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Abstract: This study elaborates on the design of artificial pancreas using model predictive control algorithm for a
comprehensive physiological model such as the Sorensen model, which regulates the blood glucose and can have a longer
control time in normal glycaemic region. The main objective of the proposed algorithm is to eliminate the risk of hyper and
hypoglycaemia and have a precise infusion of hormones: insulin and glucagon. A single model predictive controller is developed
to control the bihormones, insulin, and glucagon for such a development unmeasured disturbance is considered for a random
time. The simulation result for the proposed algorithm performed good regulation lowering the hypoglycaemia risk and
maintaining the glucose level within the normal glycaemic range. To validate the performance of the tracking of output and
setpoint, average tracking error is used and 4.4 mg/dl results are obtained while compared with standard value (14.3 mg/dl).

1 Introduction
Diabetes mellitus (DM) is a metabolic disease that is incurable and
requires regular monitoring and good control for a good quality of
life. The blood glucose of such a patient is always abnormal and
may lead to life-threatening risks. Diabetes can be categorised into
type 1, type 2, and gestational diabetes. Among the three
categories, type 1 is said to be quite risky because the pancreatic
beta cells are destructed and such a patient is insulin dependent and
external insulin need to be infused in regular regime [1]. The
importance of monitoring and regulating the blood glucose level in
a diabetic patient is required to avoid the risk of hyper and
hypoglycaemia. Hyperglycaemia is the condition, where blood
glucose rises above the normal range and requires insulin to
regulate and hypoglycaemia is a condition, where blood glucose
falls below the normal range and requires glucagon hormone to
regulate it [2, 3]. The normal blood glucose range is considered to
be 70–110 mg/dl. Insulin and glucagon are the two pancreatic
hormones that play a major role in the regulation of blood glucose
[4]. Several types of research are being carried out to include the
glucagon in therapies, which could be a challenge because it will
be difficult to preserve glucagon for a long time under normal
room temperature due to its chemical property [3, 5]. Even though
a type 1 diabetic patient fails to produce insulin from the pancreas,
they still can produce glucagon, which makes the design
complicated.

Hence, controlling and regulation of blood glucose in a diabetic
patient is an open research challenge. The commonly used therapy
is multiple dosages of injection, where a patient has to calculate the
dosage intake manually each time before or after meal [6]. In the
existing design of insulin pumps, which require sufficient
information of meal intake, the amount of carbohydrates intake that
makes the design semi-closed loop. For complete automatic or
closed-loop control, an automatic controller needs to be designed
in such a way that if the blood glucose deviates from the desired
threshold, the controller needs to take action immediately to
maintain in the state of normal glycaemic range for a long time [7].
Semi-closed-loop-type insulin pumps are those, which require
manual interruption to set the amount of meal consumed along
with the amount of carbohydrate and the bolus is manually
calculated and fed into the system [7, 8]. When such a system is
used, the patient should have complete knowledge on how to

calculate the bolus dose for each day, which makes the design
complicated. In complete automatic closed-loop control, the
disturbance is measured and the dose is calculated automatically
for the infusion [9]. Unmeasured disturbance at random time
should be considered if the controller can regulate the blood
glucose varied by unmeasured disturbance. If this attains a good
regulation, then an Artificial pancreas can be developed using
model predictive control (MPC).

MPC is an efficient control strategy developed in recent
technology for the control design. This control model predicts the
future system outputs, taking into account the past as well as
current values, and on the proposed control action of the future [10,
11, 12]. It has many unique features, which makes it more
competitive for blood glucose regulation such as:

• Prediction property that enables for anticipatory and measured
insulin delivery.

• This type of strategy can surpass the physiological delays
associated with the subcutaneous flow.

• The most important feature of the strategy is the compensation
of the dead time, commonly seen in the glucose concentration
problem.

• Efficient Feed-forward control technique to compensate for the
known disturbances such as meal intake or metabolic changes.

• It can easily handle constraints on system inputs and outputs.

The control parameters in the model predictive controller are
particularly tuned for a patient. The controller can perform well
with no external information such as time and quantity of meal
intake, providing this information the controller will reach the
acceptable performance with feedback and feed-forward controller
[13, 14]. The control model collects the data from past inputs as
well as outputs, and then combines it with the future inputs
predicted and gives a predicted output for that particular time. This
attained predicted output can be combined with the referral
trajectory, then giving the predicted future errors possible by the
system [15]. To eliminate the error, the attained error can be fed
into an optimiser, which can implement the present constraints of
the system on to the predicted outputs and then minimise the
operating cost function [16]. This will give the predicted future
inputs, which can be used as feedback of the main model and by
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restarting the process again [17, 18, 19]. Dual control of insulin
and glucagon is easily designed with such an algorithm.

In this research, we have considered a comprehensive
physiological model developed by Sorensen, a control algorithm
MPC. We have developed a single MPC for dual model infusion of
insulin and glucagon with an unmeasured disturbance at a random
time. Such a method performs a good and better solution for the
regulation of blood glucose. The performance of the proposed
controller is measured using average tracking error (ATE), which
gives the average blood glucose deviated from the threshold. The
setpoint is considered as 90 mg/dl and the standard value for the
limit, where the blood glucose can deviate for good performance is
14.4 mg/dl.

This paper is structured into six Sections: In Section 2,
background study of existing mathematical model and controller
design is being explained. Section 3 contains problem formulation
with a section of mathematical model and control objectives. In
Section 4, the MPC design is formulated which is followed by the
results obtained in Section 5 and the concluding remarks in Section
6.

2 Background study
Every year millions of diabetic patients enhance their eminence of
life through a surgical trial that involves many medical devices.
The insulin pump plays a role in the functioning of the normal
human pancreas. Currently, the implantable device is used to
extend the quality of life of a human by implanting it in different
parts of the body [20, 21]. The dual control insulin delivery system
offers several advantages over conventional oral or syringe dosage
forms. These devices allow siting specific delivery of insulin or
glucagon required by continuous glucose monitoring [22]. This
may also allow significantly lower doses of insulin, which can
minimise potential side effects. The most important advantage is
patient conformity, as the treatment routine associated with a
prototype device is generally less arduous than pills or injections
[23, 24].

Numerous research works have been carried out for type 1 DM
(T1DM) by the essential automated control of the level of blood
glucose, which could diminish the load of manual therapy, and
hence improve the risk factors associated with it. MPC is the
emerging controller [25]. Although several research are carried on,
the risk of hyperglycaemia and hypoglycaemia is a big threat.
Enhancement of such a controller can make the prototype system
much robust and achieve better performance. The model predictive
controller predicts the future output variables using current
measurements [26]. The predictions can be predicted for different
time delays. Also, the calculations of the control are mainly based
on both predictions done for future and present measurements and
the measured disturbances are included in the control calculations
[27, 28].

Blood glucose monitoring is an imperative technique for people
with diabetes to evaluate their physiological state and take the
proper dose for medication. The good property of detection and
quick action of the controller when the blood glucose level is not in
the desired range could prevent acute brain damage or death [29].
A variety of technologies are available to assist patients with
detecting hypoglycaemia and hyperglycaemia separately. To make
the controller completely automatic and avoid the manual
calculation of the daily dosage, there is a need to develop complete
closed-loop control, which is an important research domain.

To obtain this the state-of-the-art artificial pancreas is shown in
Fig. 1, it consists of a measuring unit for continuous monitoring, a

patient model which is developed mathematically, a precise control
algorithm for the infusion of hormones that need to be developed. 
The sensor used is the continuous glucose monitoring devices, the
data is recorded for every 5 min and is fed to the controller [29,
30]. Various plant models mathematically are available from the
previous research. Over the years, the behaviour of the interaction
of glucose–insulin in a diabetic patient is mathematically modelled
either by an empirical or compartmental technique. In an empirical
process, with the available input–output data without the
physiological knowledge of the system, a model can be developed.
Wherein for a compartmental modelling, mass balance differential
equations are developed by the interaction of all the components
involved in the physiology [31, 32].

Bergman minimal model is a non-linear compartmental model
that comprises of very small number of parameters that could
describe the relationship of the glucose–insulin regulatory system
with adequate accuracy [33, 34]. Sorensen model (SoM) is the
complete model, which is composed of 19 differential equations
and describes the action of organs, having to lead to the change in
glucose regulation. It also accounts for the glucagon effect, which
is opposite to the insulin effect, where a dual control can be
designed. SoM is a physiological model that involves all the
changes in the tissues and organs [35]. This model has been
developed with mass balance equations of the blood flow, the
exchange between the compartmental models and the metabolic
process. The Food and Drug Administration approved model such
as Cobelli was a widely used patient model but failed due to the
inability of varying model parameters during the simulation [36,
37]. Hovorka model with the six states glucose–insulin dynamics is
the simplest non-linear model, which can be used as patient model
[38, 39]. The state represents the glucose contained in plasma,
glucose contained in peripheral tissues, the action of insulin on
glucose rate of flow, glucose disposal, endogenous glucose
production, and insulin concentration in plasma [40]. The
comparison of a few compartmental models used for this paper and
selection of the available model is shown in Table 1, these models
are simulated and studied in the research work. 

Few black boxes and grey box model techniques are introduced
for the implantable development. Mathematical and clinical trials
on the design of artificial pancreas are done using various control
algorithms. Frequently used control algorithms are proportional–
integral–derivative (PID), fuzzy logic, MPC, advanced control
theory etc. For a single control of hormone, insulin alone is easily
designed and controlled but the limitation is the risk of
hypoglycaemia that is not yet eliminated. PID control is said to be
the standard control strategy that can be used for the regulation but
dual control of insulin and glucagon is much efficient using the
MPC eliminating the risk factors of the regulation of blood glucose
[45, 46, 47]. Many prototype models can be developed by
considering the physiological model with the relevant control
algorithm. The various control algorithms have different
advantages and disadvantages, to explain few:

• Relative proportional control law: This algorithm is mainly
based on the mode of conveyance of insulin in the weighted
proportion by strictly limiting the absolute blood sugar level to
the magnitude of the desired level. This is a semi-closed-loop
control, where the simulation of glucose–insulin metabolism
makes use of the base data, and hence detection and elimination
of errors would be a challenge [48].

• Fully closed-loop controller (MPC): In this, the algorithm was
mainly used to reduce the risk of hypoglycaemia, which uses an
on–off controller with safety rules. In this, a unique model-based
strategy to develop the controller is considered in an account for
the uncertainty and to ensure safety for hypoglycaemia. Since
the threat of hypoglycaemia could occur at any time corrective
measures to detect hypoglycaemia was not considered [49, 50].

• MPC dual hormone control: In such a control method, MPC is
developed to take control of the infusion of insulin and
glucagon. Numerous research is being carried out for dual
administration, especially with the switching technique between
the hormones. The switching is done by the measurement to the
blood glucose, and if the blood glucose is elevated, the

Fig. 1  General closed-loop design for blood glucose regulation
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controller infuses insulin and switches to glucagon if the blood
glucose is fallen below the threshold. Switching technique such
as hysteresis switch was developed and added the flexibility to
the control design [51, 52]. Optimal switching technique used
separate MPC's giving good performance concerning risks
associated with diabetes [53]. Such procedure included known
disturbances especially the exercise model, which was modelled.
These disturbances were known at what time what amount is
affected. However, the ultimate aim for a T1DM is any
unknown disturbance at random time occurs, and the controller
should take action and regulate the blood glucose. Such a
controller is developed in our research.

• Fading memory proportional derivative: This algorithm does
not require human interaction to enter the venous blood sugar
level into the system. It mainly uses an adaptive proportional
derivative algorithm, which keeps an account on the absorption
of the subcutaneous substance. It takes the patient's total daily
requirement initially using first glucose reading by the patient
and the patient's basal insulin rate at the beginning [42].

• PID controller: This is the most widely used controller used to
detect the dynamics of the system. Modelling becomes much
simpler and feasible. Few assumptions are considered such as
the relationship between insulin and the blood glucose along
with the disturbance that affects the blood glucose. The risk of
hyperglycaemia and hypoglycaemia was not relatively detected
[54, 55].

• Higher-order sliding mode control: This black box model
control technique, where it only takes into account the
knowledge of the moderate degree of the system and the
reasonable bounds of an expression. Owing to its non-linear
characteristic, it spans of the target system. It is designed in such
a way that it does not depend on the parametric or the
uncertainties in the system model, which provides robustness
[42].

• Fuzzy logic control (FLC): PID-FLC is an effective strategy that
takes into account all the components that are necessary and
reacts to the possible changes in glucose concentration in the
human body. It helps to raise the patients’ quality of life and

reduces the occurrence of hypoglycaemia and hyperglycaemia
by keeping the glucose level in the ideal range [42].

To address this issue, this research is being carried on for
bihormonal control with insulin and glucagon infusion and
maintain normal glycaemia for a longer time. Such a control
algorithm is developed in our research using MPC control and
SoM. In choosing an appropriate mathematical model various
criteria are used to ensure the implementation: ‘Complexity of the
model’, ‘Related meal model’, ‘Validated by literature’,
‘Modifiability’, and ‘Accessibility’. In choosing a model, a
decision matrix was used as shown in Table 2, where: 

• Complexity ( + ) means: Appropriate for realisation and (–)
means: too complex.

• Related meal model ( + ) means: Available and (–) means no
meal model.

• Validated ( + ) means: Used in research and (–) means: not used
in research studies.

• Modifiability ( + ) means: Can modify for type 2 and (–) means:
cannot be modified.

• Accessibility ( + ) means: Unrestricted access to the original
model and (–) means: limited access.

After the evaluation of the decision matrix, the SoM was
considered to be the most appropriate model for the
implementation in further work. Although the model is complex it
has a meal model, it is validated in the literature and research, easy
to modify to type 2 model, and the major advantage is it
incorporates the glucagon model. Other models need extra
development of glucagon model for the bihormonal development.
The selection of plant models from the above criteria helped in
efficiently choosing the plant model for the further development of
the artificial pancreas using MPC.

Table 1 Summary of evolution of glucose–insulin models
Type of model Structure Advantage Limitation Relevance
Bergman (1981)
[35]

three states, seven parameters,
one glucose compartment, and

two insulin compartment

gives glucose effectiveness and
sensitivity and it is a basic

model

minimal model basis of many glucose
model and it can be built

easily
Cobelli (1982)
[36]

five states, glucose subsystem,
insulin subsystem, glucagon

subsystem

dynamic model for regulation
and enables minimum insulin
with insulin peripheral infusion

not adaptable for all types of
diabetes as well normal
subjects, meal input is

limited to single
carbohydrate

provides just basis for
minimal insulin model

Sorensen (1985)
[39]

19 variables and a non-linear
system, additional compartments
such as brain, heart, kidney, and
vascular periphery system are

included

glucagon is modelled as ODE,
good mass balance modelling

for compartment exchange

estimation of parameters is
from rat done clinically

glucagon modelling insights
for validation, incorporates

compartment and blood flow

Sturis (1991)
[29]

six states, negative feedback
loops gives insulin effect on

glucose

introduction to insulin
degradation time constant and

time delays

disturbances cannot be
separated

understands oscillation due
to feedback loops

Hovorka (2002)
[41, 42]

11 variables, endogenous glucose
production model

evaluated clinically for type 1 requires correction in fasting
and overnight

good insulin model

Dallaman (2007)
[43, 44]

12 states glucose, insulin
subsystem

can simulate both types 1 and 2 no input for disturbances,
meal input is limited

validation on exercise and
including glucagon model is

on process
 

Table 2 Table of decision matrix
Model Complexity Meal model Validated Modifiability Accessibility
Bergman model +  − +  − −
Hovorka model +  +  +  − −
SoM − +  +  +  + 
Dallaman model − +  +  − −
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3 Problem formulation
In this section, a brief introduction and modelling of a
comprehensive physiological SoM for T1DM are presented with
ordinary differential (ODE). The next section describes the control
algorithm and the main objectives are stated and formulated.

3.1 Mathematical model

We have considered a comprehensive model, which consists of a
glucose, insulin, and glucagon model in ODE equation form. The
entire model is simulated for few cases such as an empty stomach,
with meal, with bolus, and the difference of each is observed and
the steady-state analysis of the model is checked for the SoM. The
model is linearised and the state-space model of it is considered for
the control algorithm development [38, 39, 40]. We have
considered a continuous time model

x
∗(t) = Ax(t) + Bu(t); y(t) = Cx(t) + Du(t) (1)

where A is the state matrix, B is the input matrix, X are the states of
the model, y is the output, C is the output matrix, and D is the feed-
forward matrix. The SoM (Sorensen, 1985) is an extensive non-
linear model consisting of 11 ODE to describe the glucose
subsystem, ten ODE to describe the insulin subsystem, and one
ODE to describe the glucagon subsystem. However, three ODE of
the insulin subsystem describes endogenous insulin production and
secretion, which are to be omitted for the T1DM condition. The
number of equations and sub-equations make the model hard to
comprehend. Therefore, the SoM was rewritten to state-space form
while incorporating all sub-equations in their corresponding
equation and grouping parameters as much as possible. The
modified and linearised state-space equations are given below:

GBV
∗ = 1.685GH − 2.297GBV + 0.612GBI (2)

GBI
∗ = 0.476(GBV − GBI) (3)

GH
∗ = 0.427GBV + 0.913GL

+0.731GK + 1.094GPV − 3.166GH

(4)

GG
∗ = 0.901(GH − GG) (5)

GL
∗ = 0.099GH + 0.402GG − 0.501GL

+ 2.755MHGP
I − 5.299 f 2) − 8.467MHGU

I + 4.354Γ
(6)

GK
∗ = 1.53(GH − GK) (7)

GPV
∗ = 1.451GH − 2.748GPV + 1.296GPI (8)

GPI
∗ = 0.2GPV − 0.204GPI − 0.007IPI (9)

MHGP
I∗

= − 0.04MHGP
I + 0.077IL (10)

MHGU
I
∗

= − 0.04MHGU
I + 0.002IL) (11)

f 2
∗ = − 0.015 f 2 − 0.006Γ (12)

IB
∗ = 1.73(IH − IB) (13)

IH
∗ = Q0.454IB + 0.909IL

+0.727IK + 1.061IPV − 3.151IH

(14)

IG
∗ = 0.765(IH − IG) (15)

IL
∗ = 0.094IH + 0.378IG − 0.789IL (16)

IK
∗ = 1.411IH − 1.8351IK (17)

IPV
∗ = 1.418IH − 1.874IPV + 0.455IPI (18)

IPI
∗ = 0.05IPV − 0.111IPI + U1 (19)

Γ∗ = − 0.08Γ − 0.00000069GH + 0.0016IH + U2 (20)

The parameter description is briefed in the Appendix. The state
vector considered is as given below:

x = [x1, x2, …, x19]
T (21)

The control input

U(t) = [UI(t), UG(t)] (22)

where UI(t) is insulin and UG(t) is the glucagon input variable and
UI(t) ≥ 0 is infused exogenously with rate (mU/min) and UG(t) ≥ 0
is also infused exogenously with rate (mg/min). The disturbance is
considered to be unmeasured at a random time to develop the
control algorithm but for the model check, the disturbance is
considered to be the meal intake in terms of grams. The output, i.e.
the amount of glucose in the body is measured at the state variable
GPI glucose at the periphery region. The steady-state analysis of the
model is checked when the inputs UI(t) = UG(t) = 0 and such a
condition is called a basal condition for a diabetic patient. This
condition is totally dependent on the model parameters and the
glucose level can be observed with the initial conditions of each
state. 

• Case 1: Complete model simulation of Sorensen: Fig. 2 shows
the complete simulation of the SoM includes the entire
differential equation of each compartment for steady-state
analysis. Simulation is done with MATLAB 2018 software. The
x-axis represents the time in minutes and the y-axis represents
the blood glucose, insulin, and glucagon compartment
parameters. The blood glucose of different parts is measured
with mg/dl, insulin is measured with mU/min, and the glucagon
is measured with mg/min. It is observed that the entire system
attains steady state within 800 min. A disturbance of meal and
input of insulin is also included in the design to check the
steady-state analysis. The individual parameter can be examined
by plotting the graph to observe the changes with and without a
meal as well as the input as insulin.

• Case 2: Simulation of SoM for empty stomach: The model is
simulated for an empty stomach condition, in a T1DM usually
the blood glucose level will be high and they do not produce
insulin to regulate the blood glucose level. Fig. 3 shows the
glucose simulation of the model in an empty stomach, the x-axis
represents the time in minutes and the y-axis represents the
blood glucose in mg/dl. It is observed that the blood glucose is

Fig. 2  Complete simulation of SoM
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above the normal range and it remains high throughout, the
measured blood glucose level is 145 mg/dl. When observed in
Fig. 4, the insulin in body is zero, this is because the pancreas
lacks the production of insulin in T1DM.The x-axis is time in
minutes and the y-axis is milliunits/min. There is some amount
of glucagon secreted in the body and is observed in Fig. 5. The
x-axis is time in minutes and the y-axis is mg/min. To regulate
this blood glucose level for a normal range infusion of insulin is
necessary.

• Case 3: Simulation of SoM with meal intake: In this case, some
amount of disturbance in terms of the meal has been given, the
amount of meal intake is 50 mg, for the disturbance induced in
Fig. 6 we observe the changes in the blood glucose level. The
induced food requires some time to digest and the delay is seen
in the beginning. The blood glucose level slowly increases as the
effect of disturbance is being sensed. It is observed that blood
glucose is raised for the meal intake to 160 mg/dl. This increase
in blood glucose also keeps increasing at the high level due to
the absence of insulin infusion, the next case is explained with

Fig. 3  Simulation of SoM for empty stomach–glucose plot
 

Fig. 4  Simulation of SoM for empty stomach–insulin plot
 

Fig. 5  Simulation of SoM for empty stomach–glucagon plot
 

Fig. 6  Simulation of SoM with meal intake–glucose
 

Fig. 7  Simulation of SoM with insulin infusion–glucose
 

Fig. 8  Simulation of SoM with insulin infusion–insulin
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the infusion of insulin. The insulin in body still remains the
same as in Fig. 4 and the glucagon also remains the same as
observed in Fig. 5.

• Case 4: Simulation of SoM with insulin infusion: For a T1DM,
external infusion of insulin is required for regulating the blood
glucose level and maintaining it within the threshold range. In
Fig. 7, we observe the decrease of blood glucose level when
insulin is given as an external source. The blood glucose range
is 140 mg/dl and decreases due to the effect of insulin, and once
the effect on the body decreases the blood glucose level again
increases above the normal range. In Fig. 8, we observe the
infusion of insulin in mU/min, some amount of insulin is infused
to bring down the elevated blood glucose. It is said that, 1 unit
of insulin can decrease 50 mg/dl of blood glucose in body. In
Fig. 9, it is observed that glucagon is decreased when compared
with the previous cases. Glucagon is an counter hormone used
for regulation, when insulin is conveyed the glucagon decreases.
Hence, to continuously maintain the blood glucose within the
threshold, a good controller needs to be developed.

• Case 5: Comparison of individual cases together: All the three
cases are compared together in Fig. 10 to observe the difference
in the blood glucose level in an empty stomach, with only meal
as a disturbance and with an infusion of insulin. From this
comparison, we can conclude that it is very necessary to develop
a good controller that can predict the blood glucose level and
take immediate action in regulating blood glucose. The three
conditions are in the basal condition with attained initial
condition. This model physiology is and the working condition
is mimicking the semi-closed-loop condition; hence, such a
model is used further to develop the MPC algorithm.

3.2 Control algorithm developed

An MPC algorithm is formulated by considering two main goals:

• The main aim is to regulate blood glucose and have control by
eliminating the risk of hyperglycaemia and hypoglycaemia for a
longer time, irrespective of random disturbance.

• The infusion of insulin and glucagon should be precise and
limited.

• The proposed work uses a linear state-space plant model, under
which a linear MPC algorithm is developed. An MPC uses a
linear model to calculate glucose concentration predictions. The
linear approximation in MPC is used when calculating the
predictions because it is simpler and faster than using the non-
linear model. It is important that the calculation is fast since new
computations are made within the short interval [17, 18]. MPC
has a standard technique to be followed, the MPC controller is
developed for the model used, the model used is a linear model;
hence, we went for a direct linear MPC approach. MPC
technique is just not confined to one single technique rather it
has a different range of methods to be controlled to a process
model by the best minimisation of the objective function [56,
57]. The summary of MPC is:

• With the process model, the output can be predicted at future
horizon.

• With the help of control sequence, the objective function can be
minimised.

• A receding horizon strategy is used where only the first move is
calculated and fed this strategy applies the primary control
signal to form at each instance.

The implementation for the plant is by the linearised control, which
is an added advantage. The advantage of using linear prediction is
that a linear model can be more robust, where an optimisation
problem based on a non-linear model. Few advantages of MPC is,
even with the lesser knowledge of the process model the tuning of
the parameters is easy. Variety of processes either simple or
complex dynamics can be controlled with the strategy. Multi-
variable cases can be implemented easily. Compensation with the
dead time is done in a natural way. By inducing the feed-forward
technique, the disturbances that can be measured can be
compensated. Constraints in the design can be easily added. The

prediction property of the strategy makes the design very useful to
eliminate the error [18, 19].

In this section, the model used only to describe the dynamic
relationship between insulin, glucose, and glucagon. Thus, this
model treats meals as unmeasured, unmodelled disturbances [37].
Here, the state at a certain time tk + 1 is calculated from the state and
the insulin infusion rate of the previous time tk. The glucose
concentration yk can be calculated from the state. Consider the
state-space models below:

xk + 1 = Axk + Buk (23)

yk = Cxk + ek (24)

where A is 19×19 state matrix, B is 19×2 input matrix, C is 1×19
output matrix, and ek and is the difference between the actual
glucose and the predicted glucose. The prediction is from x^k k − 1

state at the time tk − 1. Now, the glucose concentration for the next
time measure can be predicted by using this error to calculate the
next state. For the next j time measurements, the glucose
concentration can be predicted by using the state-space model with
no noise term. In the case of any model, if this term is not used,
then the model can be predicted with a small noise term

x^k + 1 k = Ax^k k − 1 + Bu^k k (25)

y^k + 1 k = Cx^k + 1 k (26)

For the j measurements, where j = 1, 2, 3, …, N–1, N is the
prediction horizon

Fig. 9  Simulation of SoM with insulin infusion–glucagon
 

Fig. 10  Comparison of individual cases
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x^k + 1 + j k = Ax^k + j k + Bu^k + j k (27)

y^k + 1 + j k = Cx^k + 1 + j k (28)

The optimal glucose concentration should be as close as possible to
the threshold. That is the preferable level of glucose, called
normoglycaemia, a person should have in a fasting state. The
optimal insulin infusion rate is now estimated to minimise the
least-squares difference between the predicted glucose trajectory
and the set point [54]. This is the objective function in (29) that
will be minimised for each time measure. To prevent too large
changes in the insulin infusion rate, a damping parameter λ is
introduced [18]. It is multiplied with the difference Δuk + j k

between the insulin infusion rate at time tk + j − 1 so that
Δuk + j k = uk + j k − uk + j − 1 k. The objective function is given as

ϕ =
1
2

Σ j = 0
N − 1

y^k + 1 + j k − rk + 1 + j k

2

+ λ Δuk + j k

2

(29)

where rk + 1 + j k is the set point at time tk + 1 + j so r is the desired
glucose level, which may or may not be time varying. The
predicted glucose concentration in the objective function has to be
constrained, since these are the model predictions. The glucose
concentration predictions only depend on x^k k − 1, yk and the insulin
infusion rates. The u which is the manipulated variable has two
control variables U1 and U2, which are infusions of insulin and
glucagon. This means that every state prediction at time k can be
calculated from the prediction made at time k − 1, the error term,
and the predicted insulin infusion rate from time k to time
k + N − 1. This will now be shown for N = 4.

For the first step prediction, the output is given as

y^k + 1 k = Cx^k + 1 k (30)

By substituting (25) in (30) we get the output as

y^k + 1 k = C(Ax^k k − 1 + Bu^k k) (31)

For j = 1

x^k + 2 k = Ax^k + 1 k + Bu^k + 1 k (32)

y^k + 2 k = Cx^k + 2 k (33)

For value of x^k + 1 k and x^k + 2 k, the previous equation values can be
substituted. For j = 2

x^k + 3 k = Ax^k + 2 k + Bu^k + 2 k (34)

y^k + 3 k = Cx^k + 3 k (35)

For j = 3

x^k + 4 k = Ax^k + 3 k + Bu^k + 3 k (36)

y^k + 4 k = Cx^k + 4 k (37)

For j = 4 and j = 3

x^k + 5 k = Ax^k + 4 k + Bu^k + 4 k (38)

y^k + 5 k = Cx^k + 5 k (39)

From these calculations, it is seen that for an i step prediction at
time k, where i ≤ N the prediction of the glucose concentration can
be calculated directly from the prediction of the state at time k − 1,
the error, and all the previously predicted insulin infusion rates as
shown in the equation below:

y^k + i k = (CA
i
x^k k − 1) + Hiu

^
k k + Hi − 1u

^
k + 1 k

+Hi − 2u
^
k + 2 k + ⋯ + H1u

^
k + i k; where Hi = CA

i − 1
B

(40)

Expanding (40) in matrix form

y^k + 1 k

y^k + 2 k

y^k + 3 k

y^k + 4 k

=

CA

CA
2

CA
3

CA
4

x^k k − 1 +

H1 0 0 0

H2 H1 0 0

H3 H2 H1 0

H4 H3 H2 H1

u^k k

u^k + 1 k

u^k + 2 k

u^k + 3 k

(41)

We can consider 

CA

CA
2

CA
3

CA
4

 as Φ and 

H1 0 0 0

H2 H1 0 0

H3 H2 H1 0

H4 H3 H2 H1

 as Γ and the

above (41) can be written as

Yk = Φx^k k − 1 + ΓUk (42)

while considering the infusion of the insulin and glucagon, the
infusion rates should be within the physical limits and this type of
implementation is constrained MPC with constraint added to the
manipulated variables. Here, u for general form with constraints
can be considered as

umin ≤ uk + j k ≤ umax where j = 1, 2, 3, …, N (43)

By considering U with two manipulated variable and for N = 4 can
be expressed as

Umin ≤ Uk ≤ Umax (44)

where

Umin =

umin

umin

umin

umin

Uk =

u^k k

u^k k + 1

u^k k + 2

u^k k + 3

Umax =

umax

umax

umax

umax

(45)

By using these constraints, it can, for instance, be ensured that the
insulin infusion rate and glucagon infusion are never negative. This
is a necessary limit since insulin and glucagon cannot be extracted
from the blood. There is also a limit to how much the insulin
infusion rate should be changed between two consecutive time
measures [56, 57]. This means that there should be similar
constraints on Δuk + j k. The constraints on the difference between
the insulin infusion rate at two consecutive time measures can now
be rewritten to linear constraints containing Uk, so it can be
inserted into the optimisation problem [19]. The two boundaries for
ΔUk are called ΔUmin and ΔUmax, respectively. The constrains for
the rate of flow for infusion are given in the equation below:

ΔUmin ≤ ΔUk ≤ ΔUmax (46)

The constraints are developed based on the manipulated variables,
output of the system, and the rate of infusion of insulin and
glucagon. The control strategy for automated insulin delivery is
through enhancement of MPC. Such a controller can take action on
a predicted hyperglycaemia or hypoglycaemia and even for the
hard constraints on input and outputs. A cost function has to be
defined for the controller to maintain the regulation of blood
glucose [57]. Then an optimal control law is formulated subjected
to the prediction model, control inputs, and output constraints. The
main objective is to avoid and to reduce the occurrence of
hyperglycaemia and hypoglycaemia. The main plant and a process
model are connected in parallel. To predict the controlled variable,
the MPC uses a dynamic process. The predicted controlled variable
is taken as feedback to the controller, where it is then optimised;
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this minimises a relevant cost function, which is used to determine
the manipulated variable. The controller output is implemented in
real time for every sampling time with actual process data
repetitively. The difference between the plant measurement and the
model output is also fed to the controller to abolish the steady-state
offset. This cost function usually depends on the quadratic error
between the future reference variable and the future controlled
variable within a limited time horizon.

MPC strategy in loop algorithm is shown as flowchart in
Fig. 11: 

• Step 1: Measure current state xn from developed state matrix of
the model.

• Step 2: Compute the cost function by checking the error of the
predicted and desired outputs.

• Step 3: Decision of infusion of insulin and glucagon is
calculated by the cost function.

• Step 4: Constraints are put for the infusion of insulin and
glucagon and the rate of flow of both.

• Step 5: The manipulated variables are infused according to the
correction of error.

• Step 6: Apply receding horizon and feed the first control input to
the process.

• Step 7: Check the output measurement blood glucose and take
action.

• Step 8: Provide feedback by the output measurement to the next
step and repeat the algorithm.

Mathematical model used in the research is a physiological model
of Sorensen, which is derived and clinically tested. The decision of
choosing a cost function, which is also called as the objective
function, is very important because the variation in MPC can be
clearly seen in the control algorithm. The major aim of developing
a control is to ensure that the future output will reach the desired
trajectory as close as possible. Finding the solution to the problem
using MPC is optimisation. This technique minimises the cost
function of the defined problem. The solution obtained from the
minimisation is the input signal that would make the output of the
system to follow the trajectory. The trajectory is set as the Xref

reference, which is decided in prior and each state has a input
reference, which is referred as Uref.Constraints are the control
values or the limitations that are given to the system to execute.
The constraints are used usually to maintain or to regulate the
output of the system within the required range and for safety [18,
19].

MPC depends on an iterative and finite horizon advancement of
a plant model display. Whenever at time t, the present plant state is
inspected and a cost minimisation calculation is done for a
moderately brief time horizon in the future: [t, t + T]. Just the
initial step of the control calculation is actualised and after that the
plant state is inspected once more. The iterations are repeated from
the start point that is the current state till a new predicted value is
attained. The prediction horizon keeps being shifted forward and
for this reason MPC is also called receding horizon control as
shown in Fig. 12 [58]. 

Linear MPC with constraints is developed with the following
specifications:

• Output of the process: glucose at peripheral – we are observing
the output at peripheral region, this is because usually a finger
prick method is done at the peripheral region. In case, a minimal
invasive or a continuous glucose monitoring is used; they are
mounted at the peripheral region.

• Manipulated/control variables: Insulin and Glucagon – these are
our control variables, externally we infuse insulin to bring down
the elevated glucose and glucagon is infused to rise the blood
glucose to avoid hyperglycaemia.

• Disturbance: random disturbance of meal (unannounced meal).
• Set point: 90 mg/dl – this set point is considered as a safe zone,

if the blood glucose is maintained at this value, the quality of
life would be better and this is a normal glycaemic region.

• Prediction horizon: 25 sampling time – prediction horizon is the
number of future control intervals the MPC controller must
evaluate by prediction while optimising manipulated variable.

• Control horizon: 15 sampling time – the number of manipulated
variable moves to be optimised at control interval.

• Sampling time: 5 min – depends on the plant dynamic
characteristics; mainly, we choose 5 min. Because, present
continuous glucose monitoring (CGM) records time every 5 min
and the control action is also taken accordingly. We need to keep
in mind the open-loop and closed-loop simulations too while
choosing the sampling time. For any linear time invariant (LTI)
system, controller inherits its time unit from the plant model
with time unit property.

• Output constraints: 80 mg/dl ≤ y(k) ≤ 120 mg/dl.
• Insulin constraints: 0 mU/ min ≤ u1(k) ≤ 80 mU/min.
• Glucagon constraints: 0 mg/ml ≤ u2(k) ≤ 0.5 mg/ml.
• Rate of infusion of insulin: ΔU = 16.7 mU/ min.
• Rate of infusion of glucagon: ΔU = 0.1 mg.

4 Results
In this section, the simulation of the MPC algorithm implemented
with constraint and parameter values is described in graphical
form. The initial conditions are set for the plant and the blood

Fig. 11  Flowchart of MPC algorithm
 

Fig. 12  Receding horizon control [58]
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glucose is starting at 110 mg/dl for the considered model, which
corresponds to the target that is set by clinical trials. Considering
from the data the initial condition, in which basal glucose is set to
be 100 mg/dl for a type 1 patient [59]. This is observed in the
steady-state analysis without meal intake. The output glucose
constraints is considered to be 70 ≤ G(t) ≤ 110 mg/dl. The control
horizon and prediction horizon are considered in sampling instant
with 5 min. The inputs insulin and glucagon are constrained, which
are associated with objective function. The hormones have the
opposite effect in the regulation so that it can be controlled and
balanced easily. In our research, we have considered the safe range
for blood glucose as 70−180 mg/dl and the stages that of immense
threat are:

• Hyperglycaemia is a situation, where the excessive amount of
blood glucose starts to circulate in the blood, and is identified in
two categories:

o Fasting hyperglycaemia is a condition, where the blood
glucose rises above 130 mg/dl for 8 h of fasting.
o Post-prandial hyperglycaemia is a condition, where the blood
glucose rises above 180 mg/dl after 2 h of meal intake.

• Hypoglycaemia is a state, where the blood glucose becomes
lower than the acceptable range and is categorised into two
terms:

o Slight hypoglycaemia, where the blood glucose range is 55–
70 mg/dl.
o Severe hypoglycaemia, where the blood glucose range is
below 55 mg/dl.

The performance of the controller is evaluated with the ATE [43]

ATE = ∑
0

N

y^ − ysetpoint /N (47)

where N is the number of samples (2000 considered in the
research), y^ is the glucose output, and ysetpoint is the setpoint (90 
mg/dl). The simulation is carried out for 2000 min nearly for one
and a half days. The implementation of closed-loop is initiated
from the first day, while the simulation is being performed
unmeasured disturbance is given to the system and the control is
observed in Figs. 13 and 14 concerning real cases. The simulation
gives a good performance according to a few existing clinical
studies when compared with existing literature. The statistical data
for the performance evaluation are shown in Table 3 and also the
risk ranges are being recorded along with ATE. 

• Case 1: Disturbance 1: Fig. 13 is simulated for an unmeasured
random disturbance, the effect of disturbance is observed within
200 min. The x-axis represents the time in minutes and the
simulation is carried for 2000 m, in which is almost for one and
a half days. The subplot represents the simulation of blood
glucose level with the unit mg/dl; this is observed through the
peripheral region of the system. The control units insulin and
glucagon are plotted in the next subplots with the units mU/min
and mg/min, respectively. It is observed that the disturbance
applied is affecting the system but the control unit insulin is
brought to zero and the glucagon is infused to regulate the blood
glucose level to the threshold. The threshold is considered as 90 
mg/dl, and if the blood glucose elevates from the threshold the
insulin is infused and when it starts decreasing glucagon is
infused and the blood glucose is maintained in the normal
glycaemic range for a longer time. The performance of the
controller is evaluated with ATE; the attained ATE for Case 1 is
4.31 mg/dl. This shows that the controller has taken immediate
action and maintained the blood glucose in the normal range for

Fig. 13  Simulation results for MPC with disturbance 1
 

Fig. 14  Simulation results for MPC with disturbance 2
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a long time with a deviation of 4.31 mg/dl, wherein the standard
value should be within the limit of 14.4 mg/dl.

• Case 2: Disturbance 2: Retaining the same disturbance and
including another disturbance at random time is shown in
Fig. 14. The disturbance is given at 1600 min. The performance
of the controller is evaluated with ATE; the attained ATE for
Case 1 is 4.72 mg/dl. This shows that the controller has taken
immediate action and maintained the blood glucose in the
normal range for a long time with a deviation of 4.72 mg/dl,
wherein the standard value should be within the limit of 14.4 
mg/dl.

The statistical data for the performance evaluation with the
comparison of two cases are shown in Table 3 and also the risk
ranges are being recorded along with ATE.

Table 3 explains the performance of controller using statistical
data, the standard value for ATE is 14.4 mg/dl, whereas our
proposed MPC algorithm tracking performance ATE is 4.3 mg/dl
and no cases of hyperglycaemia and hypoglycaemia is observed
throughout the simulation. Hence, the proposed single MPC for
dual control improves the control performance and regulated the
blood glucose for long time.

5 Conclusion
MPC has the advantage that it uses predictions of the glucose
concentration, so it can react before changes occur. The proposed
algorithm single MPC for dual control shows excellent
performance and control from the simulation and statistical data.
The simulation is designed in such a way that it imitates the
clinical trials. To reject disturbances, insulin boluses can be
administered simultaneously with the disturbance. MPC infuses the
exact amount of bolus required for the correction of the error of
blood glucose. Simulations have shown that the SoM with MPC
can gives a good insulin and glucagon infusion rates with
unannounced disturbances such as changes in insulin sensitivities.
Simulation results confirm that the SoM handles changes in the
insulin sensitivities well. Here, the controller returns the simulated
patient to a normoglycaemic steady state after the changes.
However, with a change in the endogenous glucose production at
zero insulin, a parameter in the model, the controller gives few
oscillations in glucose concentration. Owing to the subcutaneous
delay, the glucagon and insulin infusion takes time to increase or
decrease the flow. The MPC optimisation problem has two sets of
constraints: minimum and maximum values for the calculated
insulin infusion rate and minimum and maximum values for the
change of insulin infusion rate between two consecutive time
measures [60, 61]. There is a natural minimum of the insulin
infusion rate at zero because insulin cannot be extracted from the
blood. The maximum insulin infusion rate should be high to ensure
the possibility of giving large insulin boluses. The maximum
insulin infusion rates and the constraints on change in the insulin
infusion rate should be based on the actual mechanical limitations
of the insulin pump.

Using linear predictions give larger irregularities due to the
linear approximation, while a non-linear model if used directly
would be more accurate. On the other hand, the linear predictions
are computed much faster and do not require as much calculation
capacity as a non-linear model. This is an advantage when
calculations are made in a small computer controlling an insulin
pump. The fast calculations are necessary to get a relatively small
sample size of 5 s.

It can be seen from the simulations that MPC gives a better
insulin infusion rate profile. MPC gives better results when it is
used with a linear SoM. When a disturbance is applied, the
absorption is dependent on the duration of the disturbance.
Simulations show that the differences in the resulting glucose
concentration trajectory are small. Therefore, disturbance can be
regarded as impulses, which makes it easier for the user in the
sense that it is not necessary to know the duration of the
disturbance. Hence, it is concluded that a single MPC can be used
for the dual infusion and controls of insulin and glucagon to

regulate blood glucose. The ATE is used for performance tracking
and shows a good performance by maintaining the normal range.

6 Acknowledgments
The first and the second author (C. Dias and S. Kamath) convey
their gratitude to the Department of Instrumentation and Control,
Manipal Institute of Technology, MAHE, Manipal for permitting
the research to be conducted in their laboratory and providing the
necessary facilities in carrying out this research. The third author
(S. Vidyasagar) thank the Department of Medicine, Kasturba
Medical College, MAHE, Manipal for their extensive support for
this research. The authors significantly appreciate and thank the
anonymous referees and the editor's positive and valuable
comments that have improved the quality of this research paper.

7 References
[1] Deshpande, A.D., Harris-Hayes, M., Schootman, M.: ‘Epidemiology of

diabetes and diabetes-related complications’, Phys. Ther., 2008, 88, (11), pp.
1254–1264

[2] Nathan, D.M.: ‘The pathophysiology of diabetic complications: how much
does the glucose hypothesis explain?’, Ann. Intern. Med., 1996, 124,
(1_Part_2), pp. 86–89

[3] Alberti, K.G.M.M., Zimmet, P.Z.: ‘Definition, diagnosis and classification of
diabetes mellitus and its complications. Part 1: diagnosis and classification of
diabetes mellitus. Provisional report of a WHO consultation’, Diabet. Med.,
1998, 15, (7), pp. 539–553

[4] Battelino, T., Phillip, M., Bratina, N., et al.: ‘Effect of continuous glucose
monitoring on hypoglycemia in type 1 diabetes’, Diabetes Care, 2011, 34, (4),
pp. 795–800

[5] Cryer, P.E.: ‘Minireview: glucagon in the pathogenesis of hypoglycemia and
hyperglycemia in diabetes’, Endocrinology, 2012, 153, (3), pp. 1039–1048

[6] Haidar, A., Legault, L., Messier, V., et al.: ‘Comparison of dual-hormone
artificial pancreas, single-hormone artificial pancreas, and conventional
insulin-pump therapy for glycaemic control in patients with type 1 diabetes:
an open-label randomised controlled crossover trial’, Lancet Diabetes
Endocrinol., 2015, 3, (1), pp. 17–26

[7] Lind, M., Polonsky, W., Hirsch, I.B, et al.: ‘Continuous glucose monitoring
vs. conventional therapy for glycemic control in adults with type 1 diabetes
treated with multiple daily insulin injections: the gold randomized clinical
trial’, J. Am. Med. Assoc., 2017, 317, (4), pp. 379–387

[8] Boughton, C.K., Hovorka, R.: ‘Advances in artificial pancreas systems’, Sci.
Transl. Med., 2019, 11, (484), p. eaaw4949

[9] Allen, N., Gupta, A.: ‘Current diabetes technology: striving for the artificial
pancreas’, Diagnostics, 2019, 9, (1), p. 31

[10] Hayes, A.C., Mastrototaro, J.J., Moberg, S.B., et al.: ‘Algorithm sensor-
augmented bolus estimator for semi-closed-loop infusion system’. US Patent
9,320,471, 26 April 2016

[11] Doyle, F.J., Huyett, L.M., Lee, J.B., et al.: ‘Closed-loop artificial pancreas
systems: engineering the algorithms’, Diabetes Care, 2014, 37, (5), pp. 1191–
1197

[12] Patek, S.D, Magni, L., Dassau, E., et al.: ‘Modular closed-loop control of
diabetes’, IEEE Trans. Biomed. Eng., 2012, 59, (11), pp. 2986–2999

[13] Jacobs, P.G., Youssef, J.E., Castle, J.R., et al.: ‘Development of a fully
automated closed-loop artificial pancreas control system with dual pump
delivery of insulin and glucagon’. 2011 Annual Int. Conf. IEEE Engineering
in Medicine and Biology Society, Boston, MA, USA, 2011, pp. 397–400

[14] Wang, Y., Dassau, E., Doyle, F.J.III: ‘Closed-loop control of artificial
pancreatic beta-cell in type 1 diabetes mellitus using model predictive
iterative learning control’, IEEE Trans. Biomed. Eng., 2009, 57, (2), pp. 211–
219

[15] Messori, M., Incremona, G.P., Cobelli, C., et al.: ‘Individualized model
predictive control for the artificial pancreas: in silico evaluation of closed-
loop glucose control’, IEEE Control Syst. Mag., 2018, 38, (1), pp. 86–104

[16] Boughton, C.K, Hovorka, R.: ‘Is an artificial pancreas (closed-loop system)
for type 1 diabetes effective?’, Diabet. Med., 2019, 36, (3), pp. 279–286

[17] Camacho, E.F., Bordons, C.: ‘Model predictive contro1’ (Springer-Verlag,
Berlin, Heidelberg, New York, 1998)

[18] Wang, L.: ‘Model predictive control system design and implementation using
MATLAB®’ (Springer-Verlag, London, 2009)

[19] Dougherty, D., Cooper, D.: ‘A practical multiple model adaptive strategy for
multivariable model predictive control’, Control Eng. Pract., 2003, 11, (6),
pp. 649–664

[20] Rossiter, J.A.: ‘Model-based predictive control: a practical approach’ (Taylor
& Francis, Boca Raton, New York, 2017)

Table 3 Statistic of control performance
Algorithm used % BG % BG ATE
therapy <70 mg/dl >180 mg/dl mg/dl
MPC dual control (disturbance 1) 0 0 4.31
MPC dual control (disturbance 2) 0 0 4.72
BG – Blood glucose.
 

142 IET Syst. Biol., 2020, Vol. 14 Iss. 3, pp. 133-146
This is an open access article published by the IET under the Creative Commons Attribution -NonCommercial License

(http://creativecommons.org/licenses/by-nc/3.0/)



[21] Forbes, M.G., Patwardhan, R.S., Hamadah, H., et al.: ‘Model predictive
control in industry: challenges and opportunities’, IFAC-PapersOnLine, 2015,
48, (8), pp. 531–538

[22] Benkhadra, K., Alahdab, F., Tamhane, S.U, et al.: ‘Continuous subcutaneous
insulin infusion versus multiple daily injections in individuals with type 1
diabetes: a systematic review and meta-analysis, Endocrine, 2017, 55, pp. 77–
84

[23] Bergenstal, R.M., Tamborlane, W.V., Ahmann, A., et al.: ‘Effectiveness of
sensor-augmented insulin-pump therapy in type 1 diabetes’, N. Engl. J. Med.,
2010, 363, (4), pp. 311–320

[24] Rodbard, D.: ‘Continuous glucose monitoring: a review of recent studies
demonstrating improved glycemic outcomes’, Diabetes Technol. Ther., 2017,
19, (S3), pp. S–25

[25] Bekiari, E., Kitsios, K., Thabit, H., et al.: ‘Artificial pancreas treatment for
outpatients with type 1 diabetes: systematic review and meta-analysis’, Br.
Med. J., 2018, 361, p. k1310

[26] Bondia, J., Romero-Vivo, S., Ricarte, B., et al.: ‘Insulin estimation and
prediction: a review of the estimation and prediction of subcutaneous insulin
pharmacokinetics in closed-loop glucose control’, IEEE Control Syst. Mag.,
2018, 38, (1), pp. 47–66

[27] Danne, T., Nimri, R., Battelino, T., et al.: ‘International consensus on use of
continuous glucose monitoring’, Diabetes Care, 2017, 40, (12), pp. 1631–
1640

[28] Ajjan, R., Slattery, D., Wright, E.: ‘Continuous glucose monitoring: a brief
review for primary care practitioners’, Adv. Ther., 2019, 36, (3), pp. 579–596

[29] Lunze, K., Singh, T., Walter, M., et al.: ‘Blood glucose control algorithms for
type 1 diabetic patients: a methodological review’, Biomed. Signal Proc.
Control, 2013, 8, (2), pp. 107–119

[30] Finan, D.A., Zisser, H., Jovanovic, L., et al.: ‘Identification of linear dynamic
models for type 1 diabetes: a simulation study’, IFAC Proc. Vol., 2006, 39,
(2), pp. 503–508

[31] Mazur, J.E.: ‘Mathematical models and the experimental analysis of
behavior’, J. Exp. Anal. Behav., 2006, 85, (2), pp. 275–291

[32] Parker, R.S., Doyle, F.J.: ‘Control-relevant modeling in drug delivery’, Adv.
Drug Deliv. Rev., 2001, 48, (2), pp. 211–228

[33] Nath, A., Biradar, S., Balan, A., et al.: ‘Physiological models and control for
type 1 diabetes mellitus: a brief review’, IFAC-PapersOnLine, 2018, 51, (1),
pp. 289–294

[34] Nicolao, G.D., Magni, L., Man, C.D., et al.: ‘Modeling and control of
diabetes: towards the artificial pancreas’, IFAC Proc. Vol., 2011, 44, (1), pp.
7092–7101

[35] Bergman, R.N., Phillips, L.S., Cobelli, C.: ‘Physiologic evaluation of factors
controlling glucose tolerance in man: measurement of insulin sensitivity and
beta-cell glucose sensitivity from the response to intravenous glucose’, J.
Clin. Invest., 1981, 68, (6), pp. 1456–1467

[36] González, A.A., Voos, H., Darouach, M.: ‘Glucose–insulin system based on
minimal model: a realistic approach’. 2015 17th UKSim-AMSS Int. Conf.
Modelling and Simulation (UKSim), Cambridge, UK, 2015, pp. 55–60

[37] Dias, C.C., Kamath, S., Vidyasagar, S.: ‘Modelling and simulation study of
glucose–insulin control in type 1 diabetic patient used for developing artificial
pancreas’. 2019 Amity International Conf. on Artificial Intelligence, AICAI
2019, Dubai, United Arab Emirates, 2019, pp. 653–658

[38] Colmegna, P., Sánchez Peña, R.S.: ‘Analysis of three T1DM simulation
models for evaluating robust closed-loop controllers’, Comput. Methods
Programs Biomed., 2014, 113, (1), pp. 371–382

[39] Sorensen, J.T.: ‘A physiologic model of glucose metabolism in man and its
use to design and assess improved insulin therapies for diabetes’, PhD thesis,
Massachusetts Institute of Technology, 1985

[40] Parker, R.S., Doyle, F.J., Ward, J.H, et al.: ‘Robust ∞ glucose control in
diabetes using a physiological model’, AIChE J., 2000, 46, (12), pp. 2537–
2549

[41] Hovorka, R., Canonico, V., Chassin, L.J., et al.: ‘Non-linear model predictive
control of glucose concentration in subjects with type 1 diabetes’, Physiol.
Meas., 2004, 25, (4), p. 905

[42] Dias, C.C., Kamath, S., Vidyasagar, S.: ‘Blood glucose regulation in diabetes
mellitus patients: a review on mathematical plant model and control
algorithms’, Int. J. Bioinf. Res. Appl., 2018, 14, (1–2), pp. 90–103

[43] Man, C.D., Micheletto, F., Lv, D., et al.: ‘The uva/padova type 1 diabetes
simulator: new features’, J. Diabetes Sci. Technol., 2014, 8, (1), pp. 26–34

[44] Molano-Jiménez, A., León-Vargas, F.: ‘Uva/padova t1dms dynamic model
revision: for embedded model control’. 3rd IEEE Colombian Conf. on
Automatic Control, CCAC 2017, Cartagena, Colombia, 18–20 October 2017,
pp. 1–6

[45] Semizer, E., Yüceer, M., Atasoy, I., et al.: ‘Comparison of control algorithms
for the blood glucose concentration in a virtual patient with an artificial
pancreas’, Chem. Eng. Res. Des., 2012, 90, (7), pp. 926–937

[46] Bátora, V., Tárník, M., Murgaš, J., et al.: ‘The contribution of glucagon in an
artificial pancreas for people with type 1 diabetes’. 2015 American Control
Conf., ACC 2015, Hilton Palmer House Chicago, USA, 1 July 2015, pp.
5097–5102

[47] Youssef, J.E., Castle, J., Ward, W.K.: ‘A review of closed-loop algorithms for
glycemic control in the treatment of type 1 diabetes’, Algorithms, 2009, 2, (1),
pp. 518–532

[48] Bertachi, A., Ramkissoon, C.M., Bondia, J., et al.: ‘Automated blood glucose
control in type 1 diabetes: a review of progress and challenges’, Endocrinol.,
Diabetes Y Nutrición (English ed.), 2018, 65, (3), pp. 172–181

[49] Russell, S.J., El-Khatib, F.H., Sinha, M., et al.: ‘Outpatient glycemic control
with a bionic pancreas in type 1 diabetes’, N. Engl. J. Med., 2014, 371, (4),
pp. 313–325

[50] Bátora, V., Tárnik, M., Murgaš, J., et al.: ‘Bihormonal model predictive
control of blood glucose in people with type 1 diabetes’. 2014 IEEE Conf.
Control Applications (CCA), Juan Les Antibes, France, 2014, pp. 1693–1698

[51] Boiroux, D., Bátora, V., Hagdrup, M., et al.: ‘Adaptive model predictive
control for a dual-hormone artificial pancreas’, J. Process Control, 2018, 68,
pp. 105–117

[52] Resalat, N., Youssef, J.E., Reddy, R., et al.: ‘Design of a dual-hormone model
predictive control for artificial pancreas with exercise model’. 2016 38th
Annual Int. Conf. IEEE Engineering in Medicine and Biology Society
(EMBC), Disney's Contemporary Resort Orlando, USA, 2016, pp. 2270–2273

[53] Ning, H., Wang, Y.: ‘Bihormonal artificial pancreas system based on
switching model predictive control’. 2015 34th Chinese Control Conf. (CCC),
Hangzhou, China, 2015, pp. 4156–4161

[54] Steil, G.M., Rebrin, K., Janowski, R., et al.: ‘Modeling-cell insulin secretion-
implications for closed-loop glucose homeostasis’, Diabetes Technol. Ther.,
2003, 5, (6), pp. 953–964

[55] Gantt, J.A., Rochelle, K.A., Gatzke, E.P.: ‘Type 1 diabetic patient insulin
delivery using asymmetric pi control’, Chem. Eng. Commun., 2007, 194, (5),
pp. 586–602

[56] El-Khatib, F.H., Russell, S.J., Nathan, D.M., et al.: ‘A bihormonal closed-loop
artificial pancreas for type 1 diabetes’, Sci. Transl. Med., 2010, 2, (27), pp.
27ra27–27ra27

[57] Bakhtiani, P.A., Zhao, L.M., Youssef, J.E., et al.: ‘A review of artificial
pancreas technologies with an emphasis on bihormonal therapy’, Diabetes,
Obes. Metab., 2013, 15, (12), pp. 1065–1070

[58] Shahriar, M.S., Ahmed, M.A., Rahman, M., et al.: ‘Comparison of MPC and
conventional control methods for the stability enhancement of UPFC
connected SMIB system’. 2013 Second Int. Conf. Advances in Electrical
Engineering (ICAEE), Dhaka, Bangladesh, 2013, pp. 223–228

[59] Christiansen, S.C., Fougner, A.L., Stavdahl, Ø., et al.: ‘A review of the
current challenges associated with the development of an artificial pancreas
by a double subcutaneous approach’, Diabetes Ther., 2017, 8, (3), pp. 489–
506

[60] Tang, F., Wang, Y.: ‘Economic model predictive control of bihormonal
artificial pancreas system based on switching control and dynamic r-
parameter’, J. Diabetes Sci. Technol., 2017, 11, (6), pp. 1112–1123

[61] Samadi, S., Rashid, M., Turksoy, K., et al.: ‘Automatic detection and
estimation of unannounced meals for multivariable artificial pancreas
system’, Diabetes Technol. Ther., 2018, 20, (3), pp. 235–246

8 Appendix

8.1 Mathematical model

The entire SoM with the model diagram and the equations derived
from it is explained below; Dr. John Thomas Sorensen developed a
physiologic model using anatomical organ and tissue
compartments for simulating glucose metabolism and its regulation
by insulin and glucagon in normal man. Mass balance equations
were written to account for blood flow, exchange between
compartments, and metabolic processes causing addition or
removal of glucose, insulin, and glucagon, yielding 19 ODE
equations. The body has been divided into six physiologic
compartments [39, 40]:

• Brain, which represents the central nervous system.
• Heart and lungs, which represent the rapidly mixing vascular

volumes of the heart, lungs, and arteries.
• Periphery, which includes skeletal muscle and adipose tissue.
• Gut.
• Liver.
• Kidney.

In general, subscripts distinguish physiologic compartments and, if
required, a second subscript is included to indicate fluid spaces
within compartments (Fig. 15). Superscripts indicate respective
models (glucose, insulin, or glucagon). The physiologic processes
are modelled as metabolic sources and sinks, which can occur at a
constant rate or at a rate, which is mediated in a non-linear manner
by relevant changes in glucose, insulin, and glucagon
concentrations, which are shown in Figs. 1–3 [39, 40].

The mathematical patient model given by J.T. Sorensen was
divided into three parts: glucose model, insulin model, and
glucagon model each having a set of differential equations for
describing its metabolism (Fig. 16). The glucose model contains
tissues including heart, brain, liver, kidney, and muscle, where the
glucose is used for energy (Fig. 17). Glucose excretion by kidney
and gastrointestinal tract, where the exogenous glucose enters the
blood, is also included. The glucose model consists of eight
differential equations describing the glucose metabolism of the
body. The insulin model includes subcutaneous tissue as a source
for insulin. It is assumed that pancreas completely lacks the insulin
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production. Removal and degradation of insulin occurs mostly in
liver, kidney, and peripheral tissue, they degrade one-half, one-
third, and one-sixth, respectively, of the insulin presented to them,
regardless of the plasma concentration of insulin. The glucagon
model is a little simplified as compared with the glucose and
insulin model consisting of a single differential equation modelled
as shown below. When the glucose, insulin, and glucagon model
are converted into a subsystem, and the interconnections between
them are made, then a complete SoM is obtained. Mass balance
equations were written to account for blood flow, exchange
between compartments, and metabolic processes causing addition
or removal of glucose, insulin, and glucagon, yielding 19
differential equations.

Mass balances for the glucose model result in a set of eight
simultaneous ODE equations, which are non-linear as a result of
metabolic source and sink rates. In addition, it is through these
metabolic rates which depend on insulin and glucagon
concentrations that the glucose model is coupled to the insulin and
glucagon models, respectively. The mass balance equation of
glucose model is given below (Tables 4–7): 

Brain

VBV
G dGBV

dt
= QB

G(GH − GBV) −
VBI

G

TB
(GBV − GBI) (48)

VBI
G dGBI

dt
=

VBI
G

TB
(GBV − GBI) − ∑BGU (49)

Heart and lungs

VH
G dGH

dt
= QB

G
GBV + QL

G
GL + QK

G
GK

+QP
G

GPV − QH
G

GH − ∑RBCU

(50)

Gut

VG
G dGG

dt
= QG

G(GH − GG) − ∑GGU (51)

Liver

VL
G dGL

dt
= QA

G
GH + QG

G
GG − QL

G
GL

+QP
G

GPV + SHGP − ∑HGU

(52)

Kidney

VK
G dGK

dt
= QK

G(GH − GK) − ∑KGE (53)

Fig. 15  Representation of Sorensen glucose model
 

Fig. 16  Representation of Sorensen insulin model
 

Fig. 17  Representation of Sorensen glucagon model
 

Table 4 Variable description for glucose subsystem [6]
Variables Description Unit
G glucose concentration mg/dl
Q vascular water flow rate dl/min
T transcapillary diffusion time min
V volume dl
∑ metabolic sources and sink rate mg/min
t time min

 

Table 5 First subscript: physiologic compartment for
glucose subsystem
Variables Description
B brain
G but
H heart
K kidney
L liver
P periphery
A hepatic artery

 

Table 6 Second subscript: physiologic compartment for
glucose subsystem
Variables Description
I interstitial fluid space
V vascular blood water space

 

Table 7 Metabolic rate subscript for glucose subsystem
Variables Description
BGU brain glucose uptake
GGU gut glucose uptake
HGP hepatic glucose production
HGU hepatic glucose uptake
KGE kidney glucose excretion
PGU periphery glucose uptake
RBCU red blood cell glucose uptake
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Periphery

VPV
G dGPV

dt
= QP

G(GH − GPV) −
VPI

G

TP
(GPV − GPI) (54)

VPI
G dGPI

dt
=

VPI
G

TP
(GPV − GPI) − ∑PGU (55)

where the sources and sinks of glucose subsystem are characterised
as: mass balances for the insulin formulation result in a set of seven
simultaneous differential equations which are linear, except for the
liver, where the rate of pancreatic insulin release (PIR) as an
insulin source term is computed from an additional set of three
ODE equations which constitute the model pancreas formulation
brain (Tables 8 and 9) 

VB
I dIB

dt
= QB

I (IH − IB) (56)

Heart and lungs

VH
I dIH

dt
= QB

I
IB + QL

I
IL + QK

I
IK + QB

P
IPV − QB

H
IH + U (57)

Gut

VG
I dIG

dt
= QG

I (IH − IG) (58)

Liver

VL
I dIL

dt
= QA

I
IH + QG

I
IG − QL

I
IL + SPIR − ∑LIC (59)

Kidney

VK
I dIK

dt
= QK

I (IH − IK) + ∑KIC (60)

Periphery

VPV
I dIPV

dt
= QP

I (IH − IPV) +
VPI

I

TP
I

(IPV − IPI) (61)

VPI
I dIPI

dt
=

VPI
I

TP
I

(IPV − IPI) − ∑PIC (62)

where the glucagon model is described using a one compartment
formulation that represents the whole body fluid distribution
volume for glucagon (Tables 10–15). Glucagon is cleared from the
body at a rate, which is a linear function of its plasma level, and
glucagon is released from the pancreas as a non-linear function of
arterial glucose and insulin concentrations (Tables 16). The
glucagon mass balance equation is given by [6]:

V
Γ dΓ

dt
= SPΓR − ∑PΓC (63)

where these equations are linearised with an operating point and
initial conditions are found and the linear equations are developed
to get the state model.

Table 8 Superscript for glucose subsystem
Variable Description
G glucose

 

Table 9 Sources and sinks of glucose subsystem
Physiologic process Rate is a function of Process is
sinks — —
red blood cell uptake constant —
brain uptake constant —
gut uptake constant —
peripheral uptake peripheral interstitial glucose linear
— peripheral plasma glucose non-linear
urinary excretion kidney plasma glucose non-linear
hepatic uptake liver glucose non-linear
— liver insulin non-linear
sources — —
hepatic production liver glucose non-linear
— liver insulin non-linear
— plasma glucagon non-linear

 

Table 10 Variable description for insulin subsystem [6]
Variables Description Unit
I insulin concentration mU/dl
Q vascular blood water flow rate 1/min
T transcapillary diffusion time min
V volume l
∑ metabolic sources and sink rate mU/min
t time min

 

Table 11 First subscript: physiologic compartment for
insulin subsystem
Variables Description
B brain
g gut
H heart
K kidney
L liver
P periphery
A hepatic artery

 

Table 12 Second subscript: physiologic compartment for
insulin subsystem
Variables Description
I interstitial fluid space
V vascular blood water space

 

Table 13 Metabolic rate subscript for insulin subsystem
Variables Description
KIC kidney insulin clearance
LIC liver insulin clearance
PIC peripheral insulin clearance
PIR pancreatic insulin release

 

Table 14 Superscript for insulin subsystem
Variable Description
I insulin

 

Table 15 Sources and sinks of insulin subsystem
Physiologic process Rate is a function of Process is
sinks — —
liver clearance liver insulin linear
kidney clearance kidney insulin linear
peripheral clearance peripheral interstitial insulin linear
sources — —
PIR heart and lung glucose non-linear
Sources and sinks of insulin subsystem is characterised.
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8.2 Expansion of variable in Fig. 2

In Fig. 2, the legend consists of state variables, these 19 state
variables are expanded in the table below and the differential
equation from (2) to (20) contains the same state variables these are

expanded in the same table (Tables 17–19). The detailed
explanation of the parameters are available in the [29].

Table 16 Variable description for glucagon subsystem
Variables Description Unit
Γ glucagon concentration pg/ml
V

Γ glucagon distribution volume ml

SPΓR pancreatic glucagon release rate μg/min

∑PΓC plasma glucagon clearance rate pg/min
t time min

 

Table 17 Superscript for glucose subsystem
Variable Description
G glucose
 

Table 18 First subscript: physiologic compartment for
glucose subsystem
Variables Description
B brain
G gut
H heart
K kidney
L liver
P periphery
A hepatic artery
 

Table 19 Second subscript: physiologic compartment for
glucose subsystem
Variables Description
I interstitial fluid space
V vascular blood water space
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