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Abstract: The distinct molecular subtypes of lung cancer are defined by monogenic biomarkers, such
as EGFR, KRAS, and ALK rearrangement. Tumor mutation burden (TMB) is a potential biomarker for
response to immunotherapy, which is one of the measures for genomic instability. The molecular
subtyping based on TMB has not been well characterized in lung adenocarcinomas in the Chinese
population. Here we performed molecular subtyping based on TMB with the published whole exome
sequencing data of 101 lung adenocarcinomas and compared the different features of the classified
subtypes, including clinical features, somatic driver genes, and mutational signatures. We found
that patients with lower TMB have a longer disease-free survival, and higher TMB is associated with
smoking and aging. Analysis of somatic driver genes and mutational signatures demonstrates a
significant association between somatic RYR2 mutations and the subtype with higher TMB. Molecular
subtyping based on TMB is a potential prognostic marker for lung adenocarcinoma. Signature 4 and
the mutation of RYR2 are highlighted in the TMB-High group. The mutation of RYR2 is a significant
biomarker associated with high TMB in lung adenocarcinoma.
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1. Introduction

Lung cancer is the most frequently diagnosed cancer and one of the leading causes of cancerous
deaths globally [1]. In the USA in 2019, the estimated new cases of lung cancer were 228,150 and
the number of estimated deaths was 142,760 [2]. In China in 2015, the age standardized incidence
rate of lung cancer was 733,300, and the estimated mortality was 610,200 [3]. Adenocarcinoma is
one of the most common histologic types of lung cancer. Cancer is a complex disease caused by the
accumulation of genetic alteration and genome instability [4]. Many endogenous and exogenous
factors, such as DNA damage repair inactivation, DNA erroneous replication, microsatellite instability,
and carcinogen exposure, can lead to increased somatic mutations. The total number of mutations
occurring in a tumor specimen is termed the tumor mutation burden (TMB), which sketches out the
status of genomic mutation [5]. Notably, tobacco smoking is the major cause of lung adenocarcinoma,
with a high mutation burden [6].

Recent efforts have been made to link genomic mutation profiling to patient characteristics with
clinical outcome accelerated precision medicine. There is compelling evidence emerging that TMB is a
biomarker of response to immunotherapy, since higher TMB is likely to harbor more neoantigens as
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targets for activated immune cells. The positive relationship between TMB and response to CTLA-4
and PD-1 inhibition has been shown in melanoma and non-small cell lung cancer [7,8]. The increased
frequencies of base pair substitution mutations have been described as one form of genomic instability,
which is an evolving hallmark of cancer [9]. TMB, as one of the indications of genomic instability,
may also be a biomarker for characterizing patients who could be treated by immunotherapy. The
Cancer Genome Atlas (TCGA) project has used whole exome sequencing (WES) to measure TMB
across 30 cancer types [10]. However, the study did not comprehensively explore the associations
between TMB and lung cancer patient clinical outcomes. Thus, a precise understanding of TMB in
lung adenocarcinoma is still lacking.

To this end, we performed a molecular subtyping based on TMB and analyzed the difference
between high TMB (TMB-H) and low TMB (TMB-L) from the aspects of clinical features, somatic
driver genes, and mutational signatures. Our analysis showed that TMB may be a potential prognostic
assessment marker and identified the significant difference between the RYR2 mutations of TMB-H
and TMB-L, which encodes a protein called ryanodine receptor 2 that is responsible for calcium ion
transportation within cells. Furthermore, unbiased enrichment analysis also showed that RYR2 was
associated with Signature 4 in TMB-H, which exhibits C > A mutations and is associated with smoking
as described in COSMIC (https://cancer.sanger.ac.uk/cosmic/signatures).

2. Results

2.1. Molecular Subtyping Based on Mutation Burden

Across the data from LUAD_BGI as described in methods, the values of TMB vary from 7 to 1126,
with a mean value of 163.5 (Figure 1A). To determine the critical value of TMB, we took the routine
method into account, that population is always divided into groups by mean or median values. For
further consideration, we used a dynamic programing optimal univariate k-means clustering method
to choose a better grouping threshold between mean and median values. The groups divided by the
mean of TMB resemble the cluster result of optimal univariate k-means clustering (Figure 1B). Finally,
33 patients were classified into the TMB-H group, while the other 68 patients were classified into the
TMB-L group in accordance with the mean of TMB.
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Figure 1. The distribution of TMBs. (A) The TMB stratified patients into high mutation burden and
low mutation burden types. The threshold is the mean of TMBs of 101 patients, which is equal to 163.5.
(B) Three clusters divided by optimal univariate k-means clustering and the cluster 1 was strongly
similar to the low mutation burden type.

2.2. Somatic Driver Genes from Personal Mutation Background

Somatic mutations, including nonsense, missense, splice site, synonymous, frame-shift indel, and
nonframe-shift indel, were detected in 33 cases and 68 cases in TMB-H and TMB-L, respectively. To
determine the individual mutation profile, we used iCAGES to identify somatic driver genes based on
the somatic mutation background and the TMB status of each case as described in the method section.

https://cancer.sanger.ac.uk/cosmic/signatures
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The comprehensive scores of candidate somatic driver genes were evaluated based on their mutational,
functional, and drug actionable characteristics.

In the total 101 cases of the LUAD_BGI cohort, 27 somatic driver genes were identified and
mutated in at least five cases. In those somatic driver genes, 10 genes, TP53 (40%), EGFR (28%), CDC27
(20%), KRAS (14%), LAMA2 (8%), PIK3CA (7%), TRIO (7%), ATR (6%), BRAF (5%), and ALK (5%) were
previously reported, whereas the other 17 genes, RYR2 (29%), COL11A1 (13%), HERC2 (11%), LRP2
(11%), SI (11%), RELN (9%), ITGA8 (9%), UBR4 (8%), HTT (7%), ADCY2 (7%), COL5A1 (7%), FGA
(7%), GRM1 (7%), GLI3 (6%), TSHR (6%), GRIA1 (5%), and SCN5A (5%) were not reported previously
(Figure 2). In particular, TP53, EGFR, RYR2, KRAS, and CDC27 were identified as driver genes in more
than 10 cases using ICAGEs. Importantly, only RYR2 was reported for the first time as the mutated
cancer driver according to the Cancer Gene Census [11] and IntOGen [12].
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Figure 2. Mutational landscape and the clinical information of 101 patients. The upper side of Figure 2
shows the details of tumor mutation burden (TMB) and the clinical information of each patients. The
middle panel of Figure 2 shows the genetic alterations, such as frameshift indel, non-frameshift indel,
nonsense mutation, missense mutation, splice site mutation, and synonymous mutation. The left
barplot shows the mutational frequency of each gene. The right barplot emphasizes the significant
degree of mutation status of each gene, and the p-values were adjusted by the Benjamini and Hochberg
method (BH). TMB-H, High tumor mutation burden; TMB-L, Low tumor mutation burden.
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To determine the driver genes differential between TMB-H and TMB-L, the fisher exact test was
performed to figure out the significant driver genes. The mutational status of 14 genes was significantly
different between the TMB-H and TMB-L groups and enriched in the TMB-H group. For EGFR, CDC27,
and PIK3CA there was only a mutational tendency, indicating a potential feature in the TMB-L group.
Among these 14 genes, RYR2 was the most significant gene with a q value of 6.69 × 10-5, indicating the
overrepresentation of mutated RYR2 in the TMB-H group (Figure 2).

For the 27 driver genes, TMB was significantly higher among patients with vs. patients without
an alteration in TP53, RYR2, KRAS, CDC27, COLA11A1, RELN, GLI3, HERC2, HTT, LAMA2, LRP2, SI,
ADCY2, ATR, FGA, GRIA1, GRM1, ITGA8, SCN5A, TRIO, TSHR, and UBR4. TMB was most significantly
higher among patients with vs. patients without an alteration in RYR2 (p-value = 7.35 × 10-8, Figure 3).
Patients with the EGFR mutation were not associated with high TMB, which was similar to the result
that TMB was significantly lower among patients with the EGFR mutation [13].
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Figure 3. TMB in patients with different mutation status of driver genes. We analyzed TMB status in
patients with all 27 different somatic driver genes identified in at least five cases from the total 101 cases
of the LUAD_BGI cohort. Notably, TMB is most significantly higher among patients with vs. patients
without an alteration in RYR2. MUT: mutation; WT: wild type.
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2.3. An Overview of the Clinical Implications Associated with TMB

Next, we integrated clinical features of the 101 cases into the aforementioned molecular subtypes
to explore whether the clinical features were associated with the two TMB groups. Among the clinical
factors, such as age, metastasis status, smoking history, and tumor stage, only smoking history and
age were associated with TMB levels. There were significantly more patients over the age of 65, or
with smoking history, in the TMB-H group with a p-value of 0.0006 and 0.042, respectively (Figure 4A).
Higher percentages of patients who were under worse status, such as late tumor stage and tumor
metastasis condition, were also observed in the TMB-H group, indicating that these clinical factors
may be associated with higher TMB levels to some degree (Figure 4A). Further analysis showed a
disparity in the number of TMB between the age >=65 and age <65 groups, and between the smoker
and non-smoker groups, demonstrating that the accumulation of TMB in the age >=65 and the smoker
group is much higher than the age <65 group (p-value = 0.0141) and the non-smoker group (p-value =

0.0009) (Figure 4B,C). Fisher exact tests showed a positive association between the RYR2 mutation
and smoking history (p-value = 0.0062, Figure 4D). Further, Kaplan–Meier survival analysis showed a
significantly longer disease-free survival (DFS) in patients with low TMB levels after surgery (p-value
= 0.0133, Figure 5A); even though the p-value is not significant in the survival analysis of RYR2
mutational status, patients without the RYR2 mutation showed the tendency of longer DFS (Figure 5B).
This result suggests that TMB is potentially associated with favorable DFS in lung adenocarcinoma.
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Figure 4. The association between clinical features and TMB. (A) The percentage of patients with
different clinical features, including age, metastasis status, smoking status, and tumor stage, in TMB-H
and TMB-L groups. (B) The association between TMB and age. (C) The association between TMB and
smoking history. (D) The association between RYR2 mutational status and smoking history.
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2.4. Mutation Signature Analysis of Lung Adenocarcinoma in TMB Subtypes

To understand the mutation accumulation processes during lung adenocarcinoma, we performed
mutational signature analysis on these 101 cases. We applied a Bayesian NMF algorithm to mutation
counts, stratified by 96 trinucleotide mutational contexts to infer (i) the number of operating mutational
processes, (ii) their signatures (96 normalized weights per process), and (iii) the pattern of each signature
in lung adenocarcinoma (the estimated number of mutations associated with each signature) [14].

Our analysis identified three mutational signatures in the LUAD-BGI cohort, and we compared
them with those applied by the Sanger Institute, which are described in the COSMIC database
(http://cancer.sanger.ac.uk). Signature W1, characterized by C > G transversions and C > T transitions
at TpCp[A/C/G/T] motifs, corresponds to COSMIC Signature 2 (cosine similarity of 0.85), which is also
attributed to the activity of the AID/APOBEC family of cytidine deaminases (Figure 6A). Signature
W2, characterized by C > A transversions at a broad spectrum of bases context, closely resembles
COSMIC Signature 4 (cosine similarity of 0.96). COSMIC Signature 4 is associated with smoking, and
its profile is similar to the mutational pattern observed in experimental systems exposed to tobacco
carcinogens (e.g., benzo[a]pyrene). Signature W3, characterized by C > T transitions at [A/C/G]pCpG
motifs, corresponds to COSMIC Signature 6 (cosine similarity of 0.91) that is associated with defective
DNA mismatch repair.
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Figure 6. Mutational signature analysis of 101 patients. (A) A Bayesian NMF algorithm was applied to
identify signatures from the matrix of mutation counts according to 96 types of trinucleotide motifs.
Three mutational signatures are identified. (B) The distribution of three mutational signatures in
the TMB-H and TMB-L groups. Signature W2 is predominant in the TMB-H group. (C) Mutation
enrichment analysis identifies the association between RYR2 mutations and pattern of Signature W2.
RYR2 was the top significant gene.

http://cancer.sanger.ac.uk
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The TMB-H and TMB-L groups were clearly distinguished by mutation signature spectrums,
especially the pattern of Signature 4 (Figure 6B, Wilcoxon rank-sum test, p-value = 9.984 × 10-9),
suggesting an underlying influence of mutation signature on molecular subtyping.

We next performed signature enrichment analysis to further characterize mutated genes associated
with Signature 4. We compared the pattern of Signature 4 in tumors that harbored a nonsynonymous
mutation in the gene and tumors that did not cross the LUAD_BGI cohort. To exclude the noise
resulting from TMB, we assessed the significance level using a permutation-based method that controls
the TMB in each sample [14]. We found that RYR2 was the most significant gene associated with
Signature 4 (Figure 6C).

2.5. Profile of Gene Expression Level in TMB Subtypes

Unsupervised hierarchical clustering analysis was performed, based on 212 differential genes in
56 samples, 19 of which were from TMB-H and 37 samples from TMB-L. We identified two mRNA
groups with distinct TMB characteristics, which corresponded to TMB subtypes, with only one sample
of TMB-H clustered to TMB-L (Figure 7). We also found a gene cluster with 19 genes (FMN1, FHIT,
FDXR, HHLA2, F2RL1, PLXNA2, TNKS1BP1, CACNB1, SPINK5, BTBD9, CRYM, MPV17L, SH3RF2,
SULT1C2, ABCC3, FCGBP, ST6GALNAC1, CLDN1, GDF15) that were down-regulated in TMB-H. Using
gene set enrichment analysis, we identified that these genes were significantly enriched (FDR < 0.05),
with a gene set that was down-regulated in epidermis after Ultraviolet B irradiation associated with
mutations accumulation [15].
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Figure 7. Unsupervised hierarchical clustering of 56 patients identifies two mRNA clusters/groups.
The TMB feature is indicated by the annotation bars above the heatmap.



Int. J. Mol. Sci. 2019, 20, 4251 8 of 13

3. Discussion

We constructed a molecular subtype model based on the TMB status and showed that the patients
from the LUAD_BGI cohort can be further stratified into TMB-H and TMB-L subtypes by the mean
of population TMBs. This observation was similar to the result from the analysis using the dynamic
programing optimal univariate k-means clustering method. Patients in the subset of TMB-L had a
better prognosis, as evidenced by a longer DFS, compared with patients in the TMB-H subset. TMB as
a genomic marker of prognosis and a predictor of treatment response has been reported in ovarian
cancer [16]. In this study, for the first time, we demonstrated that lower TMB predicts more favorable
DFS in patients with lung adenocarcinoma in the Chinese population. The molecular subsets of
TMB-L and TMB-H could assist the assessment of prognosis for further clinical research of lung cancer.
Exploring the clinical features associated with TMB is also essential to understand and characterize
the implications of the molecular subtypes based on TMB. Higher TMB was significantly associated
with the group of patients older than 65, or with smoking history, which were the risk factors of
carcinogenesis in a common sense [17]. The TMB-H group consisted of patients associated with cancer
risk factors, such as smoking and aging, and are in accord with the result of unfavorable prognosis.
Non-smokers had a significantly better prognosis compared to current smokers, and older age was an
independent predictor of early mortality [18]. A systematic review with meta-analysis also provided
the evidence that smoking cessation after diagnosis of early stage lung cancer improves prognostic
outcomes [19]. There were mutually verifying relationships between the results of survival analysis
and clinical features association analysis [20,21]. Compared with other genome-based molecular
subtyping studies [22–24], this finding highlighted the importance of molecular subtyping based on
TMB in clinical utility.

However, recent research has demonstrated that high TMB was associated with a better prognosis
in patients with resected non-small-cell lung cancer (NSCLC), while lung cancer-specific survival with
adjuvant chemotherapy was more significant in patients with low TMB [25]. We speculate that one
of the possible explanations could be the different regions of genes found while calculating the TMB
result in the different associations between TMB and prognosis, and, in our study, TMB was calculated
by nonsynonymous mutations in whole exon regions, not targeted panels. These observations and
underlying mechanisms between TMB and prognosis should be confirmed by further studies.

In addition to deciphering the association of TMB with clinical features, we also analyzed
mutational signatures in the TMB subtypes, and we found that the Signature 4 pattern was increased
in the TMB-H group by using signature enrichment analysis as shown in Figure 6. Noteworthy,
the Signature 4 pattern is found to be associated with smoking only in the cancer types in which
tobacco smoking increases risk and mainly in those derived from epithelia directly exposed to tobacco
smoke [26]. Signatures from polycyclic aromatic hydrocarbon, which is the mutagenic component
of tobacco smoke, show greatest similarity to Signature 4 [27]. Patients with mutational landscapes
dominated by C > A transversions, such as Signature 4, were likely to benefit from immune checkpoint
blockade, and this smoking signature was predictive of immune checkpoint blockade response, which
has a positive relationship with TMB-H [8,28]. The inter relations of TMB with smoking demonstrated
that the TMB triggered by tobacco exposure might be detected as the profile of Signature 4 in TMB-H.

Additionally, we identified an association between Signature 4 and somatic mutations in RYR2,
which was also mutated significantly in TMB-H, providing important insights for molecular subtyping
based on TMB. RYR2, ryanodine receptor 2, encodes a ryanodine receptor found in cardiac muscle
sarcoplasmic reticulum and induces the release of calcium from the sarcoplasmic reticulum into the
cytosol [29]. We found a high proportion of synonymous mutations in RYR2 (38%, 11/29) and an
insignificant tendency for longer DFS in patients without RYR2 mutations. Considering the association
between RYR2 mutational status and smoking history, mutations in RYR2 might be accumulated
during the history of tobacco exposure and play roles as passenger mutations to impact the process
of lung adenocarcinoma. Passenger mutations that fall within coding regions or functional elements
could cause potential deleterious effects on cancer development [30]. Nicotine, the major component
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of tobacco smoke, upregulates RYR2 via enhanced network Ca2+ activity [31]. The association between
the RYR2 mutation and smoking might provide a plausible explanation for the association between the
RYR2 mutation and the Signature 4 pattern. Mutations in RYR2 are frequently reported in ventricular
tachycardia [32,33] and arrhythmogenic right ventricular dysplasia type 2 [34]. Although RYR2 is
known to be associated with heart disease, RYR2 as one of the components of a calcium channel that
also influences calcium signaling in airway smooth muscle cells [35–37]. Recent research demonstrated
the association between RYR2 and asthma by genome-wide analysis [38]. Also, cigarette smoke
exposure causes down-regulation of ryanodine receptors in mice, and airway smooth muscle and small
airway contraction, which is a major site of airflow limitation in chronic obstructive pulmonary disease
(COPD) [39]. Therefore, mutations in RYR2 may result in the alteration of airway smooth muscle and
asthma, which is a possible risk factor for lung cancer [40,41]. This is a possible underlying mechanism
by which the association between RYR2 and lung cancer could arise.

Together, we performed a comprehensive analysis on TMB in lung adenocarcinoma, and our
results suggests that molecular subtyping based on TMB could be considered as a prognostic marker.
Also, Signature 4 and the significance of mutation in RYR2 are highlighted in the TMB-H group.
Further studies are needed to characterize the mechanism underlying mutation of RYR2 in lung cancer
and to explore potential relationships between RYR2 and high TMB.

4. Materials and Methods

4.1. Lung Adenocarcinoma Genome Data

All the somatic mutations data, transcriptome sequencing data, and clinical information were
downloaded and collected from previously published Chinese lung adenocarcinoma projects [42].
The clinical information was provided as Supplementary Data. The data reported in this study are
also available in the CNGB Nucleotide Sequence Archive (CNSA: https://db.cngb.org/cnsa; accession
number CNP0000249). This project hereinafter will be referred to as LUAD_BGI. The primary tumor
specimens were obtained from patients with lung adenocarcinoma who underwent surgical resection.
None of the patients were subjected to chemotherapy or radiotherapy before surgery.

4.2. Mutation Burden Cluster

Tumor mutational burden (TMB) is defined by the number of somatic mutations per genome area
for target sequencing [43]; for WES data, TMB is defined by the number of somatic mutations [44].
Considering the instability of outliers in the LUAD_BGI somatic mutation data, we used dynamic
programming to cluster univariant data given by the mutation burden of all the samples into optimal
groups. This algorithm guarantees the optimality of clustering based on the minimum within-cluster
sums of squares to give the optimal number of clusters k. To test the cluster number k, a range from 1
to 9 is provided for k, and the optimal number of clusters was determined by Bayesian information
criterion. The R package, Ckmeans.1d.dp [45], was performed for selecting the optimal number of
clusters k.

4.3. Identification of Somatic Driver Genes

We predicted somatic driver genes using iCAGES [46], an efficient tool to search cancer driver
genes, based on the somatic mutation data of each case. Three layers of analysis steps were executed
with the iCAGES tool. In the first layer, a support vector machine (SVM) was trained on somatic
single nucleotide variants from COSMIC and Uniport databases to calculate the SVM score and
evaluate the driver mutation potential of each mutation. The second layer weighed each mutation
through integrating candidate mutation from the first layer with prior biological knowledge on
genetic-phenotypic association information. The third layer prioritized for candidate driver mutation
with corresponding drug activity scores from the PubChem database. For the identified somatic driver
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genes, they were selected from the iCAGES candidate gene list if the gene was regarded as a driver
gene in at least five cases.

4.4. Mutation Signature Analysis

The mutation signature analysis is a procedure for deconvoluting cancer somatic mutation counts,
stratified by mutation contexts or biologically meaningful subgroups, into a set of characteristic
signatures and inferring the pattern of each of the discovered signatures across samples. All single
nucleotide variants (SNVs) were classified into 96 possible mutation categories based on the six base
substitutions (C > A, C > G, C > T, T > A, T > C and T > G) according to complementary base-pairing
and 16 possible combinations of neighboring bases within the trinucleotide sequence context. We used
Signature Analyzer, which uses a Bayesian variant of NMF and was recently applied to several cancer
genome projects [14,47]. To compare the values of the signature pattern from the TBM-L and TMB-H
groups, the Wilcoxon rank-sum test was used to identify mutation signature difference.

4.5. Permutation Test of Signature Enrichment Analysis

The correlation between the pattern of signatures and the overall TMB could confuse the
relationship of genes and the associated signatures. A traditional statistical test, which compares
the pattern of signatures among samples where the gene is wild type versus mutant for searching
discrepant genes, overestimates the significance of p values related to TMB. The samples with a higher
TMB prefer to generate more mutations, which confound the statistical test power.

We controlled both the gene-specific and sample-specific mutation counts during the random
permutation process to generate a gene x sample binary mutation matrix, following the ‘Curveball
algorithm’ described by Strona et al. [48]. We used the one-tailed Wilcoxon rank-sum test to compare
the signature pattern of wild and mutant samples of a given gene. The statistic Tobserved was a Wilcoxon
statistic of actually observed data; the statistic Tr

random was a Wilcoxon statistic of every permuted
binary mutation matrix, where r = 1, 2, . . . , 200,000, the total number of permutation times. The finial
p value of a given gene was the fraction of Tr

random more extreme than Tobserved. This permutation test
was followed by the description from Kim et al. [14].

4.6. Gene Expression Analysis

The gene expression level was calculated by the RPKM method [49] from 56 lung adenocarcinomas
in LUAD_BGI. Differential gene expression was determined by edgeR, a Bioconductor package [50],
between high TMB and low TMB groups.

Supplementary Materials: The following are available online at http://www.mdpi.com/1422-0067/20/17/4251/s1.
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