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Understanding the human brain and its functions has always been an interesting and

challenging problem. Recently, a significant progress on this problem has been achieved

on the aspect of chimera state where a coexistence of synchronized and unsynchronized

states can be sustained in identical oscillators. This counterintuitive phenomenon is

closely related to the unihemispheric sleep in some marine mammals and birds and

has recently gotten a hot attention in neural systems, except the previous studies in

non-neural systems such as phase oscillators. This review will briefly summarize the main

results of chimera state in neuronal systems and pay special attention to the network of

cerebral cortex, aiming to accelerate the study of chimera state in brain networks. Some

outlooks are also discussed.

Keywords: synchronization, chimera state, order parameter, neuronal system, cerebral cortex

PACS numbers: 89.75.Hc, 05.45.Xt, 68.18.Jk

1. INTRODUCTION

Network physiology is a new field initiated by Ivanov et al. in 2012, aiming to reveal the relationship
between network topology and physiologic function (Bashan et al., 2012; Ivanov and Bartsch, 2014;
Bartsch et al., 2015; Ivanov et al., 2016). Generally, a physiological network is consist of different
physiologic organ systems, such as the dynamical network of six physiologic systems with nodes
being brain activity (EEG waves: δ, θ ,α, σ ,β), cardiac (HR), respiratory (Resp), chin muscle tone,
leg, and eye movements. In contrast to a static complex network, the topology (i.e., number and
strength of network links) of physiological network usually vary with time, resulting in different
physiologic states such as different sleep stages [deep, light, rapid eye movement (REM) sleep, and
quite wake]. That is, each physiological state of physiological network corresponds to a specific
network structure. The transition from one physiologic state to another is associated with fast
reorganization of physiological interactions. Network physiology can be successfully applied to
explain phase synchronization between organ systems (Chen et al., 2006; Xu et al., 2006; Ivanov
et al., 2009; Bartsch et al., 2012; Bartsch and Ivanov, 2014). A typical system of network physiology
is the brain network, which is the focus of this review.

One of the most challenging and long standing problems is the understanding of the powerful
brain functions such as data processing, function approximation, and pattern recognition etc.,
which has been considered as a black box for a long time. To solve this problem, it is necessary
to figure out the brain network first. So far, it is well known that the human cerebral cortex is a
huge network, consisting of 1011 neurons and 1014 links. Thus, it is almost impossible to figure
out the structure of this huge network. Fortunately, owing to the modern physical detections
such as electroencephalogram (EEG), magnetic resonance imaging (MRI), magnetoencephalogram
(MEG), and diffusion tensor imaging (DTI) etc., we can now conveniently obtain a coarse-grained
brain network with a finite size of hundreds to thousands nodes. It has been found that the obtained
brain network is of a modular structure with a complex connectivity (Hilgetag and Kaiser, 2004),
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which provides a base for the inherent parallel nature of brain
computations (Meunier et al., 2010; Zamora-Lopez et al., 2010).
The quantification of complexity in brain networks can be also
measured by the multifractality and other factors (Liu et al.,
2015; Lin et al., 2016; Xue and Bogdan, 2017; Racz et al., 2018;
Gupta et al., 2019; Yang et al., 2019). A larger or more precise
brain network can be obtained by reconstructing the connectivity
under partial observability assumptions, which is common to
many real world settings or experiments (Gupta et al., 2018; Xue
and Bogdan, 2019).

By the physical detections, it is revealed that synchronization
of neuronal ensembles in the network of cerebral cortex is the
base of various neurobiological processes. For example, the alpha
synchronization is task-related and is also associated to top-
down processing (Benedek et al., 2011). Further, it is pointed out
that synchronization and desynchronization of neural activity
are closely related to both the normal functions of brain and
its disorders, such as epileptic seizures and Parkinson’s disease
etc. (Rothkegel and Lehnertz, 2014). For instance, during an
epileptic seizure, some regions of brain are strongly synchronized
but the others are desynchronized (Ayala et al., 1973). While in
Parkinson’s disease, synchronized activity is absent in the brain
regimes of damaged neurons (Levy et al., 2000).

Moreover, it was found that the synchronized and
desynchronized behaviors are usually co-existed in the time
series of brains. For example, the EEG data showed that during
sleep of dolphin, its two brain hemispheres have independently
synchronized and desynchronized behaviors at the same time
(Mukhametov et al., 1977), i.e., one hemisphere is in sleep
and another remains awake. This phenomenon is called as
unihemispheric slow-wave sleep and has been also found in other
aquatic animals and migrated birds (Rattenborg et al., 2000).
On the other hand, the similar phenomenon was reported in
the context of neuroscience, called bump state, where the firing
rate is higher at some spatial locations but a constant at other
spatial positions (Laing and Chow, 2001). This bump state takes
an important role for feature selectivity in models of the visual
system (Somers et al., 1995), the head direction system (Zhang,
1996), and working memory (Camperi and Wang, 1998).

To understand themechanisms of these coexisted behaviors in
brains, numerous efforts have been paid to the synchronization of
coupled oscillators. One of its recent progresses is chimera state,
which is closely related to the phenomenon of unihemispheric
sleep. Chimera state represents the coexistence of coherent and
incoherent dynamics. It is surprising that this behavior occurs in
symmetrically coupled identical oscillators. This counterintuitive
phenomenon was first discovered in 2002 (Kuramoto and
Battogtokh, 2002) and then named in 2004 (Abrams and Strogatz,
2004). Since then, chimera state has become a hot topic and
different kinds of chimera states have been revealed in different
systems such as the chaotic dynamical systems (Omelchenko
et al., 2012), time-delayed system Sethia et al. (2008), and
systems with regular topology (Ko and Ermentrout, 2008; Yao
et al., 2013; Tian et al., 2017) etc. Initially, chimera states were
shown to emerge in systems of nonlocal coupling. Recently, it
has been extended to the system of globally coupled oscillators
(Chandrasekar et al., 2014), and even in complex networks

(Zhu et al., 2014). Further, to explain the alternating activity
patterns between the hemispheres over time (Mukhametov
et al., 1977), Ma et al. considered the effect of time-delay in
two coupled populations and found that the synchronous and
desynchronous behavior do alternate between the two groups
over time (Ma et al., 2010). At the same time, chimera states
have also been implemented in several experiments such as on
chemical oscillators (Tinsley et al., 2012), mechanical oscillators
(Martens et al., 2013), electronic oscillators (Larger et al., 2013),
electrochemical oscillators (Wickramasinghe and Kiss, 2013;
Schmidt et al., 2014), and optoelectronic oscillators (Larger et al.,
2015). See reviews Panaggio and Abrams (2015) and Majhi et al.
(2019) for details.

In sum, chimera states are mainly studied on phase
oscillators. As chimera state may represent the mechanism of
unihemispheric sleep where the neurons in the sleepy hemisphere
are synchronized and the neurons in the awake hemisphere are
desynchronized, it is necessary to pay more attention on the
chimera state in neural systems. Fortunately, some interesting
results have already been obtained in this line, which involve
most typical neural models. For examples, chimera states have
been studied in leaky integrate-and-fire neurons (Olmi et al.,
2010), Morris-Lecar neurons (Calim et al., 2018), FitzHugh-
Nagumo neurons (Omelchenko et al., 2013, 2015), Hindmarsh-
Rose neurons (Hizanidis et al., 2014, 2016), and Hodgkin-Huxley
neurons (Sakaguchi, 2006; Glaze et al., 2016). To accelerate
the study of chimera state in brain networks, it is necessary
to systematically summarize the measures of chimera state and
its recent progress in empirical brain systems, which has not
been paid enough attention in the previous reviews (Panaggio
and Abrams, 2015; Majhi et al., 2019). Thus, we here briefly
summarize the main results of chimera state in neuronal systems
and pay a special attention to the network of cerebral cortex.

2. THREE MEASURES OF CHIMERA STATE

To characterize the chimera state, three statistical measures have
been proposed so far, by using the time series of network. The
first measure is the order parameter by

ρ(t)ei8(t) =
1

N

N
∑

j=1

eiθj(t), (1)

where ρ represents the phase coherence of oscillators, 8(t) is the
average phase of all oscillators, θj(t) is the phase variable of the
j-th oscillator. The system is a complete synchronization when
ρ = 1 and a complete desynchronization when ρ = 0. This
measure can be conveniently used to the system consisting of
two groups. It is a chimera state when one group has an order
parameter ρ ≈ 1 and the other ρ ≈ 0.

A key element of this measure is to calculate the phase variable
θi(t). However, there is not such an explicit variable in all the
neuronal models, in contrast to the Kuramoto phase oscillator.
Generally, there are two ways to solve this problem. The first
one can be used to a general nonlinear oscillator not necessarily
having a well-defined rotational center. Let ui and vi represent
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two variables of the i-th neuron, respectively. The phase θi(t) can
be calculated as (Osipov et al., 2003; Liu et al., 2009)

θi(t) = arctan(
v̇i

u̇i
), (2)

where v̇i and u̇i denote the derivatives of ui and vi, respectively.
The second one is to calculate the phase θi(t) by

θi(t) = arctan(
vi

ui
), (3)

provided that ui and vi move around the origin. An alternative
way of Equation (3) is to calculate its instantaneous angular
frequency (Pereira et al., 2007) by

θ̇i =
v̇iui − u̇ivi

u2i + v2i
. (4)

Then, the phase θi can be integrated from Equation (4).
The second measure is based on the first one but only for

the networks having more than two communities (Shanahan,
2010). Consider a network withm communities. We let ρi(t)(i =
1, . . . ,m) represent the order parameter for each community i at
time t. A chimera state means that the values of ρi(t) for different
communities are not the same. Based on this feature, two indices
are introduced to measure the chimera state, i.e., the index of the
metastability λ and the chimera-like index χ . For the former, we
first calculate ρi(t) for T points, i.e., t ∈ {1 · · ·T}. Then, their
variance can be obtained as

σmet(i) =
1

T

T
∑

t=1

(ρi(t)− 〈ρi(t)〉T)2. (5)

σmet(i) gives the fluctuation of synchronization in the
community-i, i.e., the metastability. The index of the
metastability for the entire network is

λ = 〈σmet(i)〉m. (6)

Similarly, an instantaneous variance over all the m communities
can be introduced as (Shanahan, 2010)

σchi(t) =
1

m

m
∑

i=1

(ρi(t)− 〈ρi(t)〉m)2. (7)

Then, the chimera-like index χ is

χ = 〈σchi〉T . (8)

Thus, the chimera-like χ and metastability λ indices quantify
the degree of synchronization along time and among
communities, respectively.

The third measure is for a general network with or without
clear communities (Kemeth et al., 2016). Its idea is based on
the local curvature for the spatial coherence, represented by the

FIGURE 1 | (A) Snapshot of a chimera state. (B) Distribution of |Df | from the

data set of (A). Reprinted with permission from Kemeth et al. (2016).

second derivative in the case of one spatial dimension. In this case
of one dimension, the local curvature D can be calculated as

Df ≡ f (x+ 1x, t)− 2f (x, t)+ f (x− 1x, t), (9)

where f represents the spatial data on a snapshot at time t.
Figure 1 shows its schematic figure where (Figure 1A) is a typical
snapshot of chimera state and (Figure 1B) is the mapped D, with
Dm being the maximal value of |Df |.Dm represents the curvature
of the oscillator with its two neighbors being shifted 180o in
phase (Kemeth et al., 2016). From Equation (9) we see that |Df |
equals to zero in the synchronous regime and finite values with
pronounced fluctuations in the desynchronized regime.

From Figure 1B, we see that |Df | is distributed between 0
and Dm. Letting g be the normalized probability density of |Df |,
g(|Df | = 0) is the fraction of spatially synchronous regimes.
Thus, g(|Df | = 0) is unity for a complete synchronized state,
zero for a complete desynchronized state, and a value between
zero and unity for a chimera state. As numerical simulations
have fluctuation, it was suggested that those points with |Df | <

0.01Dm should be considered as synchronized, and otherwise
desynchronized (Kemeth et al., 2016). That is, the fraction of
coherent regions can be calculated by

g0(t) =
∫ δ

0
g(t, |Df |)d|Df |, (10)

with δ = 0.01Dm. Therefore, we have g0 = 1 for a complete
coherent, g0 ≈ 0 for desynchronized, and 0 < g0 < 1 for
chimera states.

Except these three main measures, Gopal et al. introduced
another approach to characterize the chimera and multichimera
states (Gopal et al., 2014). Their approach is based on a
transformation from the framework of xi to a new framework
zi, i = 1, 2, · · · ,N, where zi = xi − xi+1. In their approach,
chimera states can be measured by two indices, i.e., the strength
of incoherence and discontinuity measure. Although these
measures are different each other, they are all robust in numerical
simulations and can be applied in different systems.
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3. CHIMERA STATE IN NEURONAL
SYSTEMS

Although chimera state is mainly studied in phase oscillators,
it has also been observed in other oscillators with amplitudes,
including the neuronal systems. We here make a brief review on
the results of chimera state in neuronal systems, mainly focusing
on the FitzHugh-Nagumo (FHN) neurons and Hindmarsh-Rose
(HR) neurons.

We first introduce the studies of chimera state in FHN
neurons. In this aspect, Omelchenko et al. considered the case of
FHN neurons by a stronger coupling and found a multi-chimera
state (Omelchenko et al., 2013). For the sake of simplicity, they
introduced a rotational coupling matrix and found that it is
possible for the system to show both chimera and multichimera
states. Their discussion is as follows. Consider N FHN neurons
coupled nonlocally on a ring

ǫ
duk

dt
= uk −

u3
k

3
− vk +

σ

2R

k+R
∑

j=k−R

[buu(uj − uk)

+buv(vj − vk)],

dvk

dt
= uk + ak +

σ

2R

k+R
∑

j=k−R

[bvu(uj − uk)

+bvv(vj − vk)], k = 1, 2, · · · ,N (11)

where uk and vk are the activator and inhibitor variables,
respectively. ǫ is taken as ǫ = 0.05. A neuron is excitable for
|a| > 1 and oscillatory otherwise (Omelchenko et al., 2013).
For simplicity, Omelchenko et al. (2013) considered the case of
identical neurons with ak ≡ a ∈ (−1, 1). In the framework of
Equation (11), the coupling strength σ is a constant within the R
nearest neighbors from both sides but zero otherwise, marking
the feature of nonlocal coupling. To observe chimera states in
neuronal systems, Omelchenko et al. introduced the rotational
coupling matrix (Omelchenko et al., 2013)

B =
(

buu buv
bvu bvv

)

=
(

cosφ sinφ

− sinφ cosφ

)

, (12)

where φ is a parameter of coupling phase, representing the
relative phase difference of interacting oscillators. This is a kind
of cross-coupling. The value of chosen φ determines the property
of coupling, i.e., attractive or repulsive.

For convenience, the parameter r = R/N is used to represent
the coupling radius. The system of Equation (11) has different
behaviors for different r and σ . For example, for fixed a = 0.5 and
φ = π/2−0.1, a chimera state can be observed for small coupling
strength σ and multichimeras state for larger σ . Figure 2 shows
the case of small σ where Figure 2A represents a snapshot of uk at
the moment of t = 5, 000. It is a typical chimera state consisting
of coherent and incoherent parts. Figure 2B shows a further
confirmation where the desynchronized part is distributed along
the limit cycle.

FIGURE 2 | (A) Snapshot of the variables uk for t = 5, 000, (B) snapshot in

the (uk , vk ) plane for t = 5, 000 (black lines denote the nullclines of the FHN

system), (C) mean phase velocities ωk , (D) local order parameter Zk .

Parameters: N = 1000, r = 0.35, σ = 0.1, a = 0.5,φ = π/2− 0.1. Reprinted

with permission from Omelchenko et al. (2013).

On the other hand, wemay also use the mean phase velocity of
oscillators to characterize the chimera state, which is defined as

ωk =
2πMk

1T
, k = 1, 2, · · · ,N (13)

where 1T is the considered time interval and Mk is the total
firing number of node-k in 1T. Figure 2C represents the results.
ωk is a constant for coherent part but lie on a continuous curve
for incoherent part. Moreover, we can also use the local order
parameter to represent chimera state, defined as

Zk = |
1

2δ

∑

|j−k|≤δ

eiθj |, k = 1, 2, · · · ,N (14)

where θj is defined by Equation (3). The k-th unit is in the
coherent part of the chimera state when Zk = 1 and incoherent
parts otherwise. Figure 2D shows the evolution of Zk by choosing
the window size δ = 25, where the yellow parts denote the
coherent regions.

For a larger coupling σ , we may observe a multichimera state
where the incoherent part is divided into several independent
domains, in contrast to the single incoherent domain in chimera
state. Figure 3 shows the phase diagram of chimera states on the
r − σ plane, where the red region represents the chimera state
with one incoherent domain, while the green and blue regions
represent the multichimera states with two or three incoherent
domains, respectively.

Further, Omelchenko et al. extended chimera state to the
case of nonidentical FHN units (Omelchenko et al., 2015). They
randomly choose the parameters ak from a normal (Gaussian)
distribution with mean value amean and variance δa, so that
the neurons have different frequencies. For fixed amean = 0.5,
chimera state changes with δa. Figure 4 represents a few typical
snapshots and corresponding ωk for chimera states with one,
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two, and three incoherent regions, as δa increases. It is clear that
these chimera states have some robustness to the nonidentity of
oscillators (Omelchenko et al., 2015).

Semenova et al. considered the case with noise (Semenova
et al., 2016), as it is unavoidable in real systems. They focus on
the question whether noise is beneficial for chimera states. In fact,
this consideration is related to the phenomenon of coherence
resonance (Hu et al., 1993; Pikovsky and Kurths, 1997; Liu and
Lai, 2001), where an optimal noise intensity can result in the
counterintuitive increase of temporal coherence. Semenova et al.
found that noise is essential for chimera behavior and call it
coherence-resonance chimera (Semenova et al., 2016). That is, an
optimal noise can even induce a spatial chimera state, rather than

FIGURE 3 | Phase diagram of chimera states on the r − σ plane where the

red, green, and blue regions represent the chimera states with one, two and

three incoherent domains, respectively. Other parameters as in Figure 2.

Insets show typical profiles of the mean phase velocities. Reprinted with

permission from Omelchenko et al. (2013).

purely temporal coherence. Their model is a slight modification
of Equation (11) and can be written as

ǫ
dui

dt
= ui −

u3i
3

− vi +
σ

2R

i+R
∑

j=i−R

[buu(uj − ui)

+buv(vj − vi)],

dvi

dt
= ui + ai +

σ

2R

i+R
∑

j=i−R

[bvu(uj − ui)

+bvv(vj − vi)]+
√
2Dξi(t), (15)

where ξi(t) represents the Gaussian white noise with 〈ξi(t)〉 = 0
and 〈ξi(t)ξj(t′)〉 = δijδ(t − t′), and D denotes the noise intensity.
The rotational coupling matrix and phase parameter are fixed as
the same as in Equation (11) except ai ≡ a = 1.001, indicating
that all neurons are excitable but close to the threshold.

The presence of noise may induce a spike for a single FHN
neuron in the excitable regime of |a| > 1. When the noise
intensity is too small, it is not enough to induce a spike in
the system of Equation (15). While a strong enough noise may
induce too many spikes and results in irregular behaviors. Thus,
there may exist an optimum intermediate noise to induce a
chimera state. To confirm this analysis, Figure 5 shows four
distinct regimes by ui and Zi from Equation (14). Figure 5A
shows the case of D = 0, with no spikes. Figure 5B shows
the case of intermediate noise with D = 0.0002. The values
of Zi show the characteristic feature of chimera state, i.e., the
coexistence of coherent and incoherent spiking. Thus, Semenova
et al. called it as coherence-resonance chimera (Semenova et al.,
2016). Figure 5C shows the case of strong noise withD = 0.0004,
where the coherence-resonance chimera is destroyed. Figure 5D
shows the case of much stronger noise with D = 0.1, where the
spiking is incoherent in both time and space.

FIGURE 4 | Snapshots of the variables uk and mean phase velocities ωk for inhomogeneous oscillators. (A–C) r = 0.35, σ = 0.1; (D–F) r = 0.33, σ = 0.28; (G–I)

r = 0.25, σ = 0.25; values of δa shown for each panel above the mean phase velocities plots. Other parameters as in Figure 2. Reprinted with permission from

Omelchenko et al. (2015).
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FIGURE 5 | Space-time plots of activator ui (left column) and local order

parameter Zi (right column) for different noise intensities. (A) D = 0: steady

state, (B) D = 0.0002: coherence resonance chimera, (C) D = 0.0004:

incoherent in space but periodic in time, (D) D = 0.1: incoherent in space and

time. Parameters: ǫ = 0.05, a = 1.001, σ = 0.4, r = 0.12. Reprinted with

permission from Semenova et al. (2016).

To see how the coupling parameters r and σ influence the
coherence resonance chimera, Figure 6 shows the phase diagram
by fixing the parameters ǫ, a,D,N. Region (a) represents a
homogeneous steady state, region (b) shows the state of spiking
patterns with temporal periodicity and spatial incoherence,
regions (c–e) represent the coherence-resonance chimeras with
one, two, and three incoherent domains, respectively. Therefore,
except the noise intensity D, the coherence-resonance chimeras
are also influenced by the two parameters r and σ .

Further, the values of Zi in Figure 5B show a periodic
switching between the coherent and incoherent regimes of
chimera state. This feature may be helpful for the understanding
of unihemispheric sleep, where the coherent and incoherent
behaviors are known to switch between the two hemispheres of
brain (Mukhametov et al., 1977). In fact, this kind of alternating
chimera behavior has been previously addressed in a phase model
by a sinusoidal signal (Ma et al., 2010), which can be also
considered as an external perturbation.

Tian et al. considered the case of time-delay and
electromagnetic induction in FHN neurons and found that either
the time delay or electromagnetic induction can induce chimera
states (Tian et al., 2018). By considering both the effect of time-
delay and electromagnetic induction, Equation (11) becomes

ǫu̇i = ui −
u3i
3

− vi +
σ

2R

j=i+R
∑

j=i−R

[uj(t − τ )− ui]

+kρ(ϕi)ui,

FIGURE 6 | Dynamic regimes in the (r, σ ) parameter plane: (a) steady state

(orange dotted), (b) incoherent in space and periodic in time (yellow plain), (c)

coherence-resonance (CR) chimera with one incoherent domain (blue

crosshatched), (d) CR chimera with two incoherent domains (green

crosshatched), (e) CR chimera with three incoherent domains (purple vertically

hatched). Other parameters: ǫ = 0.05, a = 1.001,D = 0.0002,N = 500.

Reprinted with permission from Semenova et al. (2016).

v̇i = ui + a,

ϕ̇i = k1ui − k2ϕi, (16)

where ϕ represents the magnetic flux and τ denotes the time-
delay. The term kρ(ϕi)ui is the induction current (Tian et al.,
2018). The nonlinear function ρ(ϕ) is taken as ρ(ϕ) = α + 3βϕ2

(Ma et al., 2017), where α and β are two parameters.
In numerical simulations, the parameters are fixed as N =

256, k1 = 0.1, k2 = 1.0,α = 0.1,β = 0.1, τ = 1.0, σ = 0.02 and
r = 0.35. Figure 7 shows the results where Figures 7A–D denote
the cases of k = 0.8, 1.2, 5.2, and 7.4, respectively. It is clear from
Figures 7A–D that with the increase of k, the multi-chimera state
gradually becomes a chimera state.

Now, we turn to the studies of chimera state in HR neurons.
Different from the FHN model of spiking neurons, HR model
may represent the bursting behavior of neurons.We here concern
about how this bursting behavior influences the chimera state.

Bera et al. studied a network of bursting HR neurons with
global coupling as follows (Bera et al., 2016)

ẋi = ax2i − x3i − yi − zi +
k

N − 1
(vs − xi)

N
∑

j=1

cijŴ(xj),

ẏi = (a+ α)x2i − yi,

żi = c(bxi − zi + e), i = 1, 2, . . . ,N (17)

where k is the coupling strength, x is themembrane potential, and
y and z are the transport of ions across themembrane through the
fast and slow channels, respectively. The HR neuron is excitatory
for xi(t) < vs, where vs = 2 is the reversal potential. (cij) is the
adjacent matrix with cij = 1 if i 6= j and cii = 0. The coupling
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FIGURE 7 | Chimera states for the situation of both time-delay and

electromagnetic induction with positive k and r = 0.35, τ = 1.0, and c = 0.02.

(A–D) Represent the cases of k = 0.8, 1.2, 5.2, and 7.4, respectively.

Reprinted with permission from Tian et al. (2018).

function Ŵ(x) is assumed to be the sigmoidal nonlinear function

Ŵ(x) =
1

1+ e−λ′(x−2s)
, (18)

where λ′ determines the slope of the function and 2s is the
synaptic threshold. These two parameters are taken as 2s =
−0.25 and λ′ = 10.

To characterize the chimera state, a new transformed variable
w1,i = xi − xi+1 is introduced (Bera et al., 2016). Figure 8 shows
the results for snapshots of the state variables xi and w1,i by black
and red color dotted points, respectively. Figure 8A shows the
case of a weak coupling k = 1.0. It is a disordered state. Figure 8B
shows the case of a middle coupling k = 1.2. It is a multichimera
state with two domains of disordered oscillators. The inset shows
a typical time series of xi (blue color line). Its behavior changes
between the square-wave and plateau bursting. Figure 8C shows
the case of a strong coupling k = 1.28. Its chimera state has
only one incoherent domain, in contrast to the two incoherent
domains in Figure 8B. Figure 8D shows the case of a stronger
coupling k = 1.3, where all the neurons become coherent.

Hizanidis et al. considered a modular network of HR neurons
(Hizanidis et al., 2016), which is from the C. elegans network and
consists of six communities. They let the neurons be connected
by two types of synapses: electrical and chemical. The former is
for the connections within each community and the latter for

FIGURE 8 | Snapshots of a system of globally coupled HR neurons for

different values of the synaptic coupling strength k in terms of the variables xi
(black color) and the transformed variables w1,i = xi − xi+1 (red color): (A)

incoherent state, k = 1.0; (B) chimera state (with two desynchronized groups),

k = 1.2; (C) chimera state (with single desynchronized group), k = 1.28; and

(D) coherent state, k = 1.3. The inset figures are the corresponding time series

(blue color). The number of oscillators is N = 301. Reprinted with permission

from Bera et al. (2016).

the connections across the communities. Their model can be
described as follows

ṗi = qi − ap3i + bp2i − ni + Iext

+ gel

N
∑

j=1

LijH(pj)− gch(pi − Vsyn)

N
∑

j=1

TijŴ(pj),

q̇i = c− dp2i − qi,

ṅi = r[s(pi − p0)− ni], i = 1, 2, . . . ,N (19)

where pi represents the membrane potential, qi and ni are
associated with the fast and slow currents, respectively. The
parameters are chosen as r = 0.005, a = 1, Vsyn = 2, b = 3,
d = 5, c = 1, s = 4, p0 = −1.6 and Iext = 3.25 so that each
neuron has the spiking-bursting behavior (Hizanidis et al., 2016).
L is the Laplacian matrix with Lij = Eij − δijki, where δij = 1
if i = j, and δij = 0 otherwise. E is the adjacency matrix with
Eij = 1 if there is an electrical synapse connecting the neurons i
and j, and Eij = 0 otherwise. gel is the strength of the electrical
coupling and its functionality is governed by the linear function
H(p) = p. The adjacency matrix T is Tij = 1 if there is a chemical
synapse between neurons i and j, and Tij = 0 otherwise. gch is the
strength of the chemical coupling and its functionality is defined
by the sigmoidal function Ŵ(p) from Equation (18).

To study the chimera state of Equation (19), Hizanidis
et al. (2016) used ρ to represent the order parameter of
Equation (1) where θ is calculated through Equation (4) by
p and q. Figures 9A–G show the phase diagrams of ρ on the
(gch, gel) parameter space for each of the six communities and
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FIGURE 9 | Phase diagram in the (gch, gel ) parameter spaces. The order parameter of each community ρ1,...,6 is shown in (A–F), and of the entire network in (G). The

metastability index λ is shown in (H) and the chimera-like index χ in (I). The marked points A (gch = 0.015, gel = 1.7), B (gch = 0.18, gel = 0.7), and C (gch = 0.015,

gel = 0.5) denote three different dynamical regimes and their dynamical behaviors are illustrated in Figure 10. Reprinted with permission from Hizanidis et al. (2016).

for the entire network, respectively. It is clear that ρ is not
homogeneously distributed in the (gch, gel) plane but with higher
ρ in some region and lower ρ in other regions. For example, the
red regions have ρ ≈ 1 and the yellow regions have 0 < ρ < 1.

The regions with 0 < ρ < 1 in Figures 9A–G may
represent the chimera states. To confirm it, the two measures of
metastability index λ of Equation (6) and chimera-like index χ

of Equation (8) are used. Figures 9H,I show the results on the
(gch, gel) parameter space. From Figure 9H we see that λ reaches
higher values in some regions, implying that the system often
changes between coherent and incoherent states. From Figure 9I

we see thatχ reaches its highest values in the two synchronization
“islands” of communities 3 and 6. For more detailed information
on chimera state, Hizanidis et al. chose 3 interest points on the
(gch, gel) phase diagram, marked by letters A, B, and C (Hizanidis
et al., 2016), where A has both low-valued λ and χ , B has λ ≫ χ ,
and C has χ ≫ λ, i.e., “chimera-like” state. Figure 10 shows the
dynamical behaviors of p for the three points. The snapshots
of the system state in the bottom confirm the corresponding
behaviors, where only the point C shows the feature of chimera
state, i.e., the coexistence of coherent and incoherent domains.

Moreover, Majhi et al. studied the chimera state in uncoupled
HR neurons induced by a multilayer network (Majhi et al., 2016),

where the neurons in the upper layer is unconnected but can
share information through the neurons in the lower layer. This
topology is related to the remote synchronization (Bergner et al.,
2012) and thus may help us to understand brain functions. Bera
et al. reported a new type of non-stationary chimera pattern in
coupled HR neurons (Bera et al., 2019), called spike chimera.

In summary, these studies show different ways to induce
chimera states, including both cross-coupling and single-variable
coupling. At the same time, these studies also show that chimera
states are available in different neuronal models, indicating the
robustness to neuronal models. The drawbacks or limitations
are that all the considered network structures are artificial but
not empirical brain networks. And the models are for individual
neurons but not the average behaviors of an ensemble of neurons,
which are the only available time series in experiments such as
EEG data.

4. CHIMERA STATES IN EMPIRICAL BRAIN
NETWORKS

Except the above extensive studies of chimera states in artificial
neural systems, recently, some attention has been paid to the
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FIGURE 10 | Dynamical behaviors of the three points A, B, and C in Figure 9. (A) The spatiotemporal evolution of pi (upper left), with a time series of the neuron with

index 100 of community 3 (upper right) and a snapshot of the system state (bottom) are shown for the point A of Figure 9. (B) The same plot for point B. (C) The

same plot for point C. A chimera-like state is illustrated here. Neurons are ordered according to their community. Reprinted with permission from Hizanidis et al. (2016).

networks of human cerebral cortexmeasured by DTI. The former
helps us to understand the mechanism of chimera state such
as how chimera state is induced and what is the condition for
chimera state to show up. While the latter highlights a way to
cure or control brain diseases such as schizophrenia, Alzheimer’s
disease and brain tumors. It is well-known that in the fields of
nonlinear science and complex network, brain functions can be
represented by their corresponding dynamical patterns, i.e., a
variety of patterns of partial synchronization. These patterns have
a close relationship with chimera states and can be considered
as a natural link between coherent and incoherent dynamics.
Thus, the studies of chimera states on empirical brain networks
is very helpful for exploring the mechanism of brain functions
such as cognition and memory. We here make a brief summary
for those results on the empirical brain networks, i.e., from the
brain networks with smaller size to the middle and then to the
larger ones.

Firstly, we introduce the study on an empirical brain network
with smaller size. In this case, Bansal et al. considered an
empirical brain network consisting of 76 brain regions (or

nodes) and paid attention to how brain structure influences
the dynamical patterns produced by stimulation (Bansal et al.,
2019). They divided this network into nine cognitive systems
by using personalized brain network models, named attention,
visual, cingulo-opercular, subcortical, medial default mode,
somatosensory and motor, frontoparietal, ventral temporal
association, and auditory systems. Each of the nine cognitive
systems is consist of the coactivated regions for supporting a
generalized class of cognitive functions. Then, they presented
a chimera-based, cognitively informed framework to study
how large-scale brain structure influences brain dynamics and
functions, called cognitive chimera states. In their study, the
dynamics of each node was modeled by the Wilson-Cowan
oscillators (Wilson and Cowan, 1972), a biologically motivated
neural mass model, represented as follows

τ
dEi

dt
= −Ei(t)+ (SEm − Ei(t))SE(c1Ei(t)−

c2Ii(t)+ c5
∑

j

AijEj(t − τ
ij

d
)+ Pi(t)),
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FIGURE 11 | Distribution of the contribution fractions from the nine cognitive systems after nodes stimulation where (A–C) represent the cases of final dynamical

states as coherent, chimera and metastable states, respectively. This distribution tells a relationship between the dynamical states and individual cognitive systems.

Reprinted with permission from Bansal et al. (2019).

τ
dIi

dt
= −Ii(t)+ (SIm − Ii(t))SI(c3Ei(t)−

c4Ii(t)+ c6
∑

j

AijIj(t − τ
ij

d
)), (20)

where

SE,I(x) =
1

1+ e−aE,I(x−θE,I)
−

1

1+ eaE,IθE,I
(21)

and Aij is the weighted coupling matrix. c5 and c6 represent the
excitatory and inhibitory coupling strength, respectively, with

c6 = c5/4. Pi(t) is the external stimulation. τ
ij

d
= dij/td is

the time-delay, where dij is the spatial distance between nodes i
and j and td = 10m/s is the signal transmission speed. Other
parameters are biologically taken as c1 = 16, c2 = 12, c3 =
15, c4 = 3, τ = 8, θI = 3.7, θE = 4, aI = 2, and aE = 1.3.

In numerical simulations, the dynamical behaviors of the
nine cognitive systems were investigated by stimulating a brain
region with Pi = 1.15 (Bansal et al., 2019). The stimulation
gradually spreads to other parts of the brain network by the
links of the stimulated node and form a dynamical state. By
this way, different dynamical states are observed when different
brain regions are stimulated. Then, Bansal et al. calculated a
cognitive system-based order parameter ρsi,sj from Equation
(1). This parameter ρsi,sj measures the degree of synchrony
among all oscillators within the two cognitive systems si and
sj. By this way, a cognitive system-based 9 × 9 matrix can be
obtained. Further, two cognitive systems si and sj are considered
as synchronized if ρsi,sj exceeds a threshold value ρTh =
0.8. The whole brain network is a coherent state when all
nine cognitive systems are synchronized, a cognitive chimera
state when some cognitive systems are synchronized while
the other systems are desynchronized, and a metastable state
when no stable synchrony between cognitive systems is formed
(Bansal et al., 2019).

Figure 11 shows the relative contribution of the nine cognitive
systems for the three states after nodes stimulation. We see

that the contributions to the three states are different from
one cognitive system to another, implying a close relationship
between cognitive systems and brain functions. Figure 11A

shows that coherent states are mainly from the nodes stimulation
within subcortical and medial default mode systems. Figure 11C
shows that the frontoparietal and cingulo-opercular systems
are the main contributions for metastable states, while the
ventral temporal association and auditory systems also contribute
substantially to metastable states. Figure 11B shows that all nine
systems produce chimera states, implying that chimera states
have higher possibility to be observed than either coherent
or metastable states (Bansal et al., 2019). Bansal et al. also
pointed that the regions of coherent states are distributed
more closely to the midline of the brain, and the regions
of metastable states are distributed farther from the midline,
i.e., along the edges of the hemispheres, while the regions of
chimera states are relatively uniformly distributed within the
brain space. The metastable states enable segregated neural
processing, while coherent states enable integrated neural
processing. As the brain system must integrate information
across spatially distributed, segregated regions to implement
cognitive tasks, a balance between integration and segregation
is required for adaptive cognition. This balance is automatically
satisfied in chimera states and thus enables segregation and
integration in brain dynamics, which guarantees the diverse
processing requirements.

Secondly, Chouzouris et al. considered a slightly larger
empirical brain network consisting of 90 nodes (Chouzouris
et al., 2018), motivated by studies of epileptic seizures. They
let the neurons be the FitzHugh-Nagumo oscillators. As this
empirical brain network has a topology of complex network,
Equation (11) has to be modified into

ǫ
duk

dt
= uk −

u3
k

3
− vk + σ

N
∑

j=1

Gkj[buu(uj − uk)

+buv(vj − vk)],
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FIGURE 12 | Temporal evolution of the global order parameter r shown in blue

for the network with empirical structural connectivity with a = 0.5 and N = 90.

The coupling strength σ is shown in red. (A) Chimera state: constant coupling

strength σ = 0.6. (B) Controlled dynamics: coupling strength σ = 0.6 is

increased to the value σ = 0.7 and kept fixed for the time interval

650 < t/2× 104 < 1, 350, followed by a decrease back to σ = 0.6; this

causes the transitions between the chimera state and frequency synchronized

states. Reprinted with permission from Chouzouris et al. (2018).

dvk

dt
= uk + a+ σ

N
∑

j=1

Gkj[bvu(uj − uk)

+bvv(vj − vk)], (22)

where ǫ = 0.05 and G is the adjacency matrix. The rotational
coupling matrix B = (buu) is taken as the same as in
Equation (12).

Chouzouris et al. found that when a is in the range a ∈
(0, 0.8), the network exhibits chimera states for small coupling
strength σ (Chouzouris et al., 2018). When the parameters are
taken as a = 0.5, σ = 0.2, and N = 90, the network shows
a stationary moving chimera. That is, the order parameter r
from Equation (1) has a strong fluctuation or changes in time.
Figure 12A shows such an example, where the parameters are
a = 0.5 and σ = 0.6. The average of order parameter is 〈r〉 ≈
0.5. Except the strong fluctuation, another feature is that the
highest value of r appears right before its drop. Both effects were
discovered in the synchronization of epileptic seizures (Jiruska
et al., 2013). Chouzouris et al. further pointed out that the high
coherence events can be controlled (Chouzouris et al., 2018).
Larger σ increases the probability for chimera states to occur.
Figure 12B shows the result that the variation of coupling results
in a switching between the chimera state and synchronization,
which controls the epileptic seizures.

This empirical brain network of 90 nodes was further
studied by Ramlow et al. (2019), where a dynamical asymmetry
between the hemispheres was addressed by considering natural
structural asymmetry.

Finally, we discuss the situation of empirical brain network
with larger size. This network is much larger than the above
two and is constructed by the data of Hagmann et al. (2008)

where the cerebral cortex was divided into 989 nodes and 17, 865
connections. For this network, Huo et al. first considered the
case of adaptive coupling (Huo et al., 2019), based on the fact
that in empirical brain network, both the coupling strength and
neural activities influence each other and thus change with time.
In Huo’s model, the coupling matrix is adaptively evolved with
the dynamics of neurons. They found that the adaptive coupling
finally reaches a self-organized state and induces chimera states.
This kind of self-organization may support the high flexibility of
brain functions. In details, they let the nodes be the FitzHugh-
Nagumo oscillators and the dynamics be represented as follows

ǫu̇i = ui −
u3i
3

− vi(t)

+
1

N

N
∑

j=1

λij[buu(uj − ui)+ buv(vj − vi)], (23)

v̇i = ui + a+
1

N

N
∑

j=1

λij[bvu(uj − ui)+ bvv(vj − vi)],

where ǫ = 0.05, a = 0.5, and the rotational coupling matrix B is
defined as in Equation (12). The adaptive coupling λij is set as

λ̇ij = −γ [sin(uj − ui + β)+ λij], (24)

where γ is a small constant. Equation (24) does not influence the
topology of network but only change the value of λij.

Huo et al. chose γ = 0.01 and found that it is possible for
chimera states to appear in this realistic network (Huo et al.,
2019). Figure 13 represents the resulted chimera state for β =
−0.5π + 1.2 and φ = −π + 4.45, where (Figure 13A) is the
initial matrix of λij, (Figure 13B) the stabilized matrix of λij,
(Figure 13C) the evolutionary pattern of ui(t), and (Figure 13D)
a snapshot of the fast variable ui(t). Comparing Figure 13A

with (Figure 13B), we see that the stabilized matrix λij in
(Figure 13B) is significantly different from the initial matrix λij
in (Figure 13A). This may help us to understand how the brain
network is self-organized into chimera states.

To reflect the dependence of chimera states on the parameters
φ and β , Huo et al. calculated the measure g0 of chimera state
by Equation (10). Figure 14 shows its phase diagram on the
parameter plane of φ and β . The stabilized behaviors consist of
disorder, coherent, and chimera states but the fraction of chimera
states is the largest one on the phase diagram.

Kang et al. further considered the empirical brain network
of 989 nodes as a two-layered network where the left and
right hemispheres of cerebral cortex are considered as different
layers, respectively (Kang et al., 2019). In their model, the
intra- and inter-coupling strengths are considered to be different.
Very interesting, they found that the model can reproduce the
phenomenon of unihemispheric sleep where one hemisphere
is completely synchronized while the other is completely
desynchronized. This finding provides an explanation for the
first-night effect in human sleep (Tamaki et al., 2016). Their model
for the first layer-A is represented as follows

ǫu̇ai = uai −
(uai )

3

3
− vai (25)
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FIGURE 13 | Chimera state on the realistic network of cerebral cortex with N = 989,φ = −π + 4.45 and β = −0.5π + 1.2. (A) Represents the initial matrix λij chosen

randomly from [−1, 1], (B) the stabilized matrix λij , (C) the evolutionary pattern of ui (t), and (D) the snapshot of the fast variable ui (t) at a specific time t. Reprinted with

permission from Huo et al. (2019).

FIGURE 14 | Phase diagram of g0 of chimera state in the parameter plane of

φ and β for the realistic network of cerebral cortex. Reprinted with permission

from Huo et al. (2019).

+
λin

kain,i

N
∑

j=1

Aij[duu(u
a
j − uai )+ duv(v

a
j − vai )]

+
λout

kaout,i

N
∑

j=1

(AB)ij[duu(u
b
j − uai )+ duv(v

b
j − vai )],

v̇ai = uai + a

+
λin

kain,i

N
∑

j=1

Aij[dvu(u
a
j − uai )+ dvv(v

a
j − vai )]

+
λout

kaout,i

N
∑

j=1

(AB)ij[dvu(u
b
j − uai )+ dvv(v

b
j − vai )],

where ǫ = 0.05 and a = 0.5. kaout,i and kain,i are the
inter- and intra-degrees of node i, respectively. (AB)ij
and Aij denote the inter- and intra-coupling matrices,

respectively. The other quantities are the same as in Equations
(11) and (12).

The similar dynamics equations can be written for the
network B.

Figure 15 shows the results for four typical cases where
ωi is calculated by Equation (13), the up and down panels
are for the network-A and network-B, respectively, and the
insets are their corresponding dynamics of ui. The panels of
Figure 15 represent four typical cases where (Figures 15A,E)
are for the case of disorder with λin = 0.1 and λout = 0.3;
(Figures 15B,F) for the case of chimera state with λin = 0.1
and λout = 1.8; (Figures 15C,G) for the case of disordered

network-A and synchronized network-B, with λin = 0.4
and λout = 3.5; and (Figures 15D,H) for the case of
synchronization with λin = 4.0 and λout = 3.5. These four

cases represent different states. The first case of Figures 15A,E
and the last case of Figures 15D,H denote the two extreme
states of desynchronized and synchronized states, respectively.
The second case of Figures 15B,F represents a chimera state
where there is a plateau of ωi in both the up and down
panels and their insets show a coexistence of synchronized and
unsynchronized ui(t). The most interesting is the third case
of Figures 15C,G where the network-A is disordered but the
network-B is synchronized, marking the unihemispheric sleep.
Kang et al. further showed that the parameter region for the
state of unihemispheric sleep is much smaller than that of
chimera state, implying that it is usually difficult to observe the
phenomenon of unihemispheric sleep. This is consistent with
the first-night effect (Tamaki et al., 2016), which can be observed
only in the first-night sleep when a person is located in an
unfamiliar place.

In sum, these studies showed the recent progress of chimera
states in empirical brain networks, but did not pay much
attention to the aspects of characteristic features of brain
networks, such as the heterogeneous communities and hub nodes
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FIGURE 15 | Four typical dynamical states in the two-layered network model of Equation (25) where the up panels represent the layer-A and down panels the layer-B.

The inset in each panel is a snapshot of ui at time t. (A,E) Represent the case of disorder with λin = 0.1 and λout = 0.3; (B,F) the case of chimera state with λin = 0.1

and λout = 1.8; (C,G) the case of unihemispheric sleep with λin = 0.4 and λout = 3.5; and (D,H) the case of synchronization with λin = 4.0 and λout = 3.5. Reprinted

with permission from Kang et al. (2019).

of rich-club, and deeper connection to concrete brain functions,
such as cognitive and memory etc.

5. DISCUSSIONS

Chimera state is in fact one of the three kinds of partial
synchronization. The other two of them are the cluster
synchronization and remote synchronization. Cluster
synchronization represents the case where the oscillators of
network are automatically evolved into different synchronized
clusters but the oscillators in different clusters are not
synchronized each other (Schaub et al., 2016; Cao et al., 2018).
The relationship between the synchronized cluster and network
symmetry is discussed recently (Pecora et al., 2014; Sorrentino
et al., 2016), including the case where the synchronized
cluster is not directly from the symmetry but due to the
same total amounts of inputs received from their neighboring
nodes (Siddique et al., 2018). While remote synchronization
represents the synchrony among the leaf nodes of a hub but
not synchronized with the hub, i.e., the synchronized nodes are
not directly connected (Bergner et al., 2012). However, these
three partial synchronization are not completely independent of
each other but may sometimes represent the same phenomenon.
For example, chimera state can appear simultaneously with
cluster synchronization in some systems (Hart et al., 2016;
Cho et al., 2017; Bansal et al., 2019). It is also possible for
remote synchronization to be related to cluster synchronization
(Bergner et al., 2012; Kang et al., 2020; Wang and Liu, 2020).
For example, in a star network with remote synchronization,
if the leaf nodes of the hub is considered as a cluster, their
synchronization is in fact the cluster synchronization. Based

on these results, it is an open but promising direction to

highlight the mechanisms of brain functions such as cognition,

memory, and signal spreading etc, from these three aspects of

partial synchronization.
One purpose of studying chimera states in neural systems

is for its potential applications. On one hand, some attention
has been paid to the phenomenon of unihemispheric sleep

(Rattenborg et al., 2000; Ma et al., 2010). On the other
hand, the study of chimera state may help us to understand

neuronal diseases such as epileptic seizures, Parkinson’s disease,

schizophrenia, Alzheimer’s disease and brain tumors (Uhlhaas
and Singer, 2006). For example, a therapy for Parkinson’s disease

is external electric stimulation at high frequencies, called deep
brain stimulation (Benabid et al., 1991). These studies are still
very primary. More deeper studies are expected, such as the

connections of chimera states to the mechanisms of cognitive
and memory and the control of various brain diseases in clinical

medicine etc.
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