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Massive computational acceleration by using
neural networks to emulate mechanism-based
biological models
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For many biological applications, exploration of the massive parametric space of a

mechanism-based model can impose a prohibitive computational demand. To overcome this

limitation, we present a framework to improve computational efficiency by orders of mag-

nitude. The key concept is to train a neural network using a limited number of simulations

generated by a mechanistic model. This number is small enough such that the simulations

can be completed in a short time frame but large enough to enable reliable training. The

trained neural network can then be used to explore a much larger parametric space. We

demonstrate this notion by training neural networks to predict pattern formation and sto-

chastic gene expression. We further demonstrate that using an ensemble of neural networks

enables the self-contained evaluation of the quality of each prediction. Our work can be a

platform for fast parametric space screening of biological models with user defined

objectives.
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Mathematical modeling has become increasingly adopted
in analyzing the dynamics of biological systems at
diverse length- and time-scales1–6. In each case, a

model is typically formulated to account for the biological pro-
cesses underlying the system dynamics of interest. When ana-
lyzing a gene circuit, the corresponding model often entails
description of the gene expression; for a metabolic pathway, the
corresponding model may describe the constituent enzymatic
reactions; for an ecosystem, the corresponding model would
describe growth, death, and movement of individual populations,
which could in turn be influenced by other populations. We call
these models mechanism-based models.

Mechanism-based models are useful for testing our under-
standing of the systems of interest7–14. For instance, modeling has
been used to examine of the network motifs or the parameter sets
able to generate oscillations15,16 or spatial patterns17, or the noise
characteristics of signaling networks18–21. They may also serve as
the foundation for practical applications, such as designing
treatments of diseases22–24 and interpreting the pharmacokinetics
of drugs25–27. Many mechanism-based models cannot be solved
analytically and have to be analyzed by numerical methods. This
situation is particularly true for models dealing with spatial or
stochastic dynamics. While numerical simulations are typically
more efficient than experiments, they can still become compu-
tationally prohibitive for certain biological questions. For exam-
ple, consider a model with 10 parameters. To examine six values
per parameter, there will be 610 parameter combinations. If each
simulation takes 5 min, which is typical for a partial differential
equation (PDE) model, the screening would require 575 years to
finish. Many biological systems are much more complex. For each
system, both the size of the parametric space and the time
required to do each simulation would increase combinatorically
with the system complexity. Thus, standard numerical simula-
tions using mechanism-based models can face a prohibitive
barrier for large-scale exploration of system behaviors.

Thanks to its ability to make predictions without a full map-
ping of the mechanistic details, deep learning has been used to
emulate time-consuming model simulations28–31. To date, how-
ever, the predicted outputs are restricted in categorical labels or a
set of discrete values. By contrast, deep learning has not been used
to predict outputs consisting of continuous sequences of data
(e.g., time series, spatial distributions, and probability density
functions). We overcome this limitation by adopting a special
type of deep learning network, the Long-Short-Term Memory
(LSTM) network. For a pattern formation circuit, our approach
leads to ~30,000-fold acceleration in computation with high
prediction accuracy. We further develop a voting strategy, where
multiple neural networks are trained in parallel, to assess and
improve the reliability of predictions.

Results
The conceptual framework. When numerically solving a
mechanism-based dynamic model consisting of differential
equations, the vast majority of the time is spent in the generation
of time courses. For many biological questions, however, the main
objective is to map the input parameters to specific outcomes,
such as the ability to generate oscillations or spatial patterns32–37.
For such applications, the time-consuming generation of time
courses is a necessary evil.

The key to the use of the deep learning is to establish this
mapping through training to bypass the generation of time
courses, leading to a massive acceleration in predictions (Fig. 1).
To do the learning, we use a small proportion of data generated
by the mechanism-based model to train a neural network. The
data generated by the mechanistic model need to be sufficiently

large to ensure reliable training but small enough such that the
data generation is computational feasible.

As a proof of principle, we first apply our approach to a well-
defined model developed by Cao et al.32 This PDE model
describes pattern formation in Escherichia coli programed by a
synthetic gene circuit (Methods and Supplementary Fig. 1a),
accounting for cell growth and movement, intercellular signaling
and circuit dynamics as well as transportation (Eq. 1). This model
was previously used to capture the generation of characteristic
core-ring patterns and to examine the scaling property of
these patterns. Numerical simulations were used to explore the
parametric space to seek parameter combinations able to generate
scale-invariant patterns. Several months were needed to search
through 18,231 parameter sets. Yet, these parameter sets only
represent an extremely tiny fraction of the parametric space that
the system can occupy. Thus, it is likely that these numerical
simulations have not revealed the full capability of the system in
terms of pattern formation. For example, it is unclear whether the
system can generate more than two rings and how this can be
achieved.

For this system, each input is a set of parameters (e.g., cell
growth rate, cell motility, and kinetic parameters associated with
gene expression); the output is the spatial distribution of a
molecule. The mapping between the two is particularly suited for
the use of an LSTM network. The LSTM network, a type of
recurrent neural network (RNN), was proposed in 1997 to
process outputs consisting of a continuous series of data38. It has
demonstrated great potential in natural language processing and
speech recognition as well as in other sequence-prediction
applications39.

The outputs of the model can vary drastically in the absolute
scale. To improve the learning process, we break each output
profile into two components: the peak value of each profile and
the profile normalized with respect to the peak value. Our deep
neural network consists of an input layer with inputs to be the
parameters of mechanism-based model, connected to a fully
connected layer, and the output layer consists of two types of
outputs, one for predicting the logarithm of the peak value of the
profile, directly connected to the fully connected layer, the other
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Fig. 1 Using an artificial neural network to emulate a mechanism-based
model. Here a hypothetic biological network and the corresponding
mechanistic model are shown. The mechanistic model is used to generate a
training data set, which is used to train a neural network. Depending on the
specific mechanistic model, the trained neural network can be orders of
magnitude faster, enabling exploration of a much larger parametric space of
the system
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for predicting the normalized profile, connected to LSTM cell
arrays, which was fed by the output from fully connected layer.
The detailed structure of the neural network is described in
Methods and Supplementary Fig. 2.

The neural network accurately predicts spatial distributions.
To train the neural network, we first used our PDE model to
generate 105 simulation results from random combinations of
parameter values. Generating these data sets was manageable: it
took 2 months on a cluster consisting of 400 nodes. We split the
data sets into three groups: 80% for training, 10% for validation
and 10% for testing. We used the root mean squared error
(RMSE) to evaluate the difference between the data generated by
PDE simulation and those generated by the neural network (also
see Methods and Supplementary Table 4). Each output dis-
tribution was dissected into two components for prediction: the
peak value, and the shape of the distribution (i.e. the distribution
after being normalized with respect to the peak value).

The trained neural network is fast and highly accurate. For
each set of parameters, the neural network on average enabled
~30,000-fold computational acceleration (see Methods), though
the specific extent of acceleration will vary with specific models.
The correlation between predicted values and PDE simulation
results exhibits high R2 values: 0.987 for peak value predictions
and 0.998 for shape predictions (Fig. 2a). For most parameter
sets, distributions generated by the neural network align nearly
perfectly with those generated by numerical simulations (Fig. 2b,
Supplementary Figs. 3 and 4). In general, the more complex the
output distribution, the less accurate the prediction (Supplemen-
tary Table 4). This trend likely results from the uneven
representation of different types of patterns in the training data

sets: the majority have no ring (42897 out of 105) or have only
one ring (55594 out of 105); patterns with multiple rings are rare
(1509 out of 105 for 2 rings or more) (Supplementary Fig. 5).

To identify the minimum size of dataset needed for accurately
making predictions, we trained deep LSTM network on different
training dataset sizes. The RMSEs are calculated based on
predictions of a fixed test dataset, which contains 20,000 samples.
Figure 2c demonstrates how the RMSEs of distributional data and
peak values decrease with the increase of training data size. Since
the x-axis is log-scaled, when the dataset size is beyond 104, the
rate of error reduction becomes asymptotically smaller. When
the data size is 105, the RMSE value decreased below a preset
threshold (0.3), when we deemed a prediction to be accurate. In
general, depending on specific models and the acceptable
tolerance of errors, the threshold can be set differently, which
could require different data sizes for effective training. This
training dataset size is manageable and results in sufficient
accuracy for our analysis. Based on error tolerance and numerical
data generation efficiency, one can choose the desired dataset size
for training the neural network. With an ensemble of deep neural
networks, which will be described in the next section, the errors
can be further reduced without increasing the dataset size.

The neural network predicts novel patterns. We use the trained
deep LSTM network to screen through the parametric space. It
takes around 12 days to screen through 108 combination of
parametric sets, which would need thousands of years if gener-
ated with PDE simulations. We find 1284 three-ring pattern
distributions, including novel patterns not present in the training
sets (Fig. 3). These are genuinely novel three-ring patterns found
in this screening process, which are not in the training dataset.
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Fig. 2 Neural network training and performance. We generated 105 simulated spatial distributions using our partial differential equation (PDE) model and
split the data into three groups: 80% for training, 10% for validation and 10% for test. We used root mean squared errors (RMSEs) to evaluate the
differences between data generated by the mechanism-based model and data generated by the neural network. a Accuracy of the trained neural network.
The top panel shows the predicted distributions by the neural network plotted against the distributions generated by numerical simulations. The bottom
panel shows the peak values predicted by the neural network plotted against the peak values generated by numerical simulations. Perfect alignment
corresponds to the y= x line. The test sample size is s (=10,000). Each spatial distribution consists of 501 discrete points; thus, the top panel consists of
5,010,000 points. b Representative distributions predicted by neural network from test dataset. Each blue line represents a predicted distribution using the
trained neural network; the corresponding red dashed line represents that generated by a numerical simulation. Additional examples are shown in
Supplementary Figs. 3 and 4. c Identifying the appropriate data size for reliable training. The top panel shows the RMSE between distributions generated by
the neural network and the distributions generated by numerical simulations as a function of an increasing training data size. The bottom panel shows the
RMSE of peak-value predictions as a function of an increasing training data size. The RMSEs are calculated based on predictions of a test dataset, which
contains 20,000 samples
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We further tested these neural network predictions by numerical
simulations using the PDE model. Only 81 out of 1284 (i.e.,
6.31%) neural network predicted three-ring patterns exceeded a
stringent RMSE threshold of 0.1 (Supplementary Table 3). The
high reliability in predicting novel patterns indicates that the
learning by the neural network is not limited to passive recol-
lection of what the network has been trained with. Instead, the
training has enabled the neural network to establish the genuine
mapping between the input parameters and the system outputs,
in a manner that is highly non-intuitive.

Voting enables estimation of prediction accuracy. Despite the
extremely high accuracy in the predictive power of the trained
neural network, it is never 100% correct. This apparent deficiency
is the general property of neural networks. The lack of perfection
in prediction raises a fundamental question: when dealing with a
particular prediction, how do we know it is sufficiently reliable?
Even if it were feasible, validating every prediction by simulation,
as done in the last section (Fig. 3), would defeat the purpose of
using deep learning. Therefore, it is critical to develop a metric to
gauge the reliability of each prediction, without resorting to
validation using the mechanism-based model.

The wisdom of crowds refers to the phenomenon in which the
collective knowledge of a community is greater than the
knowledge of any individual40. To this end, we developed a
voting protocol, which relies on the training of several neural
networks in parallel using the same set of training data. Even
though these networks have the same architecture, the training
process has an intrinsically stochastic component. Each network
creates a map of virtual neurons and assigns random numerical
values, or weights, to connections between them during the
initialization process. If the network does not accurately predict a
particular pattern, it will back-propagate the gradient of the error
to each neuron and the weights would be updated to minimize
the error in a new prediction. Even though the same rule is
applied, each neuron is updated independently. With same
training data, same architecture, the probability of getting exactly
the same parameterized neural network is essentially zero. That
is, each trained neural network is unique in terms of the
parameterization of the network connections. Supplementary
Figure 6a illustrated the differences of trainable variables
(weights, bias) between two trained neural networks. Despite
the difference in parameterization, the different neural networks

trained from the same data overall make similar predictions. We
reasoned that this similarity can serve as the metric of the
accuracy of the prediction. In particular, for a certain input
parameter set, if all trained networks give very similar predictions,
it is likely that these predictions are overall accurate. In contrast,
for another input parameter set, if predictions from different
networks diverge from each other, this divergence would suggest
some or all of these predictions are not reliable. Given this
reasoning, we could expect a positive correlation between the
reliability of the prediction (in comparison to the correct
prediction generated by the mechanism-based model) and the
consistency between predictions generated by different neural
networks.

To test this notion, we trained four neural networks. For each
parameter combination in the testing set, we calculated the
divergence between predictions by different neural networks, by
using the RMSE. The final prediction is the one with the least
average RMSE between all other predictions (Fig. 4a). We then
calculated the divergence between the ensemble prediction and
the correct profile. Indeed, the accuracy of the ensemble
prediction is positively correlated with the consistency between
different neural networks (Fig. 4b, Supplementary Fig. 6b). That
is, if predictions by neural networks exhibit high consensus, the
errors in the prediction are also low. Also, a side benefit of using
multiple neural networks is that the ensemble prediction is in
general more reliable than one by a single neural network. The
average RMSE over the test dataset reduced from 0.0118 to
0.0066. This improved accuracy is expected and is the typical use
of ensemble method41. We further tested the voting strategy by
using ensembles of three or five neural networks (Supplementary
Fig. 6b). In each case, the consensus between neural networks
correlated with the accuracy of the ensemble prediction, which
did not vary significantly with the number of neural networks
used. In general, the voting strategy is highly scalable: the
different neural network predictors can be trained in parallel, via
different graphics processing unit (GPU) cores or even different
servers on a computer cluster. Similarly, predictions can be made
in parallel.

We screened through 108 combination of parametric sets using
the ensemble prediction method, where we discarded predictions
with disagreement in predictions larger than 0.1. These neural
network predictions reveal the general criterion for making
complex patterns. For example, generation of three-ring patterns
requires a large domain radius (R), large synthesis rate of
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Fig. 3 The trained neural network predicts novel patterns. We used the neural network to screen 108 parameter combinations to search for three-ring
patterns. We then used the mechanism-based model to test accuracy of predicted patterns. We tested 1284 three-ring patterns and the mean value of the
RMSEs between neural network predicted distributions and PDE simulations is 0.079 and the standard deviation is 0.008. The distributions shown in red
are from training data set. The other distributions are from the screening process (top) and the corresponding results generated by the mechanism-based
model for validation (bottom). In four examples, the neural network predictions are validated. In one, the neural prediction is incorrect. The RMSE values of
these distributions (from left to right) are: 0.0099, 0.015, 0.0097, 0.039, 0.031, and 0.41
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T7RNAP (αT), small synthesis rate of T7 lysozyme (αL), small half
activation constant of T7RNAP (KT), small half activation
distance for gene expression (Kφ) (Fig. 5a). Based on the analysis
above, we want to further identify the correlation between KT and
αC , KT and αT ,D, and αC. For each of the screening, we vary two
parameters of interest and fixed the rest to identify the
relationship between parameters required to generate three-ring
patterns. We collect 107 instances and discard predictions with
disagreement between ensemble predictions larger than 0.1
(Fig. 5b–d, Supplementary Fig. 7). We found that if the growth
rate on agar (αC) is large, the domain radius (D) can be reduced.
Additionally, there is a negative relationship between cell growth
rate on agar (αC) and half activation constant of T7RNAP (KT)
(If approximating that they are inversely proportional, we can get
the fitting with R2= 0.94. Supplementary Fig. 7a). We also found
a linear correlation between half activation constant of T7RNAP
(KT), and synthesis rate of T7RNAP (αT) in order to generate
three-ring patterns (R2= 0.996, Supplementary Fig. 7b). A key
advantage is that machine-learning methods can sift through
volumes of data to find patterns that would be missed otherwise.
This provides significant insight in our experiments to find
conditions that allow the formation of multiple rings, which could
not be done using traditional simulation methods.

High accuracy on predicting probability density functions. Our
framework is applicable to any dynamic model that generates a
continuous series of each output. To illustrate this point, we apply
the framework to the emulation of a stochastic model of the
MYC/E2F pathway42,43 (Supplementary Fig. 8a). This model
consists of 10 stochastic differential equations and 24 trainable
parameters (see Methods, supplementary Notes, and Supple-
mentary Table 5). For each parameter set, repeated simulations
lead to generation of the distribution of the levels of each mole-
cule. With a sufficiently large number of simulations, this dis-
tribution converges to an approximately continuous curve
(Supplementary Fig. 8b). As such, establishing the mapping
between the parameter set and the corresponding output

distribution is an identical problem as prediction of the spatial
patterns. Again, the trained neural network exhibits high accuracy
in predicting the distributions of different molecules in the model
(Supplementary Fig. 9).

Discussion
Our results demonstrate the tremendous potential of deep
learning in overcoming the computational bottleneck faced by
many mechanistic-based models. The key to the massive accel-
eration in predictions is to bypass the generation of fine details of
system dynamics but instead focus on an empirical mapping
between input parameters to system outputs of interest using
neural networks. This strategy contrasts with several previous
studies, where neural networks have been adopted to facilitate
numerically solving differential equations44–52. The massive
acceleration enables extensive exploration of the system dynamics
that is impossible by solely dependent on the mechanistic model
(Fig. 5). Depending on the application context, this capability can
facilitate the engineering of gene circuits or the optimization of
experimental conditions to achieve specific target functions (e.g.,
generation of multiple rings from our circuit), or to elucidate how
a biological system responds to environmental perturbations (e.g.,
drug treatments).

A major innovation of our approach is the combined use of the
mechanistic model and the neural network (Fig. 1). The
mechanistic model is used as a stepping stone for the latter by
providing a sufficient data set for training and testing. This
training set is extremely small compared with the possible para-
meter space. Given the relatively small training set, the remark-
able performance of the neural network suggests that, for the
models we tested, the landscape of the system outputs in the
parametric space is sufficiently smooth. If so, a small training set
is sufficient to reliably map the output landscape for the much
broader parametric space. However, the neural network does
occasionally fail. We found that the neural network tends to make
more mistakes in clustered regions (e.g., the blank regions in
Fig. 5b, where data have been deleted due to large disagreement in
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predictions). As such, we suspect that the neural network is more
likely to fail when the system output is highly sensitive to local
parameter variations, i.e., where the output landscape is rugged in
the parametric space. Such a limitation could be alleviated by
increasing the size of the training set. Alternatively, one could
generate the training set according to local system sensitivity,
such that training data are generated more densely in regions of
high local sensitivity.

Our approach is generally applicable as long as each input
parameter set generates a unique output (but the same output can
correspond to different input parameter sets). This constraint is
implied in both of our examples. In the pattern-formation circuit,

each parameter combination can generate a unique final pattern.
For the stochastic model, different runs of the model will generate
different levels for each molecular species (for the same parameter
set). However, the distribution of these levels for a sufficiently
large number of simulations is approximately deterministic—it
will be deterministic for an infinite number of simulations.
Therefore, each parameter set in the stochastic model leads to a
unique distribution for each molecule. This constraint is satisfied
in vast majority of dynamical models of biological systems, where
the output can be a time series, a spatial distribution, or dis-
tribution of molecules from ensemble simulations. As such, the
general framework (Fig. 1) is applicable to all these models.
However, the benefit of the framework depends on the specific
model of interest and the number of parameter sets to be
explored. In particular, our approach is most useful when the
generation of the initial data set is non-trivial but manageable.
While doable, our approach will not gain much by emulating
simple ODE models, which can be solved quickly. Conversely, if a
model is so complex, such that, even the generation of sufficient
training data could be computationally prohibitive, an alternative
integration of the mechanistic model and deep learning is
necessary to speed up the training process.

Methods
Modeling pattern formation in engineered bacteria. The circuit consists of a
mutant T7 RNA polymerase (T7RNAP) that activates its own gene expression and
the expression of LuxR and LuxI. LuxI synthesizes an acyl-homoserine lactone
(AHL) which can induce expression of T7 lysozyme upon binding and activating
LuxR. Lysozyme inhibits T7RNAP and its transcription by forming a stable
complex with it53. CFP and mCherry fluorescent proteins are used to report the
circuit dynamics since they are co-expressed with T7RNAP and lysozyme,
respectively.

The PDE model used in the current study corresponds to the hydrodynamic
limit of the stochastic agent-based model from Payne et al.33. Because the air
pocket between glass plate and dense agar is only 20 μm high, the system was
modeled in two spatial dimensions and neglect vertical variations in gene
expression profiles32. Although the PDE formulation is computationally less
expensive to solve numerically than the stochastic agent-based model and better
facilitates development of mechanistic insights into the patterning dynamics, it still
needs a lot of computational power when extensive parameter search is needed.

The circuit dynamics can be described by the following PDEs:
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where C(t, x) is the cell density; N(t) is the nutrient concentration; A(t) is the AHL
concentration; T t; xð Þ; L t; xð Þ;Pðt; xÞ are cellular T7RNAP, lysozyme and the T7-
lysozyme complex density, respectively. See Supplementary Table 1 for description
of all model parameters.

Modeling of MYC/E2F pathway in cell-cycle progression. The stochastic dif-
ferential equation (SDE) model use in this study is the system describing the MYC/
E2F pathway in cell-cycle progression42,43,54 (Supplementary Fig. 8a). Upon
growth factor stimulation, increases in MYC lead to activation of E2F-regulated
genes through two routes. First, MYC regulates expression of Cyclin D, which
serves as the regulatory components of kinases that phosphorylate pocket proteins
and disrupt their inhibitory activity. Second, MYC facilitates transcriptional
induction of activator E2Fs, which activate the transcription of genes required for S
phase. Expression of activator E2Fs is reinforced by two positive feedback loops.
First, activator E2Fs can directly binds to their own regulatory sequences to help
maintain an active transcription state, second, activator E2Fs transcriptionally
upregulate CYCE, which stimulates additional phosphorylation of pocket proteins
and prevents them from sequencing activator E2Fs.

To capture stochastic aspects of the Rb-E2F signaling pathway, we adopted
the Chemical Langevin Formulation (CLF)55. We adjusted the units of the
molecule concentrations and the parameters so that the molecules are expressed
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Fig. 5 Neural network predictions enable comprehensive exploration of
pattern formation dynamics. a Ensemble of deep neural networks enables
screening through a vast parametric space. The parametric space consists
of 13 parameters that were varied uniformly in the provided ranges
(Supplementary Table 1). For each instance, we randomly generated all the
varying parameters and used the neural network to predict the peak and
distributional values for each parameter combination. We collected 108

instances and discarded predictions with disagreement between ensemble
predictions larger than 0.1. We then projected all the instances on all the
possible 2 parameter plane. The majority of the instances generated
patterns with no ring (gray), and they were distributed all over the
projected parametric planes. Due to the huge number of instances, the
parametric distribution of no ring (grey), one-ring (green), two-rings (blue)
patterns on the projected 2D planes partially overlap. From the distribution
of neural network predicted three-ring patterns (orange) over all the
possible 2D parameter planes, the critical constraints to generate three-ring
patterns are revealed: large domain radius (D), large synthesis rate of
T7RNAP (αT), small synthesis rate of T7 lysozyme (αL), small half
activation constant of T7RNAP (KT), small half activation distance for gene
expression (Kφ). The analysis also suggested correlations between KT and
αC (cell growth rate on agar), KT and αT, D and αC. b–d Neural network
predictions facilitate the evaluation the objective function of interest
(generation of three-ring patterns). Based on the analysis above, we sought
to further identify the correlation between KT and αC, KT and αT, D and αC.
For each of the screening, we varied two parameters of interest and fixed
the rest. We collected 107 instances and discarded predictions with
disagreement between ensemble predictions larger than 0.1. We found
generation of three-ring patterns requires a negative correlation between D
and αC and a negative correlation between KT and αC. We also found a
positive linear correlation between KT and αT. αA= 0.5, α= 0.5, β= 0.5,
K; ¼ 0:3, n ¼ 0:5, αL ¼ 0:3, KC ¼ 0:5,KP ¼ 0:5, dA ¼ 0:5, b αC ¼ 0:5,
D ¼ 1:0. c αT ¼ 0:8, D ¼ 1:0. d αT ¼ 0:8, KT ¼ 0:3
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in molecular numbers.

dXiðtÞ
dt

¼
XM
j¼1

vjiaj X tð Þ½ � þ
XM
j¼1

vjia
1
2
j X tð Þ½ �ΓjðtÞ þ ωiðtÞ ð2Þ

Where Xi(t) represents the number of molecules of a molecular species I (i= 1,…,
N) at time t, and X tð Þ ¼ X1 tð Þ; ¼ ;XN tð Þð Þ is the state of the entire system at time
t. Xi(t) interact through a set of M reactions. aj[X(t)]dt (j= 1, …, M) describes the
probability that the jth reaction will occur in the next infinitesimal time interval
[t,t+dt), and the corresponding change in the number of individual molecules
produced by jth reaction is described in vji. ΓjðtÞ and ωiðtÞ are temporally
uncorrelated, statistically independent Gaussian noises. This formulation retains
the deterministic framework (the first term), and intrinsic noise (reaction-
dependent) and extrinsic noise (reaction-independent). The concentration units in
the deterministic model were converted to molecule numbers, so that the mean
molecule number for E2F would be ~1000. We assumed a mean of 0 and variance
of 5 for ΓjðtÞ, and a mean of 0 and variance of 50 for ωiðtÞ. The resulting SDEs were
implemented and solved in Matlab. Serum concentration is fixed at S½ � ¼ 1%.

Twenty-four parameters of the SDE model are generated randomly at the range
provided at Supplementary Table 5. The range covers almost all the possible rates
that can be found in vivo. For each of the generated combination of parameters,
sample 104 stochastic simulations and collect the final values of all 10 variables for
each of the simulation. Each of the variables are discretized into 1000 intervals.
Create a kernel distribution object by fitting it to the data. Then by using Matlab
function pdf() to get the probability density function of the distribution object,
evaluated at the values in each of the discretized interval. (Matlab code can be found
on GitHub, https://github.com/youlab/pattern_prediction_NN_Shangying.git).

Benchmarking computational acceleration. The critical foundation underlying
the neural-network-mediated acceleration is as follows: for a mechanistic model to
map the input parameters to the system output (e.g. the spatial distribution of a
molecule for the PDE model), it has to integrate the equations with sufficient high
resolution and accuracy. Once trained, the neural network entirely bypasses the
generation of these time courses, leading to massive acceleration.

The extent of acceleration would vary depending on specific mechanistic
models and their neural network counterparts. For the pattern formation system, a
PDE simulation on average takes 350 s on a laptop computer; a neural network
prediction on average takes 0.012 s on the same computer, leading to ~30,000-fold
acceleration. When conducting this benchmarking, we used a version of the
Tensorflow without GPU support (our PDE simulator also did not incorporate
GPU support).

Computing platform and data preparation. We used the Duke SLURM com-
puting platform to simulate mechanism-based models and preparing data for
training neural networks. We used Google cloud machine learning platform for
hyper-parameter tuning. We use python 3.5 platform and implement TensorFlow
2.0 for neural network design and trainings/validations/tests. Source codes are
available on github.com (https://github.com/youlab/
pattern_prediction_NN_Shangying.git).

Machine learning algorithms do not perform well when the input numerical
attributes have very different scales. During data preprocessing, we use min-max
scaling to normalize all the input parameters to be within the region 0–1. We also
extract the peak value from the distribution and log the peak value. We use LSTM
network for prediction of the normalized distribution. Specifically, we divided the
space along radius axis to 501 points. And each point is associated with an LSTM
module (see below) for prediction.

LSTM networks. Most of the neural networks are feedforward neural networks,
where the information flows from the input layer to the output layer. A RNN has
connections pointing backwards. It will send the predicted output back to itself. An
RNN when unrolled can be seen as a deep feed-forward neural network (Supple-
mentary Fig. 2a). RNN is often used to predict time series data, such as stock prices.
In autonomous driving systems, it can anticipate car trajectories and help avoid
accidents.

However, the ordinary RNN cannot be used on long sequence data. The
memory of the first inputs gradually fades away due to the transformations that the
data goes through when traversing an RNN, some information is lost after each
step. After a while, the RNN state contains virtually no trace of the first inputs56.
To solve this problem, various types of cells with long-term memory have been
introduced and the most successful/popular one is the LSTM network.
Supplementary Figure 2b showed the architecture of an LSTM cell. An internal
recurrence (a self-loop) is added on top of the outer recurrence of the RNN. This
self-loop is responsible for memorizing long-term dependencies
(See Supplementary Notes).

Network structure. Supplementary Figure 2d demonstrates the structure of the
employed Deep LSTM network, which consists of an input layer with inputs to be
the parameters of mechanism-based model, a fully connected layer, LSTM arrays,
and two output layers, one for predicting peak values of distributions, one for

predicting the normalized distributions. First, the parameters of differential
equations are connected to the neural network through a fully connected layer.
Fully connected layer means all the inputs are connected to all the neurons in that
layer. The activation function is Exponential Linear Unit (ELU) and the connection
weight is initialized randomly using He initialization method57. It then connected
to another fully connected layer with one neuron for peak value prediction. The
output of the first fully connected layer is also connected to a sequence of LSTM
modules for predicting distributions. We use Adam optimization algorithm to
adaptive moment estimation and gradient clipping to prevent exploding gradients.
(See Supplementary Notes for more details).

Network optimization. We used both cross entropy (tf.nn.sigmoid_cross_en-
tropy_with_logits) and mean squared error (MSE) (tf.reduce_mean(tf.square()))
for calculating the cost function of the neural networks. Cross entropy originated
from information theory. If the prediction is exactly the same as the pattern from
simulation, cross entropy will just be equal to the entropy of the pattern from
simulation. But if the prediction has some deviation, cross entropy will be greater
by an amount called the Kullback-Leibler divergence (KLD). The cross entropy
between two distributions p and q is defined as H p; qð Þ ¼ �P

s
p sð Þlog qðsÞ. In our

study, we found using either of the cost function did not alter the accuracy of our
network and the analysis.

Network performance. In the main text, we used RMSE to evaluate the difference
between the data generated by PDE simulation and those generated by the neural
network. Assuming that there are two distributions, p and q. Each consisting n
discrete points, the RMSE was calculated using the following equation:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1

pi � qið Þ2
s

. We also included L2 norm and KS-distance evaluation

methods to characterize the agreement between the continuous distributional data
generated by PDE simulation and those generated by the neural network in the
Supplementary Table 4 and Supplementary Table 6. We found that no matter
which method is used, the conclusion stays the same.

Ensemble prediction. To make a prediction for a new instance, we need to
aggregate all the predictions from all predictors. The aggregation function is
typically the statistical mode (i.e., the most frequent predictions) for classification
problems and the average for regression problems. Previously, there is no study on
what the aggregation function shall be for distributional predictions. Here, we
proposed that for distributional predictions, similarity score between different
predictions are calculated. The similarity score can be RMSE, KL divergence, R2, or
other similarity function between two distributions. In this paper, we choose RMSE
for calculating the similarity score. Each predictor is associated with a score based
on the average of the RMSE of its prediction in comparison with all other pre-
dictions. The final prediction will be the one with the minimal score.

In many cases, an aggregated answer from a group of people is often better than
one person’s answer, which is called wisdom of the crowd40. Similarly, aggregating
predictions of a group of predictors will often get better predictions than with only
one predictor. A group of predictors is called an ensemble and this algorithm is
called an ensemble method41.

Predictions from an ensemble of neural networks has lower error than
predictions from a single neural network in predicting distributional data
(Supplementary Table 4). Also, the disagreement in prediction between predictors
is positively associated with errors in predictions for test data set (Fig. 4b).
Disagreement in prediction can be used as an estimate of the errors in predictions.
In this way, we can rank our predictions with different confident levels.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The datasets generated during and/or analyzed during the study are available in
the Supplementary Information.

Code availability
The code used for data generation and/or analysis in the study are available on github.
com (https://github.com/youlab/pattern_prediction_NN_Shangying.git).
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