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Abstract

Sonoporation is a drug and gene delivery system using ultrasonication that allows the intra-

cellular delivery of foreign molecules that cannot enter cells under normal conditions. We

previously reported that sonoporation with microbubbles (MBs) could achieve effective intra-

cellular drug delivery to human gingival squamous carcinoma Ca9-22 cells. In this study, we

developed anti-epidermal growth factor receptor (EGFR) antibody-conjugated MBs (EGFR-

MBs) and evaluated their capacity to enhance anti-cancer drug toxicity in vitro and in vivo.

We first assessed the effect of sonoporation with EGFR-MBs on Ca9-22 cells by the WST-8

assay, flow cytometry and Hoechst’s staining in vitro. Sonoporation and EGFR-MB had a

strong cytotoxic effect on Ca9-22 cells with low-dose bleomycin. Furthermore, bleomycin

delivery using sonoporation with EGFR-MBs remarkably increased the number of apoptotic

cells. We next examined the effect of EGFR-MBs in a murine squamous cell carcinoma

model. Bleomycin delivery by sonoporation with EGFR-MBs exhibited remarkable antitumor

activity. Together, our results show that EGFR-MBs and ultrasound treatment increases the

efficacy and specificity of intracellular drug uptake, suggesting this could be a novel drug-tar-

geting modality for oral squamous cell carcinoma chemotherapy treatment.

Introduction

Medical ultrasound (US) imaging has made remarkable progress in the development of clinical

US technology. Due to its safety and convenience, US imaging has become an indispensable tool

for various medical and scientific fields. Recently, ultrasonication has been proposed as an effec-

tive drug and gene delivery system for treatment [1]. US creates transient permeability of the cell

membrane that enables foreign molecules to enter cells, a process known as sonoporation [2,3].
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The effect of sonoporation is further enhanced by the presence of microbubble (MB) echo con-

trast agents [4–6]. We previously reported that these techniques can be used to load anti-prolifer-

ating agents and plasmid DNA into cells [7].

Epidermal growth factor receptor (EGFR) is a 170 kDa receptor tyrosine kinase consisting

of an extracellular ligand binding domain in the amino terminal followed by a hydrophobic

transmembrane domain [8]. EGFR is involved in cell proliferation, migration, invasion and

survival [9]. EGFR overexpression is found in a number of human malignancies, including

breast, ovary, bladder, kidney, pancreas and oral cancers [10]. Therefore, EGFR is an attractive

target for antitumor treatment [11,12]. We previously demonstrated that sonoporation with

MBs and an anti-EGFR antibody could enable effective delivery of the anticancer drug bleo-

mycin (BLM) in vitro [13]. However, we used MBs and an anti-EGFR antibody suspension for

sonoporation, and could not determine whether the MBs and anti-EGFR antibody specifically

bound cells. Therefore, further investigation is necessary to develop an effective and specific

drug delivery system for chemotherapy. Receptor-based targeting is a promising approach for

the development of targeted cancer therapy, and liposomes are good candidates for drug deliv-

ery [14,15].

In this study, we developed an anti-EGFR antibody-conjugated MB (EGFR-MB) as a target-

ing agent and investigated the efficacy of BLM delivery using sonoporation with EGFR-MBs in
vitro and in vivo in a squamous cell carcinoma model. Our results show that EGFR-MBs are an

effective and specific drug delivery system against cancer cells.

Material and methods

Cell lines, reagents and antibody

Ca9-22 cells derived from human gingival squamous cell carcinoma were provided from

the Japanese Collection of Research Bioresources (JCRB) (Osaka, Japan) and cultured in

RPMI 1640 medium (Nacalai Tesque, Kyoto, Japan) supplemented with 10% heat-inacti-

vated fetal bovine serum (FBS), penicillin (100 U/mL) (Nacalai Tesque) and streptomycin

(100 mg) (Nacalai Tesque) at 37˚C in a humidified atmosphere with 5% CO2. BLM was

purchased from LKT Laboratories (St. Paul, MN, USA). Anti-EGFR antibody was pre-

pared as described previously [13]. Briefly, culture supernatants from the 528 hybridomas

(ATCC; TKG 0555, Manassas, VA, USA) were collected and fractionated with 60% ammo-

nium sulfate to prepare the anti-EGFR antibody, and the final pellet, which contained the

crude anti-EGFR antibody, was dissolved in phosphate-buffered saline (PBS). The crude

anti-EGFR antibody was then purified using a Nab Protein A plus Spin Kit (PIERCE, Ro-

ckford, IL, USA). Control IgG from mouse serum was purchased from SIGMA ALDRICH

(St. Louis, MO, USA).

Preparation of antibody-modified lipid (DSPE-PEG (2k)-Ab)

We dissolved 3-(N-succinimidyloxyglutaryl) aminopropyl, polyethyleneglycol 2000-carbamoyl

distearoyl-phosphoethanolamine (DSPE-PEG (2k)-NHS, SUNBRIGHT DSPE-020GS; NOF

Corporation, Tokyo, Japan) (0.123 mg) in chloroform. The lipid solution was evaporated to

make a lipid film in a glass tube by chloroform removal. Then, the antibody solution (0.125

mg/mL, 0.56 mL) in PBS (pH 7.4) was added to the lipid film. The lipid film was rehydrated

with antibody solution to conjugate the antibody to DSPE-PEG (2k)-NHS. The sample was

incubated at 60˚C for 5 min, and then at room temperature for 1 h to obtain the antibody-con-

jugated PEG-lipid (DSPE-PEG (2k)-Ab).
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Preparation of antibody-conjugated MBs

We dissolved 1, 2-distearoyl-sn-glycero-3-phosphocholine (DSPC, COATSOME MC-8080;

NOF Corporation) and 1, 2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE-PEG (5k)-

OMe, SUNBRIGHT DSPE-050CN; NOF Corporation) in chloroform, and the lipid solution

was evaporated to make a lipid film in a glass tube by chloroform removal. The lipid film was

then rehydrated with PBS (pH 7.4) (0.462 mL). This lipid suspension (0.462 mL) of DSPC and

DSPE-PEG (5k)-OMe, the suspension (0.493 mL) of DSPE-PEG (2k)-Ab (antibody-modified)

or DSPE-PEG (2k)-OMe (control) and propylene glycol (0.045 mL) were mixed in the glass

vial (2 mL vial). The head space of the vial was filled with perfluoropropane (C3F8) (Takachiho

Chemical Industrial CO., LTD., Tokyo, Japan). The C3F8-filled vial was shaken for 45 s with

VIALMIX (Lantheus Medical Imaging, Billerica, MA, USA), and the vial was cooled on ice for

5 min. To remove large bubbles, the vial was placed upside down for 15 min. Smaller bubbles

were taken from the lower layer in the vial with a 24G needle attached to a syringe. The mean

size and number of the MBs were measured with a Multisizer3 (Beckman Coulter, Brea, CA,

USA). MBs were labeled with the fluorescence probe 3, 3’-dioctadecyloxacarbocyanine per-

chlorate (0.53 mg) (DiO, Thermo Fisher Scientific, Waltham, MA, USA), and we prepared the

lipid film including DiO (1.6 mg/total lipid, 60 mg).

Immunofluorescence analysis

The day before the experiments, Ca9-22 cells (1.5×106 cells/well) were incubated with DiO-

labeled MBs, IgG-MBs or EGFR-MBs for 5 min at 37˚C. To confirm the binding of EGFR-MBs

to Ca9-22 cells, the cells were washed and collected, and fluorescence intensities were mea-

sured by flow cytometry (EPICS XL; Beckman Coulter).

In vitro BLM sonoporation

In vitro BLM delivery into Ca9-22 cells with EGFR-MBs and US exposure was performed

using previously described methods [7, 13]. Briefly, cultured cells were harvested by trypsiniza-

tion, washed once in PBS and resuspended at 1.5×106 cells/600 μL of serum-free RPMI1640 in

a 48-well plate. MBs, IgG-MBs or EGFR-MBs were added to the cell suspension, mixed and

incubated for 5 min at 37˚C. After incubating MBs with the cells, the BLM solution was added

to the cell suspension at a final concentration of 5 μg/mL. Then, Ca9-22 cells were immediately

exposed to US (frequency, 1 MHz; duty cycle, 10%; output intensity, 1.0 W/cm2) for 20 s at

room temperature using a ultrasonication probe placed in each well, and then washed twice

with PBS. US was generated using a Sonitron 2000 sonicator (Rich Mar Inc., Inola, OK, USA).

Cell proliferation quantification

Cell proliferation was determined using WST-8 assays (Dojindo Laboratories Co., Kumamoto,

Japan). After treating Ca9-22 cells, the cells were washed in PBS, seeded in flat-bottomed

96-well plates at a concentration of 2.0×104 cells/mL and cultured in RPMI 1640 containing

5% FBS. After 48 h, 10 μL of WST-8 reagent was added to each well and incubated for 4 h.

Absorbance at 450 nm was measured using a Multiskan JX microplate reader (Thermo Fisher

Scientific).

Apoptosis assay

After Ca9-22 cells were treated as above, the cells were collected, washed in PBS and treated

with propidium iodide (PI). DNA contents were analyzed using an EPICS XL (Beckman Coul-

ter). For Annexin V/PI staining, the treated cells were washed once with PBS and treated with
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the Annexin-V-FLUOS Staining kit (Roche Applied Science, Indianapolis, IN, USA) as previ-

ously described [7, 13]. After incubation, treated cells were analyzed using an EPICS XL (Beck-

man Coulter), and apoptotic cell death was detected using the florescent nuclear dye Hoechst

33258 (Dojindo Laboratories Co.) and fluorescence microscopy.

Mouse tumor xenograft model

Male 6-week-old KSN/slc nude mice weighting 20-25g were purchased from SLC (Shizuoka,

Japan). The squamous cell carcinoma xenograft model was established as described previously

[7]. Briefly, Ca9-22 cells (1×106 in 0.2 mL serum-free RPMI1640) were subcutaneously injected

into the backs of the mice. Tumor size was measured daily, and tumor volume was calculated

by the formula: volume (mm3) = length (mm) × width2 (mm2)/2. This study was carried out in

strict accordance with the recommendations in the Guide for the Care and Use of Laboratory

Animals of the National Institutes of Health. The protocol was approved by the Kyushu Dental

University Experimental Animal Care and Use Committee (Permit Numbers: 16–025). A com-

pleted ARRIVE guidelines checklist is included in Checklist S1 File.

In vivo BLM sonoporation

KSN/slc nude mice bearing 50–60 mm3 Ca9-22 tumors were randomly assigned into four

groups: control, BLM injection, BLM injection and MB sonoporation, and BLM injection and

EGFR-MB sonoporation. Mice were anesthetized and MBs or EGFR-MBs (2.5×107) were

directly injected into the tumor region with a 27-gauge needle. At 5 min after MB injection,

the mice were intravenously injected with BLM via the tail vein at a final concentration of 0.4

mg/mL. Then, the tumor region was covered with an ultrasonication conducting gel and

immediately exposed to US (frequency, 1 MHz; duty, 50%; output intensity, 2.0 W/cm2) twice

for 1 min. Tumor size and body mass of treated mice were measured every other day begin-

ning on day 0 of sonoporation treatment.

Histochemical analysis

After 4 weeks, the mice were sacrificed, and sections of tumor tissues from each group were

prepared. The TUNEL assay was performed using a Tumor TACS apoptosis detection kit (Tre-

vigen, Inc. Gaithersburg, MD, USA) according to the manufacturer’s instructions to detect

nuclear DNA fragmentation.

Statistical analysis

Values are expressed as means ± standard divisions of the mean. Differences between groups

were assessed by one-way analysis of variance (ANOVA) with a suitable post-test.

Results

Specific binding of EGFR-MBs to Ca9-22 cells

We first confirmed the specific binding of EGFR-MBs to EGFR on Ca9-22 cells by flow

cytometry and immunofluorescence staining. Flow cytometric analysis demonstrated that

EGFR-MBs specifically bound to EGFR on Ca9-22 cells (Fig 1A). We also confirmed that

MBs and/or control IgG-conjugated MBs did not bind to EGFR on Ca9-22 cells. Immuno-

fluorescence staining also confirmed specific binding of EGFR-MBs to EGFR on Ca9-22

cells (Fig 1B).
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In vitro growth inhibition of Ca9-22 cells after delivery of BLM by

sonoporation

We next examined the effects on cell proliferation after delivery of BLM by sonoporation

using EGFR-MBs. Although, sonoporation with MBs or IgG-MBs enhanced the cell killing

Fig 1. Specific binding of EGFR-MBs to EGFR on Ca9-22 cells. (A) Fluorescence intensity was measured

by flow cytometry; untreated Ca9-22 cells (a), Ca9-22 cells treated with DIO-labeled MBs (b), DIO-labeled

IgG-MBs (c), and DIO-labeled EGFR-MBs (d). (B) Ca9-22 cells were incubated with EGFR-MBs for 30 min at

37˚C, fixed and stained as indicated. Stained cells were examined using a fluorescence microscope.

https://doi.org/10.1371/journal.pone.0185293.g001
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effect of low-dose of BLM, BLM delivery using sonoporation with EGFR-MBs was significantly

more toxic to the cells compared with the other groups (Fig 2).

Apoptosis in Ca9-22 cells after BLM delivery by sonoporation in vitro

To examine whether BLM delivery by sonoporation with EGFR-MBs exhibited cytotoxicity in

Ca9-22 cells through apoptosis, PI staining was undertaken to detect hypodiploid DNA. Ca9-

22 cells treated by sonoporation with BLM (5 μg/mL) and EGFR-MBs showed increased num-

bers of cells in subG1 phase (40.3%) compared with cells treated with BLM or BLM and MBs

(17.1% and 19.8%, respectively) (Fig 3A). To quantify apoptosis, treated cells were analyzed by

the Annexin V-FITC/PI cell apoptosis assay combined with flow cytometry. As shown in Fig

3B and 3C, delivery of BLM by sonoporation with EGFR-MBs show antitumor activities in

Ca9-22 cells, mainly through the induction of apoptotic cell death. We also examined apopto-

tic nuclei in BLM-delivered Ca9-22 cells with Hoechst staining (Fig 3D). Morphological evi-

dence of apoptosis was detected as chromatin condensation and nuclear fragmentation

following 48 h treatment of BLM delivery by sonoporation in the presence of EGFR-MBs in

Ca9-22 cells. Taken together, these results indicated that intracellular low-dose BLM delivery

by sonoporation with EGFR-MBs in vitro induced apoptosis in Ca9-22 cells.

In vivo growth inhibition of Ca9-22 xenografts after BLM delivery by

sonoporation

Finally, we examined the effect of BLM delivery by sonoporation with EGFR-MBs on in vivo
tumor growth in KSN/slc nude mice. On day 0, BLM (40 μg) was injected in the tail vein and

EGFR-MBs were intratumorally injected. Tumor growth was observed for 28 d in Ca9-22-bear-

ing mice. The growth curves of Ca9-22 tumors are shown in Fig 4B. Tumor volume increased

in the Ca9-22-inoculated control group and in the BLM-injected group, whereas the group

Fig 2. In vitro growth inhibition of Ca9-22 cells after BLM delivery. Ca9-22 cells were treated with BLM by

sonoporation using microbubbles (MB+US), IgG-conjugated MBs (IgG-MB+US) or anti-EGFR antibody

conjugated MBs (EGFR-MB+US) as indicated. After 48 h incubation, cell proliferation was measured using

WST-8 assays. **P<0.001, *P<0.05.

https://doi.org/10.1371/journal.pone.0185293.g002
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injected with BLM in the presence of MBs showed smaller tumors (Fig 4A and 4B). Significantly

higher anti-tumor effects against Ca9-22 cells were observed in mice treated with BLM com-

pared with the other groups. There were no significant changes in body weight between the

four groups (data not shown).

Apoptosis in Ca9-22 cells after BLM delivery by sonoporation in vivo

TUNEL staining clearly showed apoptosis in xenograft tumor samples from mice treated by

sonoporation in the presence of BLM and EGFR-MBs (Fig 5).

Discussion

We investigated the therapeutic effect of EGFR-MBs in oral squamous cell carcinoma by

administration of BLM and EGFR-MBs coupled with US. Repeated applications of high-dose

antitumor drugs are commonly needed in systematic chemotherapy, which results in severe

side effects. Thus, it is important to develop easy, safe, effective and minimally-invasive tech-

niques for anticancer drug delivery into tumor cells. Many researchers have tried to establish

new drug delivery systems that combine high drug delivery efficiency with reduced invasive-

ness. To this end, we and others have developed the application of non-thermal US energy for

Fig 3. Apoptosis in Ca9-22 cells after BLM delivery in vitro. (A) Cell cycle distribution analyses by flow cytometry in the no

treatment, BLM alone, BLM + sonoporation + MBs, or BLM + sonoporation + anti-EGFR antibody-conjugated MBs groups. The

percentage of cells in the sub-G1 phase is indicated. (B) Apoptosis analysis by flow cytometry in the no treatment, BLM alone,

BLM + sonoporation + MBs, or BLM + sonoporation + anti-EGFR antibody-conjugated MBs groups. (C) Percentages of

apoptotic cells. *P<0.001 (D) Hoechst staining was performed to observe morphological changes in Ca9-22 cells after 48 h BLM

delivery treatment. Cells were exposed to no treatment, BLM alone, BLM + sonoporation + MBs, or BLM + sonoporation + anti-

EGFR antibody-conjugated MBs. Apoptotic cells (arrows) exhibited characteristic chromatin condensation under fluorescence

microscopy. Bar: 20 μm. (E) Percentages of apoptotic cells. *P<0.01.

https://doi.org/10.1371/journal.pone.0185293.g003

Fig 4. Growth inhibition of Ca9-22 xenografts after BLM delivery. KSN/slc nude mice were injected with Ca9-22 cells and divided into four experimental

groups: control (n = 4), BLM injection (n = 4), sonoporation with MBs and BLM injection (n = 4) and sonoporation with EGFR-MBs and BLM injection (n = 4).

(A) Images of mice from the different groups on days 0, 14 and 28. (B) Tumor volumes of the different treatment groups. Arrows indicate the days mice

received treatments. Data are expressed as the means ± s.e.; **P<0.01, *P<0.05.

https://doi.org/10.1371/journal.pone.0185293.g004
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drug-targeting or drug-controlled release [16]. Several groups have reported that sonoporation

with MBs could be a feasible method to deliver BLM to human cancer cell lines in vitro and in
vivo [7,17]. Additionally, we demonstrated the growth inhibitory effect of BLM delivered by

sonoporation with anti-EGFR antibody in vitro [13]. However, we found no evidence of the

binding specificity of MBs and an anti-EGFR antibody. This study demonstrated that the use

of EGFR-MBs combined with US exposure enhanced BLM delivery in an oral squamous cell

carcinoma model.

The human gingival squamous cell carcinoma cell line Ca9-22 shows cell surface EGFR

overexpression [18]. In this study, we used EGFR-MBs that were recently developed in the

Faculty of Pharma-sciences, Teikyo University and assessed their specific binding to Ca9-22

cells. Flow cytometric analysis and immunofluorescence staining revealed that the EGFR-MBs

bound to EGFR on Ca9-22 cells (Fig 1).

A safe and effective therapeutic approach involving sonoporation together with chemother-

apeutic agents for cancer treatment has the advantage of reducing drug dose to avoid side

effects in clinical practice. BLM displays cytotoxic activity due to generating DNA breaks. [19].

BLM induces apoptosis via DNA strand breaks through an oxygen- and metal ion-dependent

process in mammalian cells, which are seen as chromosomal gaps, deletions and DNA frag-

mentation. [20,21]. Furthermore, it has been shown in vitro that less than 0.1% BLM in the cell

culture medium is extremely toxic to normal cells. [22]. In this study, we demonstrated that

the combined use of low-concentration of BLM and EGFR-MBs with US exposure could

deliver an effective dose of the chemotherapeutic agent into cells. We achieved effective intra-

cellular BLM delivery in vitro and observed that cell viability decreased by 70% in the presence

of EGFR-MBs (Fig 2). Furthermore, apoptosis after sonoporation using low-concentration

BLM (5 μg/mL) and EGFR-MBs was significantly higher compared with the other treatment

groups (Fig 3).

Fig 5. TUNEL analysis of xenografts after in vivo sonoporation with BLM. Ca9-22 xenograft–bearing mice

were exposed to sonoporation in vivo. (a) control, (b) BLM injection, (c) sonoporation with MBs and BLM injection,

(d) sonoporation with EGFR-MBs and BLM injection. TUNEL signal was visualized by diaminobezidine (DAB,

brown) and cell nuclei were counterstained by methyl green. Magnification, 400×; bar, 100 μm.

https://doi.org/10.1371/journal.pone.0185293.g005
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Sonoporation allows localized temporary permeabilization (i.e. pore formation) of the cell

membrane by ultrasonication, which can be followed by the entry of foreign molecules into

cells in vitro and in vivo [23,24]. Many researchers have focused on establishing the sonopora-

tion system as an effective non-viral drug delivery method. Sonoporation strategies have also

been developed with various types of MBs for targeted delivery [25,26]. Liao et al. demon-

strated that the combination of EGFR-targeting MBs and US exposure effectively eliminates

tumor cells in vivo [27]. Dewitte et al. reported effective cancer immunotherapy using US and

mRNA-loaded MBs for dendritic cell delivery [28]. Previous findings on the enhanced effect

of sonoporation provided by targeted MBs led us to investigate its in vivo therapeutic potential

with BLM.

In this study, we used unique MBs that consisted of liposomes containing polyethylene glycol

(PEG) chains at their surface to prevent recognition by the reticulo-endothelial system, generat-

ing so-called stealth liposomes [29,30]. A PEG-liposome of less than 200 μm results in the pas-

sive accumulation of stealth liposomes in the tumor vasculature from enhanced permeability

and retention [31,32]. We also previously used nano-sized bubble liposomes as a sonoporation

agent for drug delivery. However, the application of nano-bubble liposomes is hindered by

problems associated with their stability in solution due to particle size; thus, we could not

achieve effective drug delivery (data not shown). Therefore, we developed and examined a new

micro-sized liposome (1–10 μm) in this study. Although EGFR-MBs had difficulty permeating

vasculature, they showed good stability and long circulation once they enter tissues by sono-

poration. In this study, EGFR-MBs were directly injected into the tumor region, and BLM was

injected via the tail vein. The results obtained in this study can be explained by the remarkable

increase of BLM uptake by targeted sonoporation following EGFR-MBs specific binding to

tumor cells. Our results showed that sonoporation with EGFR-MBs showed a greater antitumor

effect compared with sonoporation with MBs (Figs 4 and 5). These findings indicated that sono-

poration with EGFR-MBs remarkably enhanced BLM cytotoxicity in Ca9-22 cells in vitro and

in vivo. Taken together, this application may be useful for drug delivery in solid tumors.

Several conjugation techniques exist to couple ligands to microbubbles. In this study, we

attached the targeting ligand, EGFR antibody, using PEG for targeting strategy. However,

PEGylation reduces complement activation, which induce adaptive immune response with

repeated usage [33]. In this case, for the success of targeted immunotherapy, the homogeneous

of tumor-associated antigen is critical for development our drug delivery system. Furthermore,

foreign proteins can cause an immune response. Antibodies have clinical limitations under

immune response, on using antibodies targeting delivery in humans. We have to design anti-

body for adapting to human in each treatment. EGFR plays a crucial role in malignant cell

growth, proliferation and survival of cancer cells. And also, EGFR is widely observed in several

malignant. However, it is unclear how the mutational status, gene copy number and EGFR

overexprresion impacts signaling pathway in cancer [34, 35]. We should identify a biomarker

that can expect anti-EGFR therapy response, Further clinical investigation is needed to validate

the potential of sonoporation with EGFR-MBs.

Conclusions

We have demonstrated that sonoporation with EGFR-MBs is an effective targeted drug deliv-

ery system for oral squamous cell carcinoma. Our results show that treatment with EGFR-

MBs, especially with micro-sized liposomes and US make it possible to more effectively and

specifically administer anticancer drugs into cells. Our study demonstrated that EGFR-tar-

geted sonoporation with MBs may hold promise as new effective therapies for oral squamous

cell carcinoma.
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