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In this Special Issue (SI), with a theme of “Integrative Genomics and Systems Medicine in
Cancer”, we have collected a total of 12 research and review articles from researchers in the field of
genomics and systems medicine. Integrative genomics and systems medicine is an emerging field
that adopts interdisciplinary approaches to dissect complex diseases, including cancer. For instance,
integrative genomics often conducts integrative analyses on high-throughput genomic data with novel
computational algorithms and further correlates it with clinical outcomes for the identification of
biological pathways and molecular targets for better therapies for cancer patients. Systems medicine,
however, dissects the systems of the human body as a whole incorporating biochemical, physiological,
and environment interactions and builds predictive and actionable models that understand cancer
heterogeneity and complexity. The prevention, diagnosis, and treatment of various types of cancers
are clearly the most important tasks and a priority in biomedical research communities.

Modern molecular biology has been revolutionized with the emergence of high-throughput
experimental technologies, such as state-of-the-art genomics (omics) profiling and next-generation
sequencing. In parallel, numerous efforts have been made in developing novel algorithmic methods
and computational analysis approaches to better interpret the various omics data and further gain
biological insights. Two of such recent profiling technologies, Hi-C and ChIA-PET, now allow us to
study transcriptional regulation at the three-dimensional (3D) scale. These genomic techniques can not
only detect chromatin fragment interactions but also partition the genome into active and repressive
chromatin domains as well as high-dimensional topological architecture [1]. To better understand the
genome structure at a higher resolution, single-cell level profiling techniques are urgently needed to
accurately capture the variability of chromatin domains [2,3]. More and more functionally diversified
regulatory elements (REs), including enhancers, silencers, insulators, and boundaries, have been
identified to act collaboratively with active promoters via long-range tethering or chromatin looping
mechanisms [4], thus the looping paradigm has now been recognized as a basic principle of gene
regulation. Meanwhile, a huge amount of sequencing datasets that are generated from the deep
sequencing technologies requires us to create specialized databases [5,6] for the accurate curations and
annotations, and to facilitate the specific studies. Machine learning has been utilized in mining and
modeling biological datasets for quite a while, and has become a powerful tool for helping biologists
to interpret the gene lists by comparing them with a database of well-annotated gene sets (e.g.,
pathways) [7], which is valuable for the gene functional discovery from high-throughput experiments.
Meanwhile, statistically deterministic machine learning, such as K-means, remain a popular clustering
algorithm that nonetheless has useful application to new datasets in cancer. For example, a recent
study suggests that there is indeed a clustering substructure present in the underlying cancer genome
data, at least for most cancer types [8].

At the gene level, a new biophysical model of protein–DNA interactions based on the neighbor
dinucleotide dependency model BayesPI2 has been developed [9], where new parameters are restricted
to a space defined by the dinucleotide combination of DNA structure properties derived from the
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DiProDB database [10]. Unlike the machine learning approaches, this model was equipped with
interpretable model parameters and the training structure, the inferred shape feature preferences
can be further studied in various conditions. Such elegant model allows for us to investigate the
dynamical change of DNA shape preferences in different cancer cells, and to further elucidate the finer
details of transcription factor–DNA interaction, as well as to predict cancer mutation effects in the
future. It is now clear that aberrant expression of microRNA (miRNA or miR) is a critical factor in
cancer. Oncogenic genetic alterations are responsible for cancer initiation, gradual enlargement and
disorganization of tumor tissues, and, ultimately, metastasis. A key, and perhaps the biggest, challenge
in miRNA research is the complexity of the miRNA–mRNA target relationship. By connecting genes
sharing common miRNA target sites, a miRNA co-regulation network can be constructed [11], which
possesses characteristics of the ubiquitous small-world network. Non-hub genes in the network—those
sharing miRNA target sites with small numbers of genes—tend to form small cliques with their
neighboring genes, while hub genes exhibit high levels of promiscuousness in their neighboring
genes. The network analysis showed that key cancer genes and tumor suppressive miRNAs hold
a prominent status in miRNA regulation network. The former possesses higher connectivity in the
miRNA co-regulation network and more miRNA binding sites in their 3’-UTRs. The latter has more
than expected target genes. This network has the potential to be used to better understand miRNA
function and their oncological roles.

Besides, accumulating evidence suggests that long non-coding RNAs (lncRNAs) or long intergenic
non-coding RNAs (lincRNAs) play a significant role in cancer etiology and progression, and may serve
as potential diagnostic and prognostic markers for various cancers [12]. By fully utilizing the RNA-seq
data, a new research has identified many lincRNAs, both known and novel predicted, from lung
adenocarcinoma of never smoker individuals that may play a significant role in cancer development,
progression, and patient prognosis [13].

The cancer atavistic theory suggests that carcinogenesis is a reverse evolution process. If true,
evolutional information may have implications for improving the accuracy of cancer biomarker
selection [14]. Through analyzing the cancer endogenous molecular networks, the study from [15]
revealed that the subnetwork originating from Eukaryota could control the unlimited proliferation of
cancer cells, and the subnetwork originating from Eumetazoa could recapitulate the other hallmarks
of cancer. In addition, investigations based on multiple datasets revealed that cancer driver genes
were enriched in genes originating from Eukaryota, Opisthokonta, and Eumetazoa. These results have
important implications for enhancing the robustness of cancer prognosis models through selecting the
gene signatures by the gene age information.

In another aspect, the gene regulatory networks (GRNs) of immune cells can indicate cell identity
and reveal the dynamic changes of immune cells when comparing their GRNs. By conducting a
systematic analysis of the GRNs of key immune cell subsets, a recent work from [16] showed that
most of the GRNs of these cells in blood share key important hub regulators, but their subnetworks
for controlling cell type-specific receptors are different, suggesting that the transformation between
these immune cell subsets could be fast so that they can rapidly respond to environmental cues.
By comparing the GRNs of the tumor-infiltrating immune T cells and their corresponding immune
cells in blood, it showed that the network size of the tumor-infiltrating immune T cells’ GRNs was
reduced when compared to the GRNs of their corresponding immune cells in blood. These results
suggest that the shutting down certain cellular activities of the immune cells by cancer cells is one of the
key molecular mechanisms for helping cancer cells to escape the defense of the host immune system.
These results highlight the possibility of genetic engineering of T cells for turning on the identified
subnetworks that have been shut down by cancer cells to combat tumors. Through introducing two
new rule-based similarity measures, weighted rank-based Jaccard and Cosine measures, a novel
computational framework is proposed to detect Condensed Gene Co-Expression Modules (ConGEMs)
through the association rule-based learning system and the weighted similarity scores, which is useful
for exploring biomarker modules from transcriptomic data [17]. Through investigating the potential of
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epigenetics to account for the changes in cancer susceptibility, 12 genes that showed strong predictive
values for long-term survival in estrogen receptor positive patients were identified [18]. Importantly,
two genes that are associated with improved long term survival, HPSE and RPS9, were identified to
be hypomethylated in mammary glands of rats exposed prepuberally to genistein (GEN) or to GEN
+ Bisphenol A (BPA), respectively, reinforcing the suggested cancer suppressive properties of GEN.
For hepatocellular carcinoma (HCC) research, a key problem is to identify when and how the critical
transition happens during the HCC initiation period at a molecular level. The work from [19] revealed
that low-grade dysplastic nodules (LGDNs) is the tipping point of hepatocarcinogenesis based on a
series of gene expression. The survival analysis was further used to validate it as an effective predictor
of prognosis for hepatitis C virus (HCV)-induced HCC patients on an independent data. This potential
clinical application provides biological insights into the dynamic regulation of the critical transitions
during multistep hepatocarcinogenesis.

This SI is designed to present the latest findings about regulatory genomics and systems biology
in cancer. We hope that the research articles and reviews that were collected here will broaden our
minds in cancer research for both experts in the fields and the young generation of researchers, as well
as inspire them to share each other’s ideas.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Tang, B.; Cheng, X.; Xi, Y.; Chen, Z.; Zhou, Y.; Jin, V.X. Advances in Genomic Profiling and Analysis of 3D
Chromatin Structure and Interaction. Genes 2017, 8, 223. [CrossRef] [PubMed]

2. Nagano, T.; Lubling, Y.; Stevens, T.J.; Schoenfelder, S.; Yaffe, E.; Dean, W.; Laue, E.D.; Tanay, A.; Fraser, P.
Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 2013, 502, 59–64. [CrossRef]
[PubMed]

3. Stevens, T.J.; Lando, D.; Basu, S.; Atkinson, L.P.; Cao, Y.; Lee, S.F.; Leeb, M.; Wohlfahrt, K.J.; Boucher, W.;
O’Shaughnessy-Kirwan, A.; et al. 3D structures of individual mammalian genomes studied by single-cell
Hi-C. Nature 2017, 544, 59–64. [CrossRef] [PubMed]

4. Feuerborn, A.; Cook, P.R. Why the activity of a gene depends on its neighbors. Trends Genet. 2015, 31,
483–490. [CrossRef] [PubMed]

5. Cao, Y.; Zhu, J.; Jia, P.; Zhao, Z. scRNASeqDB: A Database for RNA-Seq Based Gene Expression Profiles in
Human Single Cells. Genes 2017, 8, 368. [CrossRef] [PubMed]

6. Du, Y.; Guo, M.; Whitsett, J.A.; Xu, Y. “LungGENS”: A web-based tool for mapping single-cell gene
expression in the developing lung. Thorax 2015, 70, 1092–1094. [CrossRef] [PubMed]

7. Liu, L.; Wei, J.; Ruan, J. Pathway Enrichment Analysis with Networks. Genes 2017, 8, 246. [CrossRef]
[PubMed]

8. Kakushadze, Z.; Yu, W. Mutation Clusters from Cancer Exome. Genes 2017, 8, 201. [CrossRef] [PubMed]
9. Batmanov, K.; Wang, J. Predicting Variation of DNA Shape Preferences in Protein-DNA Interaction in Cancer

Cells with a New Biophysical Model. Genes 2017, 8, 233. [CrossRef] [PubMed]
10. Friedel, M.; Nikolajewa, S.; Suhnel, J.; Wilhelm, T. DiProDB: A database for dinucleotide properties. Nucleic

Acids Res. 2009, 37, D37–D40. [CrossRef] [PubMed]
11. Zhang, F.; Wang, D. The Pattern of microRNA Binding Site Distribution. Genes 2017, 8, 296. [CrossRef]

[PubMed]
12. Sun, Z. High-throughput long noncoding RNA profiling for diagnostic and prognostic markers in cancer:

Opportunities and challenges. Epigenomics 2015, 7, 1075–1078. [CrossRef] [PubMed]
13. Li, Y.; Wang, Z.; Nair, A.; Song, W.; Yang, P.; Zhang, X.; Sun, Z. Comprehensive profiling of lincRNAs in lung

adenocarcinoma of never smokers reveals their roles in cancer development and prognosis. Genes 2017, 8,
321. [CrossRef] [PubMed]

14. Liu, L.; Chang, Y.; Yang, T.; Noren, D.P.; Long, B.; Kornblau, S.; Qutub, A.; Ye, J. Evolution-informed modeling
improves outcome prediction for cancers. Evol. Appl. 2016, 10, 68–76. [CrossRef] [PubMed]

15. Chu, X.Y.; Jiang, L.H.; Zhou, X.H.; Cui, Z.J.; Zhang, H.Y. evolutionary origins of cancer driver genes and
implications for cancer prognosis. Genes 2017, 8, 182. [CrossRef] [PubMed]

http://dx.doi.org/10.3390/genes8090223
http://www.ncbi.nlm.nih.gov/pubmed/28885554
http://dx.doi.org/10.1038/nature12593
http://www.ncbi.nlm.nih.gov/pubmed/24067610
http://dx.doi.org/10.1038/nature21429
http://www.ncbi.nlm.nih.gov/pubmed/28289288
http://dx.doi.org/10.1016/j.tig.2015.07.001
http://www.ncbi.nlm.nih.gov/pubmed/26259670
http://dx.doi.org/10.3390/genes8120368
http://www.ncbi.nlm.nih.gov/pubmed/29206167
http://dx.doi.org/10.1136/thoraxjnl-2015-207035
http://www.ncbi.nlm.nih.gov/pubmed/26130332
http://dx.doi.org/10.3390/genes8100246
http://www.ncbi.nlm.nih.gov/pubmed/28956817
http://dx.doi.org/10.3390/genes8080201
http://www.ncbi.nlm.nih.gov/pubmed/28809811
http://dx.doi.org/10.3390/genes8090233
http://www.ncbi.nlm.nih.gov/pubmed/28927002
http://dx.doi.org/10.1093/nar/gkn597
http://www.ncbi.nlm.nih.gov/pubmed/18805906
http://dx.doi.org/10.3390/genes8110296
http://www.ncbi.nlm.nih.gov/pubmed/29077021
http://dx.doi.org/10.2217/epi.15.69
http://www.ncbi.nlm.nih.gov/pubmed/26541179
http://dx.doi.org/10.3390/genes8110321
http://www.ncbi.nlm.nih.gov/pubmed/29137177
http://dx.doi.org/10.1111/eva.12417
http://www.ncbi.nlm.nih.gov/pubmed/28035236
http://dx.doi.org/10.3390/genes8070182
http://www.ncbi.nlm.nih.gov/pubmed/28708071


Genes 2018, 9, 37 4 of 4

16. Han, P.; Gopalakrishnan, C.; Yu, H.; Wang, E. Gene regulatory network rewiring in the immune cells
associated with cancer. Genes 2017, 8, 308. [CrossRef] [PubMed]

17. Mallik, S.; Zhao, Z. ConGEMs: Condensed gene co-expression module discovery through rule-based
clustering and its application to carcinogenesis. Genes 2018, 9, 7. [CrossRef] [PubMed]

18. Jadhav, R.R.; Santucci-Pereira, J.; Wang, Y.V.; Liu, J.; Nguyen, T.D.; Wang, J.; Jenkins, S.; Russo, J.; Huang, T.H.;
Jin, V.X.; et al. DNA methylation targets influenced by bisphenol a and/or genistein are associated with
survival outcomes in breast cancer patients. Genes 2017, 8, 144. [CrossRef] [PubMed]

19. Lu, L.; Jiang, Z.; Dai, Y.; Chen, L. Low-grade dysplastic nodules revealed as the tipping point during
multistep hepatocarcinogenesis by dynamic network biomarkers. Genes 2017, 8, 268. [CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/genes8110308
http://www.ncbi.nlm.nih.gov/pubmed/29112124
http://dx.doi.org/10.3390/genes9010007
http://www.ncbi.nlm.nih.gov/pubmed/29283433
http://dx.doi.org/10.3390/genes8050144
http://www.ncbi.nlm.nih.gov/pubmed/28505145
http://dx.doi.org/10.3390/genes8100268
http://www.ncbi.nlm.nih.gov/pubmed/29027943
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	References

