and a high-
throughput radiomics approach, we showed for the first time
that conventional MRI-based radiomics signatures with good
diagnostic performance for PD could be built. Our results

FIGURE 3 | Box plots of optimal feature that appeared simultaneously in two

radiomics signatures.

indicated that neostriatum radiomic features had good potential
as diagnostic markers for PD. In addition, we also evaluated the
differences in co-occurring optimal feature values between PD
patients and healthy controls.

PD is characterized by nigrostriatal degeneration. Although
the pathogenesis of PD has not yet been clearly elucidated,
iron deposition in the neostriatum has been demonstrated in
earlier studies (5, 6). Being paramagnetic, iron can influence
T2 relaxation times and, therefore, T2 signals (36–38), which
can cause local signal non-uniformity. Moreover, decreases in
the T2 signals in the neostriatum have been found in an earlier
study (39). Although diagnosis of PD on conventional MRI by
measuring the striatum T2 signal is non-specific (40), the local
signal non-uniformity might cause changes in the neostriatum
textural patterns of T2W images. In addition, pathological and
DTI studies have demonstrated the presence of Lewy body
deposits and microstructural deficits in the neostriatum of PD
patients (4, 7, 8, 41). All of these microstructural changes might
be characterized by alteration of textural patterns of T2W images
(28) and captured by radiomics approach.

In the current study, according to the calculation method,
optimal features (Table 2) can be classified into three major
categories: the histogram, co-occurrence matrix, and run-length
matrix features (42). Further, these major category features were
subclassified into two, four, and two minor categories in the
histogram, co-occurrencematrix, and run-lengthmatrix features,
respectively. As a first-order texture, the histogram only describes
the gray-level distribution in the ROI without considering the
neighboring pixels as follows: (1) Kurtosis reflects the shape of
a histogram and is used to measure the asymmetry of the ROI
(43); (2) The Perc indicates the highest gray-level containing a
given percentage of pixels in the image (42). The co-occurrence
matrix is based on an estimation of the second-order joint
conditional probability density functions [p(x,y)]. Each p(x,y) is
the probability of a pair of gray values, x and y, in a specified
displacement of an image (44). (1) Contrast describes the local
variation presented in an image; (2) Correlation describes the
image complexity; (3) SumVarnc measures the spread in the sum
of the gray-levels of the pixel-pair distribution; (4) InvDfMom
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FIGURE 4 | (A) Receiver operating characteristic (ROC) curves of the caudate nucleus (CN) radiomics signature for distinguishing between Parkinson’s disease (PD)

patients and healthy controls in the training (red) and test (blue) groups. (B) ROC curves of the putamen (PU) radiomics signature for distinguishing between PD

patients and healthy controls in the training (red) and test (blue) groups.

describes the local degree of homogeneity (45). The gray-level
run-length matrix is based on computing the number of same
gray-level runs of various lengths in a given direction (in
general, the vertical, horizontal, and two-diagonal directions)
(44). Both texture features, GlevNonU and RLNonUni, are
derived from the run-length feature matrix. Therefore, the
GlevNonU and RLNonUni features are a measure of a given
direction’s homogeneity of the pixel gray-level distribution of
the underlying tissue, with higher values representing more
inhomogeneity within the gray-levels of the run-length matrix
(46). We found that the feature Vertl_GlevNonU_R co-occurred
in two signatures, as one of the optimal features, and their feature
values in both the CN and PU were significantly higher in the
PD patients than in the healthy controls. Thus, combined with
the pathological basis, we hypothesized that the significantly
higher value of Vertl_GlevNonU_R might be related to the more
heterogeneous texture patterns caused by iron deposition in the
neostriatum in patients with PD.

Radiomics has been successfully applied to neurodegenerative
disease studies. In a recent radiomics study by Feng et al. (23),
T1W images from 78 patients with AD and 44 healthy controls
were used for radiomics analysis. The corpus callosum was
segmented manually, and texture features were obtained after
extraction from each subject. After LASSO dimensionality
reduction, a diagnostic model containing 11 features was
established, which achieved an AUC of 0.72 for diagnosing
AD. In another AD study, a support vector machine model
demonstrated that hippocampal radiomics features could
distinguish AD from healthy controls, with an AUC of 0.93
(22). Similar to these previous studies, we also used a general
radiomics approach to extract features and build models of brain
regions that had undergone microstructural changes that were

not yet visible on conventional MRI. Previous studies above and
our results suggested that radiomics could be used as biomarkers
for neurodegenerative diseases on conventional MRI. Sikio et al.
(28) applied texture analysis to PD for the first time and proved
that the texture features of PD patients were changed in multiple
brain regions (including the neostriatum), and stated that texture
analysis could detect microstructural changes in T2W brain MRI
images. However, they only extracted a few co-occurrence matrix
features without further mining and modeling. In the current
study, we extracted multiple categories of texture features and
employed LASSO method to build radiomics signatures for
diagnosis. As a popular machine-learning algorithm, LASSO is
widely used as a high-dimensional data analysis tool in radiomics
research because it is designed to avoid overfitting, so it can
analyze large sets of texture features with a relatively small
sample size (32). To our knowledge, no reported radiomics study
has described the establishment of a PD diagnostic model for
conventional MRI. This is the first radiomics study to diagnose
PD by using conventional MRI.

Our study had several limitations. First, we built CN and PU
radiomics signatures, respectively, rather than as a combined
radiomics signature because of an insufficient sample size (the
number of observations did not match the number of variables
in the matrix, which meant that LASSO regression could not
be performed in the “glmnet” package). Second, the sample
size was insufficient to perfectly train the radiomics signature,
leading to some degree of overfitting, which can be reflected in
the AUC loss between the training group, and the test group.
Therefore, further studies with greater sample size of training
data set are necessary to reduce the degree of overfitting and
improve the generalization performance. Third, the manual
image selection and ROI determination was labor-intensive
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and time-consuming in the current study, which hinders the
large sample size research progress and clinical application
of radiomics. As the training sample size increases in future
research, it is crucial to develop automatic or semi-automatic
image selection and ROI determination algorithms to improve
the research feasibility and to reduce inter-operator variability.
Forth, along with age growth, a series of physiological changes
in the brain also affect the texture features (47). Although there
was no statistically significant difference in age ratios between
the two groups, we did not achieve a complete 1:1 match, so
the effects of this incomplete match on the research results
cannot be completely excluded. Lastly, this was a retrospective
study in which all subjects were recruited from a single hospital.
In the future, a large-sample multi-center study is needed
to evaluate the generalization performance and potential for
clinical translation of our radiomics signatures. Moreover, the
usefulness of neostriatum radiomic features as imaging markers
for PD progression and response to treatment remains to be
further investigated.

In conclusion, neostriatum radiomics signatures based on
T2W images in this study achieved good diagnostic performance
for PD and potentially could serve as a basis for the clinical
diagnosis of PD. Moreover, our preliminary results showed the
potential of neostriatum radiomic features as imaging markers
for PD.
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