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Protein-protein interactions (PPIs) are pivotal for cellular
functions and biological processes. In the past years, computa-
tional methods using amino acid sequences and gene ontology
(GO) annotations of proteins for prioritizing PPIs have pro-
vided important references for biological experiments in the
wet lab. Despite the current success, sequence information
and ontological annotation in semantic representation have
not been integrated into current methods. We propose a
deep-learning-based PPI prediction methodology conjointly
featuring sequence information and GO annotation. First, we
adopt a word-embedding tool, the NCBI-blueBERT model
pre-trained on PubMed, tomap the GO terms into their seman-
tic vectors. Then, the GO semantic vectors and protein
sequence vector serve as the input of the proposed inception
recurrent neural network (RNN) attention network (IRAN).
The IRAN captures the spatial relationship and the potential
sequential feature of the protein sequence and ontological
annotation semantics. The extensive experimental results on
12 benchmarks demonstrate that our method achieves superi-
ority over state-of-the-art baselines. In the yeast dataset of a bi-
nary PPI prediction, our method improved the performance
with the Matthews correlation coefficient increasing from
94.2% to 98.2% and the accuracy from 97.1% to 98.2%. The
analogous results were also obtained in other comparison eval-
uations.

INTRODUCTION
Protein-protein interactions (PPIs) drive numerous molecular pro-
cesses and cellular activities, such as differentiation and cell-cell
communication. The identification and characterization of PPIs are
considered essential to understand the mechanisms of biological pro-
cesses. Toward this end, various high- or low-throughput techniques
have been used. In this manner, numerous direct PPIs have been elab-
orated, yielding the well-known databases, including the Database of
Interacting Proteins (DIP),1 IntAct molecular interaction database
(IntAct),2 and Molecular INTeraction database (MINT).3 However,
due to the vast combinatorial space of protein interactions, wet exper-
iment-based identification has only limited coverage at a relatively
high and time-consuming cost. Fortunately, these collected PPIs
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have formed ever-increasing and constantly updated datasets that
cover various species, thereby promoting the emergence of the predic-
tive computational models of PPIs. Guided by an inexpensive identi-
fication of PPI candidates through computational screening, the
costs and failure rates of experimental methods can be reduced
significantly.

Two primary issues have been addressed in the computational
methods of PPI prediction: the feature representation of proteins
and classification algorithm over the feature space. Protein domains,
protein structure information, gene neighborhood, gene fusion, co-
evolution of proteins, and phylogenetic profiles have been attempted
as the PPI descriptors.4 Nevertheless, these pieces of information are
not always available, and such unavailability restricts their applica-
tion. Sequence-based approaches have become an active research
area due to the explosive growth of sequence data. Various predefined
features can be extracted from protein sequences, such as autocovar-
iance (AC),5 auto-cross covariance (ACC),5 composition-transition-
distribution (CTD) descriptors,6 local protein sequence descriptors
(LDs),7 or other numerical features. Although various descriptors
have been retrieved to represent the latent facets of PPIs, the coverage
of these descriptors is still limited, and many research efforts have
been made to overcome this restriction by using some complex
learning strategies, such as the hybrid of descriptors, ensemble of clas-
sifiers,8,9 or even the ensemble of distinct deep neural networks.10

Conversely, to avoid the hand-crafted feature engineering, deep
learning methods have been successfully applied in the PPI predic-
tions based on raw protein sequences and other prediction tasks.
Different neural network architectures have been attempted, leading
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Table 1. Summary of the Benchmark Datasets

Dataset Species
No. of
Proteins

Size (Positive/
Negative)

SC full Saccharomyces cerevisiae 4,424 17,257/48,594

SC
balanced

Saccharomyces cerevisiae 4,424 17,257/17,257

Yeast yeast 2,497 5,594/5,594

MM Mus musculus 1,088 500/500

AT Arabidopsis thaliana 756 541/541

SP
Schizosaccharomyces
pombe

904 742/742

DM Drosophila melanogaster 658 321/321

EC Escherichia coli 589 1,167/1,167
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to a series of raw sequence-based deep learning PPI predictors: Deep-
PPI11 and DNNPPI12 seek to retrieve the latent feature from the deep
neural networks (DNNs); Pei and colleagues13 have investigated a
stacked autoencoder (SAE) for PPI prediction; DPPI14 and Wang
et al.’s15 study both use the convolution neural networks (CNNs),
capturing the spatial features of the input sequence; DeepSequen-
cePPI16 introduced recurrent neural networks (RNNs) for the first
time by considering the ordering information of protein sequences;
and PIPR17 proposed in 2019 developed a Siamese residual network
incorporating a residual RNN and CNN to leverage both the local
spatial features and contextualized information of protein sequences.
It is notable that these models achieve promising predicting perfor-
mances despite relying only on the amino acid sequence, demon-
strating the powerful feature representation and learning capacity
of deep learning.

Gene ontology (GO) annotation is another characterizationmethod for
proteins. The GO is a hierarchical vocabulary for annotating gene or
gene product functions and their relationships with respect to molecu-
lar function (MF), cellular component (CC), and biological process
(BP).18,19 It is known that proteins interact with each other in protein
complexes or functional modules, and a protein complex refers to a
group of interacting proteins at the same cellular location, whereas
functional modules consist of proteins that commonly participate in
a particular cellular process or molecular function at a different time
and place. These two protein interactions are both closely related to
the annotation of GO. Therefore, GO annotation is considered as
one of the most important indicators to characterize PPIs, and several
studies have inferred the interaction possibility by evaluating the se-
mantic similarity of GO annotations to proteins. Conventionally, the
semantic similarity is quantified by the number of sharing GO terms
annotating to the compared proteins.20 This scheme provides a simple
but rough estimation to the semantic similarity of GO annotation. To
overcome the limitation, several studies have focused on the semantic
retrieval from GO-directed acyclic graphs (DAGs), such as go2ppi21

and PPI-MetaGo,16 which represent the protein’s GO annotation ac-
cording to the hierarchical structure of the GO DAG. Meanwhile,
development of the language representation techniques has
significantly inspired biomedical fields tomine the semantics of entities
from numerous available textual resources or self-defined corpora.
Word embedding (WE), especially word2vec22 proposed in 2013, has
achieved great success and yielded a series of biomedical semantic sim-
ilarity measures, including Onto2Vec23 and OPA2Vec.24 However,
because word2vec is not sensitive to context, it cannot distinguish
the different semantics of polysemous words. To overcome the draw-
back, contextualized representation models, including ELMO25 and
more recently Google’s BERT,26 have been proposed since 2018.
They are designed using whole sentences as the context, thereby result-
ing in better polysemy and nuance handling. In addition, by applying
the transfer learning technique, two BERT versions, NCBI-blueBERT27

and clinic-BERT,28 have been trained on a textual database, such as
PubMed abstracts (https://www.ncbi.nlm.nih.gov/pubmed/), for spe-
cific domain tasks.

In this study, we approached the problem of PPI prediction by the
combination of protein sequence and GO annotation, and propose
a DNN to encode both the sequential and spatial features of protein
primary sequences and the embedding vector of GO annotation
(GOSeqPPI for short). Unlike the other NLP-based methods, which
utilize the word2vec23 model to embed the GO annotation to a set
of vectors, we used a pre-trained BERT to project the ontology anno-
tation to a high-dimensional vector space. Compared with word2vec,
BERT is contextual word-embedding (CWE), which means that
BERT can encode each word in an ontology term dependent on the
context. Moreover, BERT does not need to maintain a large vocabu-
lary, thereby avoiding the out-of-vocabulary words problem. Further-
more, the BERT model was more capable of understanding the true
semantic meaning of the text by presenting the state-of-the-art results
of various NLP tasks, including question answering and natural
language inference. In the present study, we conducted four experi-
ments to evaluate the performance of the proposed method. First,
we verified the effectiveness of the joint feature representation in
PPI prediction and further evaluated our model on various binary
PPI prediction tasks utilizing various datasets. Then, an evaluation
on two PPI network prediction tasks was executed to access the gener-
alization ability. Finally, a challenging multiclass classification on PPI
type was examined on both GOSeqPPI and the state-of-the-art
methods.

RESULTS
Datasets

The following three types of binary PPI datasets were utilized in this
study: the Saccharomyces cerevisiae (SC) full dataset with large but
imbalanced samples, two datasets with balanced large samples
including the yeast dataset and the pruned SC full dataset, and five da-
tasets with small samples. These datasets cover various species and
follow different sample distributions and thus can adequately validate
the performance of GOSeqPPI and the baseline methods. Their sizes
and descriptions are summarized in Table 1. To keep an unbiased and
consistent test, in the comparison experiment with PPI-MetaGo and
go2ppi, we utilized the same GO and GO annotation datasets as
theirs. In other evaluations, the GO and GO annotation data were
Molecular Therapy: Nucleic Acids Vol. 22 December 2020 199
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Table 2. Results on the Balanced SC Dataset

Methods Prec Accu Sen Spec F-Score MCC AUC

DeepPPI 0.9493 0.9254 0.9005 0.9508 – 0.8520 0.9754

EnsDNN 0.9545 0.9529 0.9512 0.9548 0.9529 0.9059 0.97

SeqPPI 0.938 0.926 0.912 0.939 0.925 0.851 0.978

GOSeqPPI 0.961 0.956 0.949 0.962 0.955 0.912 0.988
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from QuickGO at https://www.ebi.ac.uk/QuickGO/. GO release
version 2019-11-27 and GO annotation 2019-11-25 were used.

The Evaluation of Joint Feature Representation

To access the conjoint feature representation capacity, especially the
impact of semantic feature of GO annotation on the entire protein, we
constructed an only-sequence-feature-based PPI (SeqPPI) predictor
for comparison with GOSeqPPI as well as two other baseline models,
DeepPPI andEnsDNN,on thebalanced SCdatasets. The SeqPPIpredic-
tor shares the same network architecture with the sequence block of
GOSeqPPI. This means that SeqPPI can be considered as a sequence-
feature classifier separated from the GOSeqPPI model; therefore, the
comparison between SeqPPI and GOSeqPPI can indicate the effect of
GOannotation on the predictionperformance. Similar to SeqPPI,Deep-
PPI designed a DNN to learn the representations of proteins only from
protein descriptors. Another sequence-basedDNNpredictor, EnsDNN,
enhances the classification capacity by integrating 27 DNNs to leverage
complementary information about several descriptors of protein se-
quences. To keep the consistence with the baseline predictors, we con-
structed a 4-fold cross-validation (CV) utilizing the aforementioned
five balanced SC datasets on which DeepPPI and EnsDNN had previ-
ously been trained and tested. The average results are listed in Table 2.

It can be observed that the performances of SeqPPI and DeepPPI were
similar in terms of almost all measures. This might be due to the fact
that both of them use the raw protein sequence as a feature and a
DNN for feature representation and classification. In addition, the
tested dataset is balanced and of large size, which is sufficient to train
the models efficiently, resulting in a close learning ability. In contrast,
EnsDNN had a better performance than SeqPPI or DeepPPI. The su-
periority could be attributable to the ensemble strategy of numerous
different DNNs and the inclusion of the handcraft features from
sequence. Although GOSeqPPI only develops one DNN, it performs
best in terms of the precision (Prec), accuracy (Accu), specificity
(Spec), Matthews correlation coefficient (MCC), and area under
receiver operating characteristic curve (AUC) relative to the other pre-
dictors. According to the comparisonwith SeqPPI, Accu increased with
3%, Prec 2.4%, Sen 3.7%, Spec 2.3%, F-score 3%, MCC 6.3%, and AUC
0.9%, suggesting that inclusion of the GO annotation semantic feature
significantly improves prediction performance.

Binary PPI Prediction

In this experiment, the imbalanced SC full dataset, the balanced yeast
dataset, and the multiple series small-scale datasets were utilized to
assess the robustness of GOSeqPPI. We conducted a 10-fold CV to
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obtain the prediction results and selected earlier trained and tested
models on these datasets as baseline approaches, including PPI-
MetaGo, go2ppi-RF, DPPI, DeepSequencePPI, and PIPR. DeepSe-
quencePPI is also a sequence-based method with a deep learner con-
sisting of gated recurrent units (GRU), thus adapting itself in the con-
dition of large samples. Aside from the sequence-based deep learners,
such as DeepPPI, DPPI, or EnsDNN, we also selected PPI-MetaGo
and go2ppi-RF for comparison. go2ppi-RF is a classic GO-driven
PPI predictor relying on merely GO annotation, whereas PPI-
MetaGo combines sequence-based and GO-based features with an
ensemble stacked generalization.

Table 3 illustrates the details of the seven metrics on these datasets. As
shown in Table 3, the GOSeqPPI provided the best results on the SC
full, Escherichia coli (EC), Arabidopsis thaliana (AT), Schizosacchar-
omyces pombe (SP), andMus musculus (MM) datasets in terms of all
of the metrics, and the least Accu improvement was reached with
2.2% on the EC dataset, 9.4% on the AT dataset, 3.1% on the SP data-
set, 2% on the Drosophila melanogaster (DM) dataset, and 3% on the
SC full dataset. On the DM dataset, the Accu, Sen, F-score, MCC, and
AUC were significantly higher than those in GOSeqPPI or PPI-
MetaGo, whereas the Prec and Spec were slightly lower than in
PPI-MetaGo, indicating that GOSeqPPI performs better than PPI-
MetaGo in the identification of the interacted protein pairs, but some-
what worse in the non-interacted protein pairs, probably because the
DM dataset has only 642 protein pairs, which cannot engage the
training of the deep network in GOSeqPPI. Meanwhile, the notable
superiority to PPI-MetaGo and DeepSequencePPI in the distinct
cases suggests the effectiveness of GO semantic embedding based
on BERT and the temporal-spatial feature representation by the
inception RNN.

On the yeast dataset, GOSeqPPI also exhibited better prediction per-
formance over PIPR and DPPI, both of which are sequence driven
and deep learning based. PIPR incorporates a well-designed deep re-
sidual recurrent convolutional neural network in the Siamese archi-
tecture, and, to our best knowledge, PIPR is the state-of-the-art
method in the binary PPI prediction and provides the best prediction
results on the yeast dataset. The GOSeqPPI outperformed PIPR with
Accu from 97.1% to 98.2%, Sen from 97.2% to 99.8% (almost all of the
positive samples were correctly classified), F-score from 97.1% to
98.3%, and MCC from 94.2% to 98.2%, but it was slightly inferior
to PIPR in terms of Prec (from 97% to 96.8%) and Spec (from
97.0% to 96.8%). The comparison results demonstrate that GOSeqPPI
has better identification ability on the interacted protein pairs and
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Table 3. Comparison Results of Proposed Models and Baselines

Dataset Methods Prec Accu Sen Spec F-Score MCC AUC

SC PPI-MetaGo 0.934 0.924 0.912 0.936 0.923 0.848 0.972

Full DeepSequencePPI 0.942 0.932 0.920 0.922 0.931 0.864 0.978

GOSeqPPI 0.902 0.960 0.950 0.963 0.925 0.899 0.989

Yeast DPPI 0.967 0.946 0.922 – 0.944 – –

PIPR 0.970 0.971 0.972 0.970 0.971 0.942 –

GOSeqPPI 0.968 0.982 0.998 0.968 0.983 0.982 0.996

EC PPI-MetaGo 0.922 0.902 0.879 0.925 0.900 0.805 0.950

go2ppi-RF 0.937 0.905 0.869 0.941 0.902 0.813 0.951

GOSeqPPI 0.953 0.925 0.895 0.954 0.921 0.854 0.975

AT PPI-MetaGo 0.830 0.808 0.778 0.837 0.801 0.619 0.866

go2ppi-RF 0.875 0.789 0.684 0.895 0.764 0.596 0.810

GOSeqPPI 0.901 0.884 0.864 0.903 0.881 0.769 0.934

SP PPI-MetaGo 0.935 0.929 0.922 0.935 0.928 0.858 0.965

go2ppi-RF 0.901 0.885 0.865 0.904 0.882 0.771 0.941

GOSeqPPI 0.955 0.958 0.961 0.955 0.957 0.916 0.981

DM PPI-MetaGo 0.885 0.869 0.857 0.882 0.867 0.744 0.916

go2ppi-RF 0.853 0.843 0.832 0.854 0.841 0.688 0.889

GOSeqPPI 0.881 0.887 0.906 0.870 0.886 0.783 0.950

MM PPI-MetaGho 0.808 0.786 0.754 0.818 0.779 0.575 0.860

go2ppi-RF 0.836 0.738 0.604 0.812 0.695 0.500 0.762

GOSeqPPI 0.905 0.868 0.822 0.912 0.855 0.744 0.933
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comparable negative classification ability to PIPR, and this might be
because of the joint use of the GO-annotation semantic features in
GOSeqPPI.

The PPI Network Prediction

The PPI network enables the understanding of how cell life works by
identifying protein complexes and their functions, as well as the protein
classification. PPI prediction plays a crucial role in the construction of a
PPI network. In this study, we applied GOSeqPPI in two kinds of PPI
network prediction, a one-core PPI network of CD9 and a crossover
network of theWnt-related network. A one-core PPI network contains
only a core protein and multiple attached proteins.

To evaluate the generalization of our method, we utilized two inde-
pendent datasets to train and test the GOSeqPPI, respectively; that
is, we trained GOSeqPPI based on the balanced SC dataset and
then applied the trained GOSeqPPI to infer the interaction pairs in
the CD9 and Wnt-related networks of humans. As the core of a
typical one-core network, CD9 is an important tetraspanin protein
and interacts with 16 associated proteins. The prediction results re-
vealed that all of the PPI pairs in this network were identified by
our method (Figure 1). In contrast, LightGBM-PPI hit 14 PPIs, and
Shen’s work32 hit 13 PPIs.

TheWnt-related pathway is indispensable in signal transduction, and
the predicted components of this pathway have been verified with the
yeast II hybrid experiments, comprising 96 interacting pairs. The pre-
diction results marked in the Wnt-related network are shown in Fig-
ure 2, where the blue and red lines indicate true and false prediction,
respectively. Among the 96 PPI pairs, only the protein pair of CER1-
WNT4 was missing in GOSeqPPI, which significantly outperforms
Zhou’s9, Shen’s,32 and Ding’s33 work alongside LightGBM with accu-
racies of 87/96, 73/96, 91/96, and 89/96), respectively.

Multi-class PPI Prediction

Aside from determining whether two proteins interact, another
meaningful task about PPI prediction is to examine the type of the
interaction between two proteins. Following the evaluation used in
the work of PIPR, we used the same experimental configurations
and the same datasets SHS27k and SHS148k by a 10-fold CV. To
fit the multiclass classification task, the binary output of the network
in GOSeqPPI was replaced with a multiple dimensional vector, which
indicates the sample probability belonging to each category. There are
seven interaction types in the datasets SHS27k and SHS148k: reac-
tion, binding, ptmod, activation, inhibition, catalysis, and expression.
The type distribution of the samples in the two datasets is shown in
Figures 3 and 4. More detailed information about the datasets can
be found in Table 4, where no. of PNA denotes the number of proteins
with no GO annotations (PNA), and no. of PPNA denotes the num-
ber of protein pairs involved at least one protein with no GO annota-
tions (PPNA). Note that 20 proteins in the SHS148k dataset did not
have any GO annotation, and they were involved in 655 protein pairs,
Molecular Therapy: Nucleic Acids Vol. 22 December 2020 201
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Figure 1. The Predicted CD9 PPI Network
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meaning that their GO annotation semantic feature cannot be repre-
sented. For these proteins, we filled their GO annotation semantic
matrices with randomly generated data following a Gaussian distribu-
tion N(0,1).

It can be observed for both SHS27k and SHS148k that the sample
distribution on the interaction type was nearly balanced except
the type “expression.” On this multiclass classification task where
few PPI predictors were attempted, PIPR outperformed all of the
baselines according to the CTD and AC descriptors and different
machine learning models, including support vector machine
(SVM), random forest, AdaBoost, k-nearest neighbor (KNN), and
logistic regression. Therefore, in this study, we compared GOSeqPPI
with the state-of-the-art PIPR in terms of accuracy and report our
results in Table 5. Among the baselines listed, rand means random
guessing, and zero rule refers to predicting the majority class. The
prediction accuracies of the tested models were much impaired in
comparison with the ones on the binary PPI prediction tasks. The
main reasons for this observation lie in the challenge of multiclass
classification. GOSeqPPI achieved the best accuracy on SHS27k da-
taset, and the accuracy promotion relative to PIPR was 2.6%,
whereas on the SHS148k dataset, GOSeqPPI slightly outperformed
PIPR. In addition, it can be observed that both performances of
PIPR and GOSeqPPI improved when the size of the dataset
increased, but the promotion rate of GOSeqPPI (1.3%) was lower
than that of PIPR (3.9%). The reason for this observation lies in
the inevitable deviation caused by the random semantic feature
adopted when dealing with the absence of GO annotation. This in-
fluence results in the decline of the prediction performance of our
model, but also indicates that the PPI prediction can benefit from
the inclusion of the semantic feature of GO annotation. Addition-
ally, although feature noise existed in both the training and testing
processes, GOSeqPPI still provided comparable multi-category pre-
diction to PIPR, again exhibiting the robustness of the whole
methodology.
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Protein Interactions and Disease

In this subsection, we explore the application of protein interactions
as a translational approach to the study of human diseases. PPIs are
also involved in the mechanisms leading to healthy or diseased states
in organisms due to the central role of such interactions in biological
processes. Diseases are often caused by mutations affecting the bind-
ing interfaces of, or leading to, biochemically dysfunctional allosteric
changes in proteins.29,30 Therefore, candidate proteins that presum-
ably cause a certain disease can be in turn inferred by the known
related proteins. Based on this judgment, we constructed a human
protein-disease dataset along with 8,127 protein pairs, which were
selected from the manually curated dataset of InnateDB (https://
www.innatedb.com) by removing the protein pairs involving a pro-
tein or two proteins without any related disease. Then, the GOseqPPI
model was trained and tested on this PPI dataset, where the training
dataset contained 7,552 samples and the testing dataset had 575 sam-
ples. Note that there are 4,352 positive and 3,775 negative PPI sam-
ples, and this distribution can be considered approximately balanced.

According to the PPI testing results, we marked the protein pairs in
which the proteins had at least one common related disease. To
analyze the relationship between PPI and their common diseases,
we prioritized protein pairs in accordance with their PPI values and
counted the number of protein pairs with common diseases (PPCDs)
distributed in 14 zones, including the zone of protein pairs with the
top 5, 10, 20, 50, 100, 200, and 250 predicted PPI values (marked
by top x for short), and the zone of protein pairs with the bottom
5, 10, 20, 50, 100, 200, and 250 predicted PPI values (marked by bot-
tom x for short). As reported in Table 6, in the first seven zones(top 5
to top 250), with decreasing predicted PPI values, the ratio of PPCDs
decreased accordingly, and this trend was relatively stable. However,
in the last seven zones (bottom 250 to bottom 5), the ratio of PPCDs
decreased sharply. This difference is presumably because of the vari-
ation among the predicted PPI values of these zones. Although the
dividing strategy remained the same in the top and bottom zones,
the predicted PPI values in the top zones were closely distributed
and were all larger than 0.8955, whereas the ones in the bottom
zone had a significant difference (dropped from 0.6332 to
8.494e�5). Our analyses showed that the Pearson coefficient of the
PPI values and the ratio of PPCDs was 0.9799 with a p value of
8.95e�10, demonstrating that there was strong relatedness between
PPI and the ratio of PPCDs, and the PPI prediction could in turn
be utilized to infer the candidate of related proteins of a given disease.
For example, the proteins that interact with the related proteins of the
disease will be recommended as the candidates, and the recommen-
dation confidence can be prioritized in accordance with their PPI
values with these known related proteins.

DISCUSSION
To date, numerous machine learning-based computational methods
have been proposed to address PPI prediction tasks. However, there
is still room to improve the prediction performance, especially the
robustness, generalization, and precision. Meanwhile, a vast number
of wet experiments collect and verify increasingly more protein
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Figure 2. The Predicted Wnt-Related Pathway PPI Network
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interactions, providing more high-quality and large-scale datasets for
machine learning methods to optimize and adjust their models. In
particular, a series of deep learning-based PPI methods have emerged
and become gradually prominent due to their powerful representa-
tion and learning capacities from non-handcrafted raw information.
It is notable that although feature engineering is not required in deep
learning, feature selection for protein characterization is still crucial.
In this study, we put forward GOSeqPPI, a deep-learning-based PPI
prediction methodology with the conjoint feature of protein sequence
and GO annotation semantic embedding. GO annotations and pro-
tein sequence share rather limited common information and are of
low correlation, which enlarges the coverage of feature space and
helps identify PPIs more efficiently. Instead of the GO annotation
embedding based on GO DAG, we used the semantic encoding of
Figure 3. The Sample Distribution in Each Category on the SHS27k Dataset
GO annotation from NCBI-blueBERT pretrained by the corpus,
including the PubMed database and clinic notes. The contextual
sensitivity and focusing on the biomedical corpus enabled NCBI-
blueBERT to capture more accurate semantic features for protein
GO annotation. The proposed network incorporates an inception
block and a binary directional GRU (Bi-GRU) block, capturing the
potential sequential and spatial relationship in protein sequences as
well as the semantic vectors of GO annotation. Subsequently, the
global pooling-attention layer compresses the feature space and pro-
vides a compact global feature for each protein. The whole framework
integrates the information originating from two different perspec-
tives, protein physical sequence and human knowledge description,
and projects them into an abstract feature space and reconstructs
the proteins in this space by a nonlinear mapping trained by the pro-
posed neural network.

Extensive evaluations on both the large-scale and small-scale as well as
balanced and imbalanced datasets have been made, and the experi-
mental results demonstrate that ourmethod retains remarkable superi-
ority over the baselines on the binary PPI classification, the multi-cate-
gories PPI type classification task, and PPI network prediction.Notably,
although on even the small-size datasets, such as the DMwith only 642
protein pairs, GOSeqPPI outperforms the baselines, and more samples
will still be more conducive to the performance amelioration resulting
from more training. In addition, the hybrid feature that integrates the
information originating from both the physical and human knowledge
spaces, in particular, the raw sequence and GO annotation semantic to
characterizeproteins, canbe applied toportrayotherbiomedical entities
or concepts, such as compounds and genes. Moreover, the proposed
Molecular Therapy: Nucleic Acids Vol. 22 December 2020 203
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Figure 4. The Sample Distribution on Each Category on the SHS148k

Dataset
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inception RNN attention network can also be used in other biological
downstream classification or regression tasks31.

MATERIALS AND METHODS
In this section we present a GO-aided PPI predictionmethod. Figure 5
provides an overview of the entire framework, which consists of the
following five layers: input layer, pre-encoding layer, feature repre-
sentation layer, classification layer, and output layer. Protein
sequence and GO annotations for each protein are at the bottom of
this framework, and then the protein sequence is encoded by 0-1
one-hot encoding, while GO annotations are embedded by the
BERT model. Both types of pre-encoded features are re-encoded by
the inception RNN attention network (IRAN) deep network, result-
ing in a concatenated feature vector with the structural, functional,
and cellular location information about each protein. A full-linked
block works on the top of feature representation and makes a classi-
fication for PPI or PPI type, or performs a regression task, such as af-
finity prediction.

Input Representation

In our proposed framework, the raw amino acid sequence and GO
annotation serve as the input of the entire framework, where the pro-
tein sequence is encoded by one-hot coding, and thus the sequence can
be converted into a one-hot coding matrix S= ½s1; s2;.;sL�, where L is
the length of the raw amino acid sequence. For the GO annotation
composed of GO terms, several types of information can be candidates
to represent GO terms, namely, term name, description, and term ID.
In this study, term names were used to represent GO annotations due
to their dense information compared with description or term ID.
Meanwhile, the conciseness of term names facilitates the feasible se-
Table 4. Summary of Datasets SHS27k and SHS148k

Dataset
No. of
proteins

No. of
Protein
Pairs

No. of Proteins
without GO
Annotations

No. of Protein Pairs
Involving One or Two
Proteins without GO
Annotations

SHS27k 1690 26944 0 0

SHS148k 5189 148050 20 655
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mantic embedding in the following pre-encoding layer. Let a protein
P be annotated by GO terms g1; g;.; gM , where M is the number of
terms annotating this protein, then the GO annotations for any protein
can be viewed as a set of GO terms A= fg1; g2;.;gMg. A GO term g is
in the set A if and only if g is used to annotate P. Furthermore, since a
term name generally consists of several words, gi is described by a word
sequence and denoted by ½w1;w2;.;wN �, where N is the number of
words involved in a term name.

The Pre-encoding of GO Annotation Based on BERT

To capture the semantic information from the GO annotation for each
protein, we adopted a pre-trained BERT model to map each GO term
into a high-dimension feature vector. In contrast to the state-of-the-art
GO representation methods based on word2vec, we exploited the
NCBI-blueBERT model specifically trained for the biomedical domain
as the semantic embedding approach. BERT is a word-based natural
language-processing model that was trained on the following two un-
supervised prediction tasks: (1) the masked language model (MLM)
task (15% of the words weremasked), and (2) the next sentence predic-
tion task. Specifically, given a term name gi including N words, the
BERT model first uses word piece tokenization, which means one
word may break into several pieces. The aim of tokenization is to
achieve a balance between vocabulary size and out-of-vocabulary
words. Additionally, two special tokens, start [CLS] and end tokens
[SEP], are added for each sentence. Finally, the term name gi is repre-
sented by an ordering set of tokens gi = fc1; c2;.; cNg . The input Ei
provides the representation of each token ci by summing the corre-
sponding token, segment, and position embeddings. Further detailed
information can be found in Devlin et al.26 Through the word embed-
ding, each term name is converted into a two-dimension vector Ti = ½v1;
v2;.;vni�, where vi denotes the vector converted from the i-th token (a
word or a word piece) and ni is the number of tokens after tokenization.
Then, all of the terms annotating a protein form a semantic feature ma-
trix T = ½T1;T2;.;TM � with a width of 768, which is fixed by the
BERT model. Furthermore, to keep the same size for all proteins, the
complementary data obtained by filling zeros are exploited to obtain
the input of the same size. Here, we selected 256 or 512, according to
the specific task, as the height of the semantic feature matrix. Then
the final semantic feature matrix is T 0 = ½T1; T2;.; TM ; ½00.0�.;

½00.0��.

The Inception RNN Attention Network

In this study, we developed an IRAN to capture both the temporal and
spatial properties of the heterogeneous presentation of proteins, and
this network consists of three blocks, an inception-CNN block, a Bi-
GRU block, and a global-pooling-attention layer. The whole architec-
ture is described in Figure 6. The inception-CNN block is an ensemble
of CNN that combines different sizes of convolution kernel and then
concatenates the spatial features together. For the temporal feature
extraction, we constructed a GRU-based block to learn the sequential
feature of the protein sequence and GO term vector. Finally, an atten-
tion layer was linked on top of both the inception and GRU blocks,
enabling the neural network to automatically pay attention to a
certain part of the given features. On top of the attention layer, the



Table 5. Percentage Accuracy for PPI Interaction Type Prediction

Methods Rand Zero Rule PIPR GOSeqPPI

SHS27k 14.28 16.70 59.56 61.16

SHS148k 14.28 16.21 61.91 61.99
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model is completed with one fully connected (FC) layer to accomplish
the classification.

The Inception-CNN Branch

CNN applies multiple convolution kernels to capture local features
from a sliding window; nevertheless, deep CNN suffers from vanish-
ing and exploding gradients and is prone to overfitting. To overcome
these shortcomings, we used an inception network to leverage the
spatial characterizations of input vectors. The inception block con-
sists of the following convolution operations in a “shallow” mode:
(1) a 1D convolution kernel with size.; (2) a 1D convolution kernel
is stacked after a 1D convolution kernel; (3) a 1D convolution kernel
following a 1D convolution kernel; and (4) a 1D convolution kernel.
These different convolution kernel sizes ensure that both the “sparse”
and “non-sparse” features, thereby increasing the width of the
network and the adaptability of the network to scale. By stacking
two 1 convolution kernels before the 3 convolution and 5 convolution
kernels, the network parameters are reduced significantly. The archi-
tecture of the inception network is shown in Figure 6.

If the pre-coded input (either the protein one-hot matrix S0 or the se-
mantic embedding matrix T 0 of the GO annotation) is uniformly de-
noted by X, then through the inception-CNN unit, four middle-layer
feature representations can be calculated by the Equations 1–4 as fol-
Table 6. Accuracy for PPI Interaction Type Prediction

PPI zone
Predicted
PPI Values

No. of Protein
Pairs with
Common
Diseases

Ratio of Protein
Pairs with
Common
Diseases (%)

Top 5 0.9986–0.9995 5 100

Top 10 0.9977–0.9995 9 90

Top 20 0.9969–0.9995 18 90

Top 50 0.9937–0.9995 45 90

Top 100 0.9849–0.9995 92 92

Top 200 0.9432–0.9995 170 85

Top 250 0.8955–0.9995 211 84.4

Bottom 250 8.494e�5 to 0.6332 103 41.2

Bottom 200 8.494e�5 to 0.2279 71 35.5

Bottom 100 8.494e�5 to 0.0142 28 28

Bottom 50 8.494e�5 to 0.0046 13 26

Bottom 20 8.494e�5 to 0.0014 3 15

Bottom 10 8.494e�5 to 0.0005 1 10

Bottom 5 8.494e�5 to 0.0002 0 0
lows, where the hidden states hk1, h
k
3, and hk5 correspond to the output

of the convolution operations 1–4, and w and b represent the weight
and bias, respectively:

hk1 = relu
�
w1 � x + bk1

�
(1)

hk5 = relu
�
w3 �

�
relu

�
w1 � x + bk1

��
+ bk3

�
(2)

hk5 = relu
�
w5 �

�
relu

�
w1 � x + bk1

��
+ bk5

�
(3)

hk3 = relu
�
w3 � x + bk3

�
: (4)

Bidirectional GRU Branch

As a variant of long short-term memory (LSTM), the GRU recur-
rently encodes the input data according to their ordering relationship
and retains important features through updateuk and reset gates rk to
ensure that they will not be lost during long-term propagation. For
the k-th embedding vector vk, GRU computes the hidden statehk
along with the previous statehk according to Equations 5–8:

rk = sðWrvk + Urhk�1 + brÞ (5)

uk = sðWuvk + Uuhk�1 + buÞ (6)

~h k = tanhðWcvk + Uðrk 1 hk�1 ÞÞ (7)

hk = ð1� ukÞ1hk�1 + uk1~h k; (8)

where Wr , Wu, Wu and Ur , Uu, U denote the weight matrices that
would be learned in the training of the GRU; br and bu are biases
for the reset gate and the update gate, respectively; s represents the
sigmoid function; and 1denotes element-wise production. In the
GRU network, the state transmission is unidirectional from the front
to the back. Bi-GRU is composed of two GRUs superimposed
together to capture the influence on the current hidden state hk
from both the forward and backward directions. If the forward
GRU encodes the sequence v1;.; vl and the hidden state at k-th po-
sition is denoted as h

(
k while the backward GRU encodes the

sequence vl;.; v1 and the output is h
.

k, then the resultant output
of the Bi-GRU k-th position is the concatenation ½h(k;h

.
k�.
Multi-level Feature Representation

For each protein, the inception CNN and Bi-GRU branches execute a
series of operations over the GO-embedding and protein sequence-
encoding matrices, respectively, and then each branch generates
four different local feature representations. After the inception of
CNN and Bi-GRU blocks, and considering that different global pool-
ing strategies tend to perceive different features from the inception
CNN or Bi-GRU blocks, we utilized a global max pooling, global
average pooling, and the attention mechanism to produce global
feature representational vectors fmaxp; favep, and fatt , respectively, and
then concatenated these three features into an entire global feature
F = ½fmaxp; favep; fatt �.
Molecular Therapy: Nucleic Acids Vol. 22 December 2020 205
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Figure 5. The Framework of the GOSeqPPI
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Attention Mechanism

Given an input X, the attention mechanism can guide the network to
focus on the important features. Pertinent to the problem at hand,
attention mechanism can help us identify relevant regions on protein
sequence and GO term for the input. Assume that the output of incep-
tion CNN or Bi-GRU layer is X, and two linear transformations of X,
Query Q and Key K, which are defined by

Q = WT
QX; K=WT

kX
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where WQ;WK are the weight matrices for these two linear transfor-
mations, respectively. Then the attention matrix A is computed as
follows:

AðQ;KÞ = softmax

�
QKTffiffiffiffiffi
dk

p
�

where dk is the dimension of the K and the softmax is a function. For
every position in the inception CNN and Bi-GRU output, the
Figure 6. The Architecture of the Proposed

Inception RNN Attention Network



Table 7. The Architecture and Parameters in the Proposed IRAN

Input Layer GO Input (768, N) Protein Sequence Input (20, L)

Feature inception CNN:

Bi-GRU (64)

inception CNN

Bi-GRU (64)

Extraction layer (1) Conv1D(32,1) (1) Conv1D(32,1)

(2) Conv1D(32,3) (2) Conv1D(32,3)

(3) Conv1D(32,1) stacked by Conv1D(32,3) (3) Conv1D(32,1) stacked by Conv1D(32,3)

(4) Conv1D(32,1) stacked by Conv1D(32,5) (4) Conv1D(32,1) stacked by Conv1D(32,5)

Fully connected layer

(1) FC(1024) stacked by dropout(0.1)
(2) FC(1024) stacked by dropout(0.1)
(3) FC(512) stacked by dropout(0.1)
(4) FC(1)
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attention matrix A synthesizes the influence of all other locations on
that position. The final output Z of the attention layer based on the
attention matrix A is Z=A� V, where V is a value matrix, which
defined as V=WT

VX using the associated weight matrix WV .

Global Max/Average Pooling

The GMP takes the output of inception CNN or Bi-GRU as input and
computes the maximum of all of the values for each of the input chan-
nels. The GAP takes the output of inception CNN or Bi-GRU as input
and computes the mean of all of the values for each of the input
channels.

Classification Module

The PPI or PPI type prediction is performed by four fully connected
feed-forward neural networks, which comprise 1,024, 1,024, 512, and
1 neural nodes at each fully connected layer. Given a training set q =
{(x1, y1), ..., (xN, yN)} of N protein pairs with true interaction or type
label, the parameters of our neural network were optimized by cross
entropy on the training samples, which is defined as the equa-

tionLðqÞ= � 1
N

PN
i= 1

PC
j= 1y

j
ilogðojiÞ, where C is the number of cate-

gories, which depends on the specific task (for binary PPI prediction,

C is 2, and for PPI type prediction, C is 7), and oji is the j-th network
output when the i-th protein pair is provided as the input of the
network. Finally, the weights of our DNN are updated by the Ranger
optimizer, which combines the advantages of two new optimizer de-
velopments, RAdam and Lookahead.

The parameters in our neural network are listed in Table 7, where the
convolutional layer parameters are denoted as ‘'conv1D(no. of chan-
nels, kernel size).” Parameters of the Bi-GRU are denoted as ‘'Bi-GRU
(no. of units).” The FC is an abbreviation for fully connected layer.
“FC(m)” means fully connected layer with m as the hidden units,
and dropout(p) means the dropout layer with rate of p.

The Evaluation Method

To validate the effectiveness of the proposed GOSeqPPI, we present
three experimental tests on the PPI prediction task from different
evaluation perspectives, the evaluation on the influence of joint
feature representation; the performance comparison on the datasets
with balanced or unbalanced and large or small samples; and the
PPI network prediction. To ensure an unbiased evaluation on the
GOSeqPPI, we trained and tested GOSeqPPI on the same datasets
and validation strategies as the baseline approaches selected for com-
parison. The following seven typical metrics were selected to evaluate
the model prediction performance: Prec, Accu, Sen (also called the
true positive rate [TPR]), Spec, F-score, MCC, and AUC. In addition,
we applied GOSeqPPI in the analysis of protein interactions and dis-
ease to provide a latent application to predict the protein-related dis-
eases according to PPI values.
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