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Abstract
Cancer is the second leading cause of death worldwide responsible for about 10 million deaths per year. To date several
approaches have been developed to treat this deadly disease including surgery, chemotherapy, radiation therapy, hormonal
therapy, targeted therapy, and synthetic lethality. The targeted therapy refers to targeting only specific proteins or enzymes
that are dysregulated in cancer rather than killing all rapidly dividing cells, has gained much attention in the recent past.
Kinase inhibition is one of the most successful approaches in targeted therapy. As of 30 March 2021, FDA has approved
65 small molecule protein kinase inhibitors and most of them are for cancer therapy. Interestingly, several kinase inhibitors
contain one or more fused heterocycles as part of their structures. Pyrrolo[2,1-f][1,2,4]triazine is one the most interesting
fused heterocycle that is an integral part of several kinase inhibitors and nucleoside drugs viz. avapritinib and remdesivir.
This review articles focus on the recent advances made in the development of kinase inhibitors containing pyrrolo[2,1-f]
[1,2,4]triazine scaffold.
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Introduction

Cancer is the second leading cause of death worldwide
responsible for about 10 million deaths per year [1]. On

average, one in six deaths is due to cancer. To date,
several approaches have been developed to treat this
deadly disease viz. surgery [2], chemotherapy [3–6],
radiation therapy [7], hormonal therapy [8, 9], targeted
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therapy [10–13], and synthetic lethality [14]. The choice
of treatment depends upon the type, location, and stage of
cancer. The use of surgery, hormone therapy, che-
motherapy, and radiation therapy are being in use since
the 19th century whereas immunotherapy and targeted
therapies were developed in the 20th century. If detected
early, surgery is the best choice of treatment; however, in
most cases cancer is metastasized to other parts of the
body prior to detection so requires combination of other
therapies prior or after surgery. Radiation therapy
involves the use of ionizing radiations (X-ray) to kill
cancer cells and shrink tumors. Radiation therapy is not
preferred if cancer is diagnosed in late stages or if the
tumor is located on vulnerable places. Chemotherapy
involves the use of single or combination of cytotoxic
drugs which affect rapidly dividing cells. The major
drawback of chemotherapy is its specificity, the cytotoxic
drugs also kill healthy cells especially those which are
fast growing e.g., cells on intestinal lining. Several
combinations of cytotoxic drugs have been developed to
treat various forms of cancers e.g., combination of
cyclophosphamide, methotrexate, 5-fluorouracil, vinor-
elbine is given to patients with breast cancer [15], the
combination of Doxorubicin, bleomycin, vinblastine,
dacarbazine is optimized for Hodgkin’s lymphoma [16].
Immunotherapy refers to use of therapeutic strategies that
involve the use of patient’s own immune system to fight
cancer. Examples include the use of interferons and other
cytokines [17, 18] to induce an immune response in
patients with renal cell carcinoma and melanoma
[19, 20]. Hormonal therapy refers to the blocking or
administration of certain hormones to treat cancer. For
example, the blocking of estrogen or testosterone is
beneficial in some patients suffering from breast or
prostate cancers [21, 22]. However, in most cases the
patients develop resistance to hormone therapy demand-
ing the use of next-generation drugs [23]. Synthetic
lethality is an approach used to cure those cancers in
which a combination of deficiencies in the expression of
two or more genes leads to cell death but one of these
genes does not. Examples include the use of PARP
inhibitors Olaparib, Rucaparib, Niraparib for ovarian
cancer patients with mutated BRCA1 [24, 25].

Targeted therapy refers to the use of those drugs that
target only specific proteins or enzymes that are dysre-
gulated in cancer rather than killing all rapidly dividing
cells [10, 26, 27]. Various small organic molecules and
monoclonal antibodies are in clinical use that targets
such enzymes or proteins. Examples include the use of
tyrosine kinase inhibitors imatinib (for chronic myelo-
genous leukemia and acute lymphocytic leukemia) and
gefitinib (for certain breast and lung cancers) [28, 29].
Rituximab is a monoclonal antibody used to treat

non-Hodgkin lymphoma, chronic lymphocytic leukemia,
and certain autoimmune diseases [30–32]. Although all
approaches are used to treat various forms of cancer, the
use of targeted therapy is an active and most advanced
area of cancer research these days.

Kinases are the enzymes that catalyze the transfer of
phosphate groups from high-energy, phosphate-donating
molecules to specific substrates viz. proteins, lipids, and
carbohydrates through a process known as phosphorylation
[33–36]. Kinases have been classified into different cate-
gories depending upon the substrate they phosphorylate.
Protein kinases are kinases that phosphorylate amino acids
residues of proteins either on serine/threonine and/or tyr-
osine or histidine residues. Approximately 30% of the
current R&D budget in pharmaceutical companies is
focused on developing kinase inhibitors to treat cancer,
inflammatory disorders, and other diseases. After the
approval of Imatinib, a tyrosine kinase inhibitor, in 2001,
FDA has approved 65 small molecule protein kinase inhi-
bitors as of 30 March 2021 [37].

Fused heterocycles are the organic compounds in
which two heterocycles are fused and the π-electrons
move on both heterocyclic rings by resonance thus pro-
viding a unique set of electrons donors and acceptors.
Fused heterocycles are of high interest in designing
drugs targeting kinases due to their ability to provide
selectivity for a specific kinase or its isoform [38–41].
The presence of multiple heteroatoms at specific posi-
tions on fused heterocycles allows them to form hydro-
gen bonds and other interactions with surrounding amino
acid residues that are sometimes not possible with
monocyclic heterocycles [42] or heterocycles fused with
phenyl rings [43]. Most of the FDA-approved kinases
inhibitors contain one or more heterocyclic rings and 29
among them (Table 1) possess fused heterocycles with
two or more nitrogen atoms. Pyrrolo[2,1-f][1,2,4]triazine
is one of the most interesting fused heterocycles that is
an integral part of several kinase inhibitors and nucleo-
side drugs [44]. It is an integral part of avapritinib
recently approved for adults with unresectable or meta-
static gastrointestinal stromal tumor harboring a platelet-
derived growth factor receptor alpha exon 18 mutation,
including D842V mutations [45]. Pyrrolo[2,1-f][1,2,4]
triazine is also a part of nucleoside [46, 47] drug
remdesivir used to treat broad-spectrum viral infections
including SARS COVID-19 [48]. Various synthetic
strategies have been developed to synthesize pyrrolo
[2,1-f][1,2,4]triazine either starting from triazine or
pyrrole [48]. Scheme 1 depicts the general methods of
synthesis of pyrrolo[2,1-f][1,2,4]triazine. The focus of
this review is to cover the recent advances made in the
development of various kinase inhibitors possessing
pyrrolo[2,1-f][1,2,4]triazine scaffold.
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Table 1 List of FDA-approved kinase inhibitors with fused heterocyclic rings

Name Structure Target Fused heterocycle References

Abemaciclib CDK4/6 benzimidazole [157]

Acalabrutinib Bruton tyrosine kinase dihydroimidazo[1,5-a]
pyrazine

[158]

Afatinib EGFR, ErbB2, ErbB4 quinazoline [159]

Avapritinib GIST with PDGFR exon 18 mutations pyrrolo[2,1-f][1,2,4]
triazine

[45]

Axitinib VEGFR1/2/3, PDGFRβ indazole [160]

Baricitinib JAK1/2 pyrrolo[2,3-d]pyrimidine [161]

Benimetinib MEK1/2 benzimidazole [162]
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Table 1 (continued)

Name Structure Target Fused heterocycle References

Capmatinib MET imidazo[1,2-b][1,2,4]
triazine

[86]

Dacomitinib FR/ErbB2/ErbB4 quinazoline [163]

Erdafitinib FGFR1/2/3/4 quinoxaline [164]

Erlotinib EGFR quinazoline [165]

Gefitinib EGFR quinazoline [163]

Ibrutinib Bruton tyrosine kinase pyrazolo[5,4-d]pyrimidine [166]

Lapatinib EGFR, ErbB2 quinazoline [167]

Larotrectinib NTRK pyrazolo[1,5-a]pyrimidine [168]
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Table 1 (continued)

Name Structure Target Fused heterocycle References

Palbociclib CDK4/6 pyrido[2,3-d]pyrimidin-7-
one

[169]

Pazopanib VEGFR1/2/3, PDGFRα/β, FGFR1/3, Kit,
Lck, Fms, Itk

indazole [170]

Pemigatinib FGFR2 pyrrolo[2,3-b]pyridine [171]

Pexidartinib CSFR1/Kit pyrrolo[2,3-b]pyridine [172]

Ponatinib BCR-Abl, BCR-Abl T315I, VEGFR,
PDGFR, FGFR, EphR, Src family kinases,
Kit, RET, Tie2, Flt

Imidazo[1,2-b]pyridazine [173]

Ribociclib CDK4/6 pyrrolo[2,3-d]pyrimidine [169]

Medicinal Chemistry Research (2022) 31:1–25 5



Table 1 (continued)

Name Structure Target Fused heterocycle References

Ruxolitinib JAK1/2 pyrrolo[2,3-d]pyrimidine [174]

Selpercatinib RET pyrazolo[1,5-a]pyridine [175]

Selumetinib MEK1/2 benzo[d]imidazole [176]

Tofacitinib JAK1/3 pyrrolo[2,3-d]pyrimidine [177]

Trilaciclib CDK4/6 pyrrolo[2,3-d]pyrimidine [178]

Tucatinib ErbB2/HER2 quinazoline and [1,2,4]
triazolo[1,5-a]pyridine

[179]

Vandetanib EGFRs, VEGFRs, RET, Brk, Tie2, EphRs,
Src family kinases

quinazoline [180]

Vemurafenib A/B/C-Raf, B-Raf (V600E), SRMS, ACK1,
MAP4K5, FGR

pyrrolo[2,3-b]pyridine [181]
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Tyrosine kinase inhibitors

Receptor tyrosine kinase inhibitors

Tyrosine kinase inhibitors (TKI) are the largest class of
kinase inhibitors. 48 among 62 FDA-approved kinases
inhibitors target tyrosine kinases [49, 50]. 13 among 48 are
non-receptor tyrosine kinase inhibitors whereas 35 target
receptor protein tyrosine kinases [37]. In 2020 FDA
approved 10 TKI viz. Tepotinib, Capmatinib, Pemigatinib,
Ripertinib, Avapritinib, Tucatinib, Selumetinib, Pralsetinib,
and Seppercatinib [51]. The epidermal growth factor
receptor (EGFR, ErbB-1, HER1) is a transmembrane tyr-
osine kinase receptor that belongs to the ERBB family of
proteins [52]. EGFR regulates several cell signaling

pathways, proliferation, differentiation, and division. EGFR
family consists of four closely related proteins EGFR
(HER1/ErbB1), ErbB2 (HER2/neu), ErbB3 (HER3), and
ErbB4 (HER4) [53]. The activation and auto-
phosphorylation of the intracellular tyrosine kinase
domain of receptors trigger several signaling pathways such
as PI3K/AKT/mTOR, RAS/RAF/MEK, and STAT. Over-
expression of EGFR results in the development of various
cancers. Blocking of EGFR signaling has developed as a
promising therapeutic strategy to prevent the growth of
EGFR-expressing tumors. Several small organic molecules
developed as EGFR TKIs are either in clinical use or
clinical/preclinical trials [54]. Gefitinib and erlotinib are the
first-generation EGFR inhibitors approved for the treatment
of NSCLC patients in 2003 and 2004, respectively [55, 56].

Scheme 1 Reagents and conditions: a Tetracyanoethylene oxide,
THF; b Phenyl vinyl sulfoxide, 1,4-dioxane, Reflux; c NaH, DMF,
NH2Cl, rt; d KOH, H2O, rt; e pyridine, ClCO2Et, dioxane, 110°C; f
EtOH, EtONa, reflux; g POCl3, DIPEA, 120 °C; h NH3, H2O, 80 °C; i

(1) Chloramine, KO-t-Bu, THF, 10 °C; (2) Benzoyl isothiocyanate,
THF; j (1) 2 M NaOH, H2O, 85 °C, (2) MeI, THF, 45 °C; k
CCl2NMe2Cl, ClCH2CH2Cl, Reflux; l HCl; m POCl3, PCl5, 110 °C
[143, 151–156]
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VEGF are receptors for vascular endothelial growth
factors (VEGF). These are of three main types, VEGF1,
VEGF2, and VEGF3 [57, 58]. Overexpression of VEGF
receptors is linked to soft tissue sarcomas, renal cell carci-
nomas, colorectal cancers, thyroid cancer, and several other
cancers. Axitinib (VEGF1 inhibitor) [59], Cabozantinib
(VEGF2 inhibitor) [60], Lenvatinib (VEGFR inhibitor)
[61], Pazopanib (VEGFR1/2/3 inhibitor) [62], Regorafenib
(VEGFR1/2/3 inhibitor) [63], Sorafenib (VEGFR1/2/3
inhibitor) [64], Sunitinib (VEGF2 inhibitor) [65], and
Vandetanib (VEGF2 inhibitor) [66] are in clinical use for
the treatment of various cancers [67].

Hunt et al. synthesized a series of compounds possessing
pyrrolo[2,1-f][1,2,4]triazine nucleus and evaluated their
activity on VEGFR-2 and EGFRkinases [68]. Compounds 2
(IC50= 0.066 µM) and 3 (IC50= 0.023 µM) displayed most
potent activities against VEGFR-2, whereas compound 1
(IC50= 0.100 µM) was more selective for EFGR (Fig. 1).
Compounds were also tested for their activities on DiFi cell
lines (cells sensitive to EGFR inhibitors) and human
umbilical vein endothelial cells (HUVECs). However, the
cellular behaviors of these compounds were somewhat
inconsistent.

The same group also synthesized another series of pyr-
rolotriazine derivatives as VEGFR-2 inhibitors [69]. Com-
pounds 4 and 5 (Fig. 2) displayed the most potent cellular
activity and VEGFR-2 inhibition. Low rates of glucur-
onidation (an indication of higher metabolic stability) were
observed with both compounds.

The fibroblast growth factor receptors (FGFR) are the
family of tyrosine receptor kinases that bind to members of
the fibroblast growth factor (FGF) family of proteins and
regulate the fundamental process of cell development [70].
These are of four main types, FGFR 1, FGFR2, FGFR3, and
FGFR4. FGFR5 (also known as FGFRL1) is a closely

related receptor that can bind FGFs but has no tyrosine
kinase domain. FGFRs are over-expressed in several can-
cers [71]. Erdafitinib (FGFR1/2/3/4 inhibitor), Nintedanib
(FGFR1/2/3) are the only two FGFR inhibitors currently in
clinical use for the treatment of Urothelial bladder cancers
and Idiopathic pulmonary fibrosis [72–74].

Borzilleri et al. reported some substituted 4-(2,4-difluoro-
5-(methoxycarbamoyl)phenylamino)pyrrolo[2,1-f][1,2,4]-
triazines as inhibitors of VEGFR-2 and FGFR-1 [75].
Compounds 6, 7, and 8 displayed the most potent activities
among all compounds screened (Fig. 2). Table 2 shows the
VEGFR-2, FGFR-1, and cellular activities of compounds
6–8. Docking studies revealed 8 to be an ATP competitive
inhibitor of VEGFR-2. Hydrogen-bond interactions
between amide-NH of Cys919 and the N1 of the pyrrolo
[2,1-f][1,2,4]triazine ring anchored 8 to the hinge region of
the adenine binding pocket (Fig. 2). In kinome profiling,
compound 8 showed a good selectivity over a panel of
kinases including HER-1, HER-2, PDGFR-α, IGF-1R,
PKCR, and CDK2. Compound 8 also showed well in vitro
metabolic stability and PK profile. In the L2987 cells-driven
human lung carcinoma xenograft model, 8 showed robust
in vivo efficacy at multiple dosing with no observation of
morbidity or weight loss.

Fink Lab discovered compound 9 as potent and selective
inhibitor of EFGR (IC50= 0.04 µM) and HER2 (IC50=
0.04 µM) [76]. It exhibited IC50 values of 0.86 and 0.46 µM,
respectively on BT474 (breast carcinoma) and Sal2 (sali-
vary gland carcinoma) cell lines. Notably, both cell lines
overexpress HER-2. In kinome screening, 9 showed up to
200-fold selectivity over FAK, p38, MAPKAP kinase 2,
and IGF-1R (Fig. 3).

Mastalerz and co-workers discovered compounds 10 and
12 as dual inhibitors of EGFR and HER2 [77]. The methyl
group on the pyrrole ring was crucial for the activity of 10
and 12. Replacing the methyl group of 10 by OMe (com-
pound 11) resulted in deterioration of activity against both
kinases. Compound 10 was slightly more active than 12
against both kinases (Fig. 4).

In another report, the same group developed compound
13 containing a morpholine side chain on the pyrrole ring of
pyrrolotriazine [78]. A significant improvement of activity
against EGFR (IC50= 0.061 µM) and HER (IC50=
0.055 µM) was observed compared to 10 and 12 (Fig. 4).
Compound 13 also displayed good selectivity over a panel
of kinases. In vitro cellular assay on N87 cells showed a
dose-dependent inhibition of HER2 phosphorylation.
Compound 13 showed a significant reduction of tumor in
GEO and N87 xenografts mice model when dosed sub-
cutaneously and orally. Docking studies revealed that 13
occupied ATP binding sites of EGFR whereas pyrrolo-
triazine N-1 formed hydrogen bonding with Met769 NH in
the hinge region whereas benzyl indazole group was deeply

Fig. 1 Structures of compounds 1–3
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inserted in a hydrophobic pocket formed partially by the
C-helix (Fig. 5).

Mastalerz lab developed 14 and 15 as dual inhibitors of
EGFR and HER2 by modifications of earlier compound 13
in two different reports. In one report, 14 was shown as a
lead [79] whereas 15 was reported as a lead in the second
report [80] (Fig. 4). Both compounds showed comparable
activities for both kinases but in cellular assay 15 was more
potent than 14 on N87 cells. In N87 human gastric carci-
noma and GEO human colon carcinoma athymic mouse
xenograft models 15 showed TGI of 180 and 85% at dose
loading of 180 mg/kg and 240 mg/kg, respectively.

Fink et al. reported compound 16 as a dual inhibitor of
HER2 and EGFR [81]. It inhibited both HER2 and EFFR
with IC50 values of 0.01 and 0.006 µM, respectively. 16 was
also active in cell assays carried out on N87 cells (IC50=
0.12 µM). A significant tumor growth inhibition was
noticed in EGFR driven GEO colon tumor xenograft mice
model. The in vivo and in vitro activities of 16 were much
better than 17, a lead compound discovered by the same
group previously [82] (Fig. 6).

Cai et al. designed and synthesized some pyrrolo-
triazine derivatives containing N-cyclopropylamides as
VEGFR-2 kinase inhibitors which led to the discovery of
18 as a nanomolar inhibitor of VEGFR-2 (IC50 = 11 nM).
Compound 18 was highly selective over CYP3A4, human
cytochrome CYP450 isozyme (Fig. 6) [83]. Compound
18 also showed potent activity in VEGF-stimulated
HUVEC proliferation assay. In the L2987 human lung
carcinoma xenograft model in athymic mice,18 showed

66% TGI at dose loading of 90 mg/kg with no adverse
effects.

c-Mesenchymal-epithelial transition factor (c-Met also
known as hepatocyte growth factor receptor is a protein
tyrosine kinase that in humans is encoded by the MET gene
[84]. c-Met involvement is crucial for the formation,
metastasis, and invasion of various malignant tumors thus
emerged as an attractive therapeutic target for cancer
treatment [85]. Last year FDA approved Tabrecta (capma-
tinib), a c-Met inhibitor for the treatment of adult patients
with non-small cell lung cancer (NSCLC) [86]. Shi et al.
synthesized some pyrrolo[1,2-f][1,2,4]triazine derivatives
as inhibitors of c-Met and VEGFR-2 [87]. Compound 19
showed micromolar activities against c-Met and VEGFR-2
with IC50 values of 2.3 ± 0.1 nM and 5.0 ± 0.5 nM, respec-
tively. The kinase activity of 19 was not better than Fore-
tinib (Fig. 7). IC50 values of 0.71 ± 0.16 nM and 37.4 ±
0.311 nM were observed against BaF3-TPR-Met and

Fig. 2 A Structures and
activities of compounds 4–8; B
Binding of 8 in the ATP binding
sites of VEGFR-2 kinase (Figure
reproduced with the permission
of the original publisher)

Table 2 VEGFR-2 and FGFR-1 biochemical and cellular potencies of
compounds 6, 7, and 8

Entry IC50 (nM)

Kinase inhibition Growth inhibition
of HUVECs

VEGFR-2 FGFR-1 VEGF FGF

6 57 100 17 21

7 16 16 2.1 4.6

8 53 220 27 130
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HUVEC-VEGFR2 cells treated with 19. The docking study
showed 19 occupied the same binding sites as Foretinib on
c-Met and VEGFR-2. Compound 19 also showed good
pharmacokinetic profile in SD rats after oral and intrave-
nous injection (iv).

Schroeder et al. designed and synthesized some C-5
and C-6 substituted pyrrolotriazine derivatives and eval-
uated their activity against Met kinase [88]. Among them,
compound 20 displayed good inhibitory activity against
Met kinase (IC50 = 0.045 µM) along with acceptable
stability in mouse-liver microsome but with a poor
clearance and oral bioavailability in PK studies. Com-
pound 20 also showed poor cell permeability in Caco-2
assay (Pc < 15 nm/s). An X-ray crystal structure of 20
complexes with the Met kinase suggested binding in
ATP-binding sites (Fig. 8). The pyrrolotriazine scaffold
formed the H-bonding with Met1160 and Pro1158 in the
hinge region whereas the NH2 group attached to the
piperidine ring formed H-bonding with Asp1164.

Anaplastic lymphoma kinase (ALK) also known as
cluster of differentiation 246 (CD246), discovered in
1994 is a tyrosine receptor kinase encoded by the ALK
gene [89–91]. It has two main domains, intracellular
(tyrosine kinase domain) and extracellular (ligand-bind-
ing domain). The intracellular tyrosine kinase domain
shares a high degree of similarity with insulin-like growth
factor-1 receptor (IR) [92]. Axitinib, Brigatinib, Cer-
itinib, Crizotinib, Lorlatinib are the FDA-approved ALK
inhibitors currently in clinical use for the treatment of
NSCLC [37]. Ott et al. synthesized 2,7-disubstituted-
pyrrolo[2,1-f][1,2,4]triazine scaffold containing mole-
cules as potent ALK inhibitors [93]. Many compounds
displayed well in vitro as well as in vivo efficacy.
Compound 21 (Fig. 9) showed nanomolar activity against
ALK (IC50 = 10 ± 2 nM) with high selectivity over
insulin-like growth factor-1 receptor (IC50 = 1137 ±
398 nM). The compound 21 inhibited ALK-positive
ALCL cells, Karpas-299 (IC50 = 477 nM) and Sup-M2
(IC50 = 87 nM) cells dose-dependently but did not inhibit

ALK-negative K562 cells at concentrations up to
3000 nM, indicating 21 inhibited ALK-positive ALCL
cells primarily through inhibiting NPM-ALK activity.
Compound 21 also showed good oral bioavailability in
mice (F= 0.38). Oral dosing of 21 in SCID mice in a
xenograft model (SUP-M2) inhibited tumor growth at 10,
30, and 55 mg/kg dose loading with no observable toxi-
city or body-weight loss.

Mesaros and co-workers discovered compound 22 as a
potent ALK inhibitor displaying IC50 of 6 nM along with
high selectivity over IR (Fig. 9) [94]. In PK studies, 22
showed good iv half-life (t1/2= 3.4 h), low clearance
(12 mL/min/kg) and good stability in rat liver microsomes.
Compound 22 inhibited tumor growth in ALK-driven tumor
xenograft dose-dependently in mice.

Mesaros et al. discovered isomeric compounds 23 and 24
(Fig. 10) as potent inhibitors of ALK displaying ALK
enzyme inhibitory activities with IC50 values of 3 and 5 nM,
respectively [95]. Both compounds also displayed good
activity on ALK cell lines. Change of cis (23) to trans (24)
geometry did not deteriorate selectivity over IR or other
kinases. When tested for in vivo efficacy in ALK-driven
Sup-M2 tumor xenografts in SCID mice, 24 (trans-isomer)
showed better tumor growth inhibition (75–87% at 30 mg/
kg) than 23 (cis isomer) at the same dosing.

The insulin-like growth factor 1 (IGF-1) receptor is a
transmembrane tyrosine receptor kinase found on the sur-
face of human cells [96–98]. It is activated by insulin-like
growth factor 1 (IGF-1) and related hormone IGF-2. IGF-1
induces hypertrophy of skeletal muscle and other target
tissues and plays an important role in cell growth. The IGF-
1R is implicated in several cancers including breast, pros-
tate, and lung [99]. The similar ATP binding sites of IGF-
1R and the insulin receptor (IR) are hurdles in designing
IGF-1R specific inhibitors. So far, no drug has been
approved by FDA as an inhibitor of IGF-1. AG538,
AG1024, and NVP-AEW541 are the potent IGF-1 inhibi-
tors currently under clinical trials [100–102].

Wittman and co-workers discovered 2,4-disubstituted
pyrrolo-[1,2-f][1,2,4]triazine 25(BMS-754807) as an inhi-
bitor of IGF-1R (IC50= 2 nM) (Fig. 11). 25 showed high
selectivity over CDK2E (inhibition of CDK2E also inhibits
IGF-Sal cell lines) and showed nanomolar potency on IGF-
Sal cell lines (IC50= 7 nM) [103]. 25 was also evaluated for
in vivo efficacy in the transgenic-derived IGF-Sal tumor
model. Complete tumor growth inhibition was observed in
mice at a dosing of 6.25 mg/kg. The crystal structure of 25
co-crystallized with the kinase domain of IGF-1R revealed
that the cyclopropyl group occupied the shallow “gate-
keeper” region of the kinase, whereas fluoropyridyl amide
was extended into the sugar pocket (Fig. 11). H-bonding
with Met1052 and Glu1050 in the hinge region was crucial
for high activity.

Fig. 3 Structure and activity of compound 9
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Non-receptor tyrosine kinase inhibitors

Janus kinase (JAK) is a family of non-receptor tyrosine
kinases that transduce cytokine-mediated signals through
the JAK-STAT signaling pathway [104, 105]. The JAK
family of proteins has four members, JAK1, JAK2, JAK3,
and tyrosine kinase 2 (TYK2). JAKs are involved in dif-
ferent inflammatory, autoimmune diseases, and malig-
nancies. Baricitinib (JAK1/2 inhibitor for Rheumatoid
arthritis) [106], Fedratinib (JAK2 inhibitor for Myelofi-
brosis) [107], Ruxolitinib (JAK 1/2/3 inhibitor for Myelo-
fibrosis, polycythemia vera), and Tofacitinib (JAK3
inhibitor for Rheumatoid arthritis) [108] are the JAK

inhibitors currently in clinical use. Harikrishnan et al. syn-
thesized some pyrrolo[1,2-f]triazines and evaluated them
against different isoforms of JAK [109]. Compounds 26,
27, and 28 displayed potent activities against JAK2 over
JAK1 and JAK3 (Fig. 12). Although compound 26 showed
the most potent activity and selectivity for JAK2 27 was the
most active compound in cellular assay when tested on
SET-2 cell lines. X-ray crystal structure of pyrrolotriazine
28 docked on JAK2 showed that the pyrazole basic nitrogen
accepts a hydrogen bond from Leu932 amidic NH whereas
pyrazole NH donates a hydrogen bond to the carbonyl of
Glu930 in the hinge region. Unfortunately, all compounds
displayed poor metabolic stability.

Fig. 4 Structures and activities
of compounds 10–15

Fig. 5 Predicted binding modes of compound 13 modeled in the X-ray structure of the lapatinib/EGFR kinase complex (Figure reproduced with the
permission of the original publisher)
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Weinberg Lab developed some 2,7-Pyrrolo[2,1-f]
[1,2,4]triazines as JAK2 inhibitors [110]. Lead com-
pounds were also checked for liver microsome stability
by measuring their ability to form Glutathione (GSH)
adduct. Compound 29 exhibited JAK2 inhibition with an
IC50 value of 0.17 ± 0.03 nM along with significantly low
glutathione adduct formation (Fig. 12) [111].

Serine/threonine kinase inhibitors

The Aurora kinases are serine/threonine kinases that are
crucial for cell proliferation [112]. Aurora kinases regulate
cell cycle transit from G2 through cytokinesis. In humans
three classes of aurora kinases are found namely, aurora
kinase A, aurora kinase B, and aurora kinase C [113].

Fig. 6 Structures and activities
of compounds 16–18

Fig. 7 A Structure and kinase
activity of 19 and Foretinib; B
3D model depicting the binding
of compound 19 and Foretinib
with c-Met (Figure reproduced
with the permission of the
original publisher)

12 Medicinal Chemistry Research (2022) 31:1–25



The former two types play a central role in mitosis,
whereas the last one plays an important role in meiosis.
Overexpression or gene amplification of aurora kinases is
observed in several cancers. ZM447439 [114], Hesperadin
[115], and Tozasertib [116] are the three potent aurora
kinases inhibitors under clinical trials. Abraham et al.
synthesized pyrrolotriazine 31, 32, 33, and 34 (Fig. 13) as
potent pan-Aurora kinase inhibitors by structural mod-
ifications of their lead molecule 30 [117]. Compounds 31
(Kd= 7 nM) and 32 (Kd= 9 nM) were better than 30
against aurora kinase A whereas 34 showed better aurora
kinase B inhibition (Kd= 7 nM) than 1 (Kd= 20 nM) along
with high activity on HCT-116 cells (Table 3). The new
analogs also showed an improved PK profile when

 

Fig. 8 A Structure and Met
kinase inhibitory activity of
compound 20; B X-ray co-
crystal structure of compound 20
bound to the Met kinase domain
(triple mutant) (Figure
reproduced by the permission of
the original publisher)

Fig. 9 Structures and ALK inhibitory activities of compounds 21 and 22

Fig. 10 Structures of compounds
23 and 24

Fig. 11 A Structure and activity of 25; B X-ray crystal structure of 25
cocrystallized with IGF-1R) (Figure reproduced by the permission of
the original publisher)
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compared to 30. In vivo studies carried out with 34 in a
flank-tumor xenograft model in nude mice using the HCT-
116 cells resulted in a dose-dependent tumor growth
inhibition but along with severe body loss at high dosing.

The same research group also discovered 35 and 36 as
potent aurora kinase inhibitors (Fig. 14) [118]. Both com-
pounds inhibited Aurora kinase A and B in nanomolar
potency but with high selectivity for aurora B. Both com-
pounds were also active at cellular levels when evaluated on
HCT-116 cells either by measuring the inhibition of histone
H3 phosphorylation mediated by aurora kinase B14 or the
inhibition of cell proliferation. Both compounds showed
high efficacy in the in vivo studies carried out in nude rats
in a xenograft model with no significant body weight loss or
lethality. Both compounds also showed good selectivity
over a panel of 359 kinases.

Mitogen-activated protein kinase kinase kinase kinase 4
(MAP4K4) also known as hepatocyte progenitor kinase-
like/germinal center kinase-like kinase and Nck-interacting
kinase is a serine/threonine kinase that is involved in cell
proliferation, migration, and adhesion [119]. MAP4K4
activity is implicated in systemic inflammation, metabolic
disorders, cardiovascular diseases, and cancer. There is very
limited information on the role of MAP4K4 in cancer [120].
Wand et al. discovered compounds 37 and 38 (Fig. 15) as

potent inhibitors of MAP4K4 [121]. Both compounds
inhibited MAP4K4 effectively with IC50 values of 4 and
5 nM, respectively. In PK studies, 37 showed much higher
oral bioavailability (F= 0.72) than 38 (F= 0.12).

Phosphoinositide 3-kinases (PI3Ks) discovered by Lewis
Cantley et al. are the family of enzymes involved in cellular
functions viz. cell growth, proliferation, survival, differ-
entiation, motility, and intracellular trafficking [122–124].
Based upon a primary structure, regulation, and in vitro
lipid substrate specificity, the PI3K family is divided into
four main classes. PI3Ks are activated by various factors
and cytokines that result in the activation of serine/threonine
kinase AKT and other downstream effector pathways. The
early clinical trials with pan-PI3K inhibitors were halted
due to high toxicities and modest antitumor effects but there
have been continued efforts to develop safer and isoform-
selective inhibitors to improve the therapeutic index.
Recently three PI3K inhibitors namely, idelalisib, copanli-
sib, and duvelisib) are approved by FDA [125–127].

Dugar and co-workers discovered compound 39 as an
inhibitor of PI3Kα (IC50= 0.02 µM) (Fig. 16) [128]. When
evaluated for in vitro metabolic stability in liver microsomal
enzymes of three species (mouse, dog, and human) it
showed more stability in human liver microsomes compared
to other species. In the cellular assay, it inhibited human

Fig. 12 A Structures and
activities of compounds 26–29;
B X-ray crystal structure of
pyrrolotriazine 28 bound to
JAK2 (Figure reproduced with
the permission of the original
publisher)
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ovarian cancer cell lines, A2780, SKOV3 (ovarian carci-
noma cell line), and PC3 (human prostate cancer cell line)
with EC50 values of 1.10, 3.2, 2.4 µM, respectively. It
showed good selectivity over a panel of 23 kinases at 1 µM
concentration except for homologous PI3 kinases and
mTOR.

Erra et al. discovered 40 (LAS191954) as a selective
nanomolar inhibitor of PI3Kδ (IC50= 2.6 nM) for the
treatment of inflammatory diseases (Fig. 16) [129]. 40 also
showed nanomolar potency on THP-1 cells (IC50=
7.8 nM). The % metabolism (disappearance of parent

compound after microsomal incubation) of 20 and 16% was
observed in rats and humans microsomes, respectively.
Compounds 40 exhibited a superior PK profile than Idela-
lisib in dogs and rats.

Bhide and co-workers discovered another pyrrolo[2,1-f]
[1,2,4]triazine based compound 41 as a nanomolar inhibitor of
PI3Kδ (IC50= 2 nM) (Fig. 17). 41 also inhibited human B-cell
proliferation (hu B-cell prolif) and human whole blood assay
measuring suppression of CD86 expression (hu WB CD86)
with IC50 of 6 and 118 nM, respectively [130]. The selectivity
of 41 against other isoforms (α, β, and γ) was 666, 800, and
130-fold, respectively. Compound 41 showed a good PK
profile with clearance of 82.1mL/min/kg, 6.2 L/kg volume of
distribution, 0.46 of fraction (F), and a half-life of 1 h. The
efficacy of 41 in a mouse collagen-induced arthritis was found
to be superior to methotrexate.

From the same team of researchers, another PI3Kδ
inhibitor, 42, with higher activity and selectivity over β
isoform than 41 was reported (Fig. 17) [131]. The cellular
activity (B-cells) of 42 (IC50= 5.8 nM) was slightly better
than 41. Compound 42 exhibited good efficacy in a mouse
KLH model at dose loading of 3 mg/kg (twice a day).
Compound 42 was well tolerated after day-4 at a dose
loading of 300 mg/kg (QD) in mice with no sign of mor-
bidity or mortality indicating its high selectivity index.

Table 3 The activities of compounds 30–34 on aurora kinase and
HCT-116 cells

Entry Compd Aurora
Kd (nM)

Cell IC50 (nM)

A B C pHH3
(HCT-116)

Proliferation
(HCT-116)

1 30 12 20 4 55 28

2 31 7 4 5 190 75

3 32 9 8 2 15 8

4 33 12 5 nd 16 4

5 34 15 8 nd 44 5

Fig. 13 Structures of compounds
30–34
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Marcoux et al. discovered selective PI3Kδ inhibitor 44
by structural modification of their early hit 43 which was a
potent and dual inhibitor of PI3Kδ and γ but selective for
PI3Kα and PI3Kβ. 43 showed weak inhibition in a T cell
hWB IFNγX assay as well as in a B cell hWB CD69 assay
probably due to low cell permeability [132]. Compound 44
exhibited high potency compared to 43 and showed an
outstanding kinome selectivity profile (Fig. 18). In human B
cell proliferation assay it displayed an IC50 of 1 nM. Despite
showing high potency and selectivity, compound 44
exhibited poor stability in liver microsomes.

Xiang et al. synthesized a series of 6-aminocarbonyl
pyrrolo[2,1-f][1,2,4]triazine derivatives and evaluated their

activity against all isoforms of PI3K. Initially compounds
45 was synthesized which exhibited potent activity against
p110α and p110δ with IC50 of 122 nM and 119 nM,
respectively while requiring higher dose for p110β and
p110γ inhibition (IC50= 1293 and 663 nM, respectively)
(Fig. 19) [133]. 45 displayed good efficacy against human
rhabdomyosarcoma Rh30 cells. By performing further SAR
study compounds, 46 and 47 were developed (Fig. 19).
Both compounds showed good efficacy in cellular assay
when tested against a panel of cell lines, Rh30, BT-474,
SK-BR-3, SKOV-3, and T47D LO2. The poor PK profile of
47 halted its further development.

Fig. 14 Structures, activities,
and PK profile of compounds 35
and 36

Fig. 15 Structures, activity, and
PK profiles of compounds 37
and 38

Fig. 16 Structure and PI3K inhibition of compounds 39 and 40
(LAS191954) Fig. 17 Structures and activities of compounds 41 and 42
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Jia et al. used a combination of electronic density model
and molecular docking and discovered pyrrolotriazinone
containing compound 48 as a potent and selective PI3Kγ−
PI3Kδ dual inhibitor (Fig. 20) [134]. 48 exhibited potent
inhibitory effects on basophil and B cell activation. In PK
studies 48 displayed moderate clearance in rats and low
clearance in dogs but high oral bioavailability (F= 1.08 and
0.82) in rats and dogs, respectively).

Interleukin-1 receptor-associated kinase 4 (IRAK4) is a
threonine/serine protein kinase that belongs to the IRAK
family of proteins [135, 136]. IRAK4 is the most upstream
kinase in Toll/Interleukin-1 receptor signaling. IRAK4 pos-
sesses two main domains, a kinase domain, and a death
domain. IRAK4 overactivation is linked with several auto-
immune diseases and cancers. CA-4948, an IRAK4 inhibitor
is in the early stages of clinical trials [137]. Degorce and co-
workers discovered compounds 49 (IRAK4 IC50= 0.022 µM)
and 50 (IRAK4 IC50= 0.094 µM) as potent IRAK4 inhibitors
using a scaffold hopping strategy (Fig. 21) [138]. Both
compounds displayed good selectivity over a panel of 126
kinases at 1 µM concentration. Anti-tumor activity of 49 was
evaluated in female SCID mice bearing OCILY10 tumors.
Daily oral treatments with 49 (200mg/kg) and ibrutinib

(12mg/kg) resulted in TGI of 92% and 52%, respectively. A
combination of 49 and ibrutinib showed synergistic effects
with TGI > 100% after 43 days.

Non-kinase inhibitors

The hedgehog signaling pathway transmits information to
embryonic cells required for proper cell differentiation
[139, 140]. Different concentrations of hedgehog signaling
proteins are found in different parts of the embryo. The
Hedgehog (Hh) signaling pathway was first identified in the
common fruit fly. Mammals have three Hedgehog homologs,
Desert (DHH), Indian (IHH), and Sonic (SHH). Among these
SHH is the most studied. Several Hh signaling pathway inhi-
bitors have been discovered for cancer therapy [141]. Vismo-
degib, (for basal cell carcinoma), Sonidegib FDA (basal cell
carcinoma), and Itraconazole are the Hh signaling pathway
inhibitory currently under clinical use [142]. Xin et al. syn-
thesized some pyrrolo[2,1-f][1,2,4]triazine framework contain-
ing molecules and evaluated their Hh signaling pathway
inhibitory activity using a luciferase reporter in NIH3T3 cell
carrying a stably transfectedGli-reporter construct (Gli-

Fig. 19 Structures and
antiproliferative activities of 45,
46, and 47

Fig. 18 Structures and activities
of compounds 43 and 44

Medicinal Chemistry Research (2022) 31:1–25 17



luciferase reporter cell lines) [143]. Compound 51 was devel-
oped as the lead after a detailed SAR study. It showed an IC50

value of 0.83 nM in the in vitro Gli-luciferase reporter assay.
An area-under-curve of 2230.32 ng.h/mL and clearance of
414.07mL/h/kg were observed with 51 in PK studies (Fig. 22).

Kim et al. synthesized few compounds containing
pyrrolotriazine-4-one scaffold and assessed their activities
against Eg5 (also known as K1F11 or kinesin-5) [144].
Compound 52 (Fig. 22) was emerged as a lead which dis-
played potent activity in Eg5 ATPase (IC50= 0.06 µM) and
A2780 cell proliferation assays (IC50= 0.05 µM). Clearance
and t1/2 values of 16 ± 2.7mL/min/kg and 4.5 ± 1.6 h respec-
tively were observed in pharmacokinetic studies performed in
mice. In the in vivo studies, a T/C (treated/control) value of
163% was observed at iv dosing of 20mg/kg in mice with
P388 murine leukemia.

Kinase design and SAR study

It has been seen from several examples that the bulky
group’s substitution at C-4 and C-6 positions of pyrrolo

[2,1-f][1,2,4]triazine is crucial to develop selective
VEGFR2, EGFR, and c-Met inhibitors (Figs. 1–8, 23). Both
positions (C-4 and C-6) can accommodate moderate to large
substituents and their structural changes alter the activity/
selectivity of the inhibitor. In addition, there is a small room
to adapt smaller substituents at the C-5 position for
improving the selectivity further (Fig. 23). The C-2 and C-7
positions of pyrrolo[2,1-f][1,2,4]triazine have not been
explored yet for VEGFR2, EGFR, or c-Met selectivity. In
contrast, the substitution at C-2 and C-7 positions of pyrrolo
[2,1-f][1,2,4]triazine plays an important role to develop
ALK selective inhibitors (Figs. 9, 10, 23). In general, large
groups could be accommodated at the C-2 position com-
pared to C-7. There is a single example of an IGF-1R
inhibitor that contains pyrrolo[2,1-f][1,2,4]triazine scaffold,
the results indicate that both C-2 and C-4 substitution lead
to higher selectivity for IGF-1R (Figs. 11 and 23). In the
case of non-receptor tyrosine kinase, the substitution at C-2
and C-4 is the key for higher JAKs selectivity. In general,
most of the modifications are done on the C-2 position of
pyrrolo[2,1-f][1,2,4]triazine whereas small groups such as
amino pyrazole are placed at the C-4 position (Figs. 12 and
23). Putting substituents at the C-7 position (e.g., compound
29, Fig. 12) improves the selectivity of an inhibitor for
JAK2 over the other isoforms. In the case of serine/threo-
nine kinase inhibitors, the substitution at C-2 and C-4
makes the inhibitor more selective for aurora kinase.
Interestingly, the substituents preference of inhibitors for
aurora kinases is like JAKs). The substitution at C-6 further
improves the activity (Table 3). The substitution at C-4 and
C-6 is important to achieve higher MAP4K4 selectivity
(Figs. 15 and 23). Interestingly, all the carbons of pyrrolo
[2,1-f][1,2,4]triazine have been explored to get PI3K
selective inhibitors (Figs. 16–21, 23). In general, most of
the substituents used are small to moderate. Future design to
develop more selective kinase inhibitors should focus on
substituting the unexplored sites of pyrrolo[2,1-f][1,2,4]
triazine for a specific kinase and also the modifications of
groups at the appropriate positions.

Conclusions and outlook

The use of targeted therapy to treat cancer by targeting
specific proteins or enzymes has gained much attention in
the recent past when compared to other therapies. Several
drugs are approved every year as kinase inhibitors to treat
cancer. Most the kinase inhibitors contain one or more fused
heterocycles, and pyrrolo[2,1-f][1,2,4]triazine is one among
them. We have seen that several small organic molecules
containing pyrrolo[2,1-f][1,2,4]triazine scaffold have shown
potent in vitro and in vivo activities against a variety of
cancer cells and tumors. The compounds have potently

Fig. 21 Structures and activities of 49 and 50

Fig. 20 Structure and activity of 48
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inhibited receptor tyrosine kinase inhibitors viz. EGFR,
VEGF, FGFR, c-Met, ALK, IGF-1 as well as non-receptor
tyrosine kinase such as JAK. This class of compound is also
active against serine/threonine kinases including aurora
kinases, MAP4K4, PI3Ks, and IRAK4. Most of the com-
pounds are ATP-competitive inhibitors. A few compounds
containing pyrrolo[2,1-f][1,2,4]triazine scaffold have also

inhibited the Eg5 and hedgehog signaling pathway that is
dysregulated in some cancers.

Future studies should also focus on developing irreversible
or covalent inhibitors to target kinases [145]. All the examples
discussed in this review article are of reversible inhibitors
which means these inhibitors follow occupancy-driven phar-
macology wherein the efficacy of the inhibitor correlates with

Fig. 22 Structures, activities,
and PK profiles of 51 and 52

Fig. 23 A corelation of kinase
activity/selectivity and
substitution pattern/size on the
pyrrolo[2,1-f][1,2,4]triazine
scaffold
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its off constant thus requiring a higher dose of a drug to
maximally inhibit the kinase [146]. In contrast, the efficacy of
a covalent or irreversible inhibitor depends upon its inhibitor
constant as well as the proximity of its electrophilic compo-
nent viz. Michael acceptor and the nucleophilic component of
the protein such as sulphydryl group of the surface exposed
cysteine residue. A Bruton’s tyrosine kinase inhibitor, Ibru-
tinib is an excellent example of a covalent kinase inhibitor
that has been approved by the FDA for the treatment of
mantle cell lymphoma, chronic lymphocytic leukemia, and
Waldenström’s macroglobulinemia [147]. Future studies
should also focus on converting the kinase inhibitor into a
kinase selective degrader. The PROTAC [148] and molecular
Glue [149] approaches rely on artificially inducing the
degradation of a targeted protein by hijacking cellular quality
control machinery. To develop a selective kinase degrader,
the solvent-exposed sites of pyrrolo[2,1-f][1,2,4]triazine could
be extended and connected to E3 ligase recruiting ligands
such as VHL or thalidomide through a linker of an appro-
priate length [150]. We believe that this review article will be
useful to medicinal chemists in designing better kinase inhi-
bitors/degraders containing pyrrolo[2,1-f][1,2,4]triazine scaf-
fold for cancer therapy.
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