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Abstract: Terminal respiratory oxidases are highly efficient molecular machines. These most impor-
tant bioenergetic membrane enzymes transform the energy of chemical bonds released during the
transfer of electrons along the respiratory chains of eukaryotes and prokaryotes from cytochromes
or quinols to molecular oxygen into a transmembrane proton gradient. They participate in regu-
latory cascades and physiological anti-stress reactions in multicellular organisms. They also allow
microorganisms to adapt to low-oxygen conditions, survive in chemically aggressive environments
and acquire antibiotic resistance. To date, three-dimensional structures with atomic resolution of
members of all major groups of terminal respiratory oxidases, heme-copper oxidases, and bd-type
cytochromes, have been obtained. These groups of enzymes have different origins and a wide range
of functional significance in cells. At the same time, all of them are united by a catalytic reaction of
four-electron reduction in oxygen into water which proceeds without the formation and release of
potentially dangerous ROS from active sites. The review analyzes recent structural and functional
studies of oxygen reduction intermediates in the active sites of terminal respiratory oxidases, the
features of catalytic cycles, and the properties of the active sites of these enzymes.

Keywords: membrane proteins; terminal oxidases; cytochrome oxidase; cytochromes; proton pump;
electrogenic mechanisms; reactive oxygen species

1. Introduction: General Properties of Terminal Respiratory Oxidases

The membrane-embedded terminal respiratory oxidases include two main groups of
functionally similar, but structurally and evolutionarily strikingly different superfamilies:
heme-copper oxidases and bd-type cytochromes. The superfamily of heme-copper oxidases
(HCOs) includes cytochrome oxidases (COXs) of mitochondria from higher and lower
eukaryotes, HCOs of most aerobic prokaryotes, and structurally related NO reductases [1].
A distinctive feature of these enzymes is the presence of catalytic binuclear center (BNC)
consisting of closely located iron ion of the heme group and copper ion (non-heme iron ion
in NO reductases) [2]. The bd-type cytochrome superfamily members have to date been
found only in Bacteria and Archaea [3–6].

HCOs catalyze the transfer of electrons from quinols or cytochromes to oxygen with
the formation of water coupled to the generation of proton motive force [2,7–22]. In contrast
to bd-type oxidases, HCOs generate the proton motive force not only by the transfer of
electrons and protons to the catalytic center from different sides of the membrane but
also due to the unique ability for redox-coupled directed proton pumping through the
membrane [23]. NO reductases, which are structurally similar to HCOs, reduce NO to N2O
and are utilized by a number of pathogenic bacteria for denitrification under microaerobic
and anaerobic conditions that occur in many host tissues [24].
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The stoichiometric reactions for a number of members of HCO and bd oxidases are
given below. They differ in the electron donor in the oxygen-reductase reaction, the
presence of protons pumped through the membrane, and their number per 1 electron.

(1) aa3-type heme-copper oxidase from Rhodobacter sphaeroides (A family)
4 cyt c2+ + 8H+

in + O2 → 4 cyt c3+ + 2H2O + 4H+
out

(2) ba3-type heme-copper oxidase from Thermus thermophilus (B family)
4 cyt c2+ + (4 + n) H+

in + O2 → 4 cyt c3+ + 2H2O + (n) H+
out

(3) bo-type heme-copper oxidase from Escherichia coli (A family)
2QH2 + 8H+

in + O2 → 2Q + 2H2O + 8H+
out

(4) bd-type oxidase
2QH2 + 4H+

in + O2 → 2Q + 2H2O + 4H+
out

Where cyt c is cytochrome c; QH2 and Q are two-electron-reduced and oxidized forms
of quinone (ubiquinone or menaquinone), respectively [12,25]; n~2–4 is the amount of the
pumped protons in the B family HCOs [26,27]; H+

in and H+
out are the protons taken up

from the N phase and released to the P phase, correspondingly.
Mammalian mitochondrial cytochrome oxidase contains 13 subunits; the three largest

subunits are encoded by the mitochondrial genome. They form the catalytic core of the
enzyme and are homologous to the three main subunits found in most typical prokaryotic
cytochrome oxidases of the A family. The first subunit contains three redox centers: low-
spin heme a and oxygen reductase center (BNC) consisting of a closely located iron atom of
the high-spin heme a3 and copper ion (CuB). In prokaryotic HCOs, hemes a and a3 can be
replaced with b-, o-, and c-type hemes. The covalently bound c-type hemes can also serve
as additional redox centers, for example, in caa3 or cbb3 oxidases (Figure 1).

Figure 1. Overall structures of heme-copper cytochrome and quinol oxidoreductases from different
families: caa3 from T. thermophilus ([28], PDB ID: 2YEV, A2 family), bo from E. coli ([29], PDB ID:
6WTI, A family), cbb3 from P. stutzeri ([30], PDB ID: 5DJQ, C family) and ba3 from T. thermophilus ([31],
PDB ID: 5NDC, B family). The figure was carried out using Visual Molecular Dynamics software
(v1.9.3) [32].

A bd-type cytochrome consists of two to four subunits [3,33–35]. The first subunit of
the bd oxidase carries a low-spin heme b558 that directly accepts electrons from quinol,
and a di-heme active site (DHAS) that further receives the electrons from b558 [36–50]. In
contrast to heme-copper oxidases, bd-type cytochromes do not contain copper ions. Despite
this, they catalyze the oxygen-reductase reaction with very high efficiency. The DHAS of
the bd enzyme is formed by two high-spin hemes, d and b595 which are in van der Waals
contact [33–35]. There are cases when heme d is replaced by a b-type heme [4,51]. In the
case of cytochrome oxidases, the introduction of electrons into the enzyme occurs from
the water-soluble cytochrome c through the second copper center CuA, consisting of two
copper atoms. In the case of heme-copper quinol oxidases, electrons are introduced in
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the same way as in bd oxidases, through a special site of binding and oxidation of quinol
(Figure 1). In the case of caa3 and cbb3 oxidases, the reduction in CuA by water-soluble
cytochrome c is preceded by an intermediate reduction in an additional c-type heme redox
center(s) (Figure 1). The feature which is used for the classification of HCOs and NO
reductases is organization of the intraprotein proton transfer pathways (“channels”) that
connect the catalytic center with the membrane cytoplasmic side and ensure the transfer of
substrate protons required for water formation, as well as the transfer of protons pumped
through the membrane. Based on the structure of these pathways, HCOs are divided into
the three main families A, B, and C [52–54].

The three-dimensional structure of typical members of the A family has been estab-
lished by X-ray analysis with a resolution reaching in some cases 1.5 Å. These are COX
from bovine heart muscle mitochondria [55–58], bacterial aa3-type COX enzymes from Para-
coccus denitrificans [59] and R. sphaeroides [60,61], bo3-type quinol oxidase from E. coli [29,62],
cytochrome caa3 from T. thermophilus [28] (Figure 1). Despite the high resolution, the nature
of the ligand in the active site of the crystallized enzyme (peroxide, superoxide, chlorine
ion, or hydroxyl anion) is still a matter of debate [63]. For some enzymes, the structures
of the oxidized and reduced enzyme form, enzyme complex with external ligands CO,
CN– [64] and N3

–, the several mutant forms and P and F intermediates [57] of the catalytic
cycle have been resolved. Using electron microscopy, the mitochondrial respiratory super-
complex (respirasome) composed of the complexes I, III, and IV (COX) with the CICIII2CIV
stoichiometry have been resolved [65]. At the same time, two-dimensional electron crystal-
lography has shown that the monomeric form of mammalian COX is functionally active
and not an artifact of enzyme purification from the mitochondrial membrane [66]. Despite
clarification of the general enzyme topography, a detailed picture of the elementary pro-
cesses of the transformation of oxygen atoms in the BNC and coupled charge transfer at
the molecular level is only beginning to emerge [16,21,67].

A characteristic feature of the A family COX enzymes is the presence of two proton-
conducting pathways (D and K channels) originating at the cytoplasmic side of the mem-
brane and formed by highly conserved proton-exchanging groups [68]. According to the
data presented in [7,68–72], these pathways are used to ensure the coupled transfer of
protons from the cytoplasmic side of the membrane to the catalytic center (the so-called
substrate protons, or protons of the substrate) and to the periplasmic space (the so-called
pumped protons, or protons transferred through the membrane). Based on the model
formulated in the course of studies of aa3 oxidases from P. denitrificans and R. sphaeroides, the
K channel serves to transfer some of the substrate protons in the catalytic cycle, while pro-
tons pumped through the membrane and the remaining substrate protons are transferred
through the D channel.

The three-dimensional structure of representatives of families B and C is also estab-
lished (Figure 1) [28–31]. In the oxidases of the B and C families, only the homolog of the K
channel is detected, which presumably serves the transfer of both substrate and pumped
protons. The mechanism of proton transfer through this channel in these oxidases remains
poorly understood ([73] and references therein). In experiments of different types with
family B oxidase, variability in the stoichiometry of proton pumping (0.5–0.85 H+/e−) is
observed. It is assumed that the membrane potential resulting from the operation of the
enzyme can lead to a slip of the proton pump at certain stages of the catalytic cycle [27,73].
Theoretically, there is reason to believe that there is a similar decrease in the stoichiometry
of proton pumping in the C family oxidase [74]. In addition to the D and K channels,
another proposed proton pathway (H channel) was found in heme-copper oxidases of
eukaryotes. Based on the structural data on the COX from mitochondria, it is assumed that
it can serve for the transfer of protons pumped through the membrane, controlled by redox
transformations of low-spin heme (heme a) ([58] and references therein). However, the
role of the H channel in proton pumping is questioned in experiments with mutant forms
on residues in the D, K, and H channels of cytochrome oxidase from lower eukaryotes
(yeast) [75]. Thus, in fact, the functional role of the H channel remains unclear.
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The classification of the bd-type cytochromes adopted until now is based on the size
of the hydrophilic region between transmembrane helices 6 and 7 in subunit I, a binding
domain for quinol oxidation designated as the Q-loop. Accordingly, the enzymes are
divided into two subfamilies: L (long Q-loop) and S (short Q-loop) [76,77]. Very recently,
Murali et al. [4] using phylogenomics identified three families and several subfamilies
within the cytochrome bd superfamily. According to this classification, all the superfamily
members share four transmembrane helices that bind two hemes comprising the catalytic
active site. Only one of the three families possesses a conserved quinol binding site.
Members of the other two families use cytochrome c and possibly another electron donor
different than quinol [4]. Notwithstanding, to date all the biochemically characterized bd-
type cytochromes appeared to be quinol oxidases [14,78–80]. Further research is required
to obtain and characterize a bd enzyme that would use an electron donor other than quinol.

The structures of bd-type cytochromes from three different bacterial species deter-
mined at 2.7–3.3 Å resolution have been published by now. These are the crystal structure
of the Geobacillus thermodenitrificans enzyme [33], and the single-particle cryoelectron mi-
croscopy (cryo-EM) structures of cytochromes bd from E. coli [34,35] and Mycobacterium
smegmatis [81]. The structures show that the enzymes have a similar overall architecture.
All structures are characterized by a triangular arrangement of the hemes b558, b595, and
d. However, in the oxidases from E. coli and M. smegmatis, hemes d and b595 forming the
DHAS are found in a ‘switched’ position with respect to the G. thermodenitrificans enzyme
(Figure 2). Furthermore, the bd enzymes from the three bacteria differ in oxygen pathways
that they may use. In the E. coli oxidase, it is a small hydrophobic channel that allows
O2 to diffuse from the membrane interior to heme d positioned at the center of subunit
I (O2 channel 1) [34,35]. In the G. thermodenitrificans enzyme, heme d located closer to
the extracellular site is directly connected to the protein surface by an accessible oxygen
pathway (O2 channel 2) [33]. The M. smegmatis cytochrome bd may utilize both oxygen
pathways, channels 1 and 2, indicating that heme b595 located closer to the periplasmic
side could be the second O2-reduction site [81]. It was also reported that in the respiratory
chain of E. coli, the bd oxidases can be part of supercomplexes [9]. Cytochrome bd-I together
with formate dehydrogenase and cytochrome bo forms a formate:oxygen oxidoreductase
supercomplex in a 1:1:1 stoichiometry. In turn, a succinate:oxygen oxidoreductase super-
complex is composed by cytochrome bd-II and succinate:ubiquinone oxidoreductase of
unknown stoichiometry [9].

Figure 2. Overall structures of bd-type oxidases from E. coli ([35], PDB ID: 6RX4), M. smegmatis ([81], PDB ID: 7D5I), and
G. thermodenitrificans K1041 ([33], PDB ID: 5DOQ). The three hemes in all structures are in a triangular arrangement but
positions of heme b595 and heme d in the enzymes from E. coli and M. smegmatis are interchanged as compared to those in
the G. thermodenitrificans oxidase. The figure was carried out using Visual Molecular Dynamics software (v1.9.3) [32].
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Cytochrome bd has at least one proton-conducting pathway that connects the cy-
toplasm to the oxygen reducing center in subunit I [33–35,81–83]. The structures of cy-
tochromes bd from G. thermodenitrificans and M. smegmatis indicate a second putative proton
transfer pathway in subunit II [33,81]. The pathway leads from the cytoplasm to the DHAS.
Whether this pathway is functional is not known yet.

Based on general considerations, the organization of the proton-conducting input
pathways in bd-type oxidases should be simpler since the major function of the A family
HCOs is a generation of the proton motive force whereas the bd enzymes do not pump
additional protons across the membrane. Instead, cytochromes bd play essential roles in
bacterial physiology and pathogenesis [14,80,84–88]. The mechanism of transfer of pumped
protons along the same pathway (at least a significant part of it) as is used for the transfer
of substrate protons (D channel in the A family oxidases; K channel in oxidases of the
B and C families) requires a special device to prevent access of pumped protons to the
oxygen-reductase center. Although there is no such requirement in the case of bd-type
oxidases, the pathway for the release of protons leaving the quinol oxidation site must
certainly be isolated from the pathways for proton transfer to the oxygen-reductase center
of cytochrome bd. Only in this case, the bd enzyme is able to generate a proton motive force
during catalysis, in accordance with the experimental data [82,83,89–91]. Indeed, this is
confirmed by structural data [33–35,81]. It should also be noted that this requirement must
also be met in the case of the quinol-binding site of the bo oxidase and the pathways for the
pumped proton to exit to the outer side of the membrane in heme-copper cytochrome c
oxidases [29,92].

In accordance with the important physiological role of the bd-type oxidases, there
is accumulating evidence that cytochromes bd make bacteria resistant to nitric oxide
(NO) [93–102], peroxynitrite [85,103], H2O2 [14,104–107], cyanide [108–110], sulfide [110–113],
and ammonia [114]. The ability of the bd oxidases to degrade these hazardous compounds
is provided not only by the efficiency of their binding to the reaction center and the transfer
of electrons to it, but also by the supply of protons through the proton-conducting input
pathways. The features of these side reactions, despite their importance, remain largely
unexplored. Since the bd oxidases are absent in humans and animals, it seems promising to
use them as protein targets for new antibiotics [115–120].

2. States of Active Sites as Intermediates of the Catalytic Cycle of Oxygen Reduction

The catalytic cycle of COX consists of two half-reactions (reductive and oxidative),
each including two single-electron transitions (Figure 3). The reductive phase in the
newly oxidized “unrelaxed” enzyme (OH state) involves the sequential transfer of two
electrons through the input redox centers to the catalytic center, towards heme a3 and
CuB (OH→EH and EH→R transitions, respectively). As a result, the BNC is reduced from
the fully oxidized state (OH) to the reduced state (R, not shown in Figure 3) and acquires
the ability to bind molecular oxygen (see [2,121] and references therein). The oxidative
phase begins with the oxygen molecule binding to the central iron atom of the high-spin
heme a3 in the reduced BNC. As a result, the primary diatomic oxygen adduct is formed
(state A), which is a mixture of Fe2+–O2 and Fe3+–O2

− states. At the next stage, the O–O
bond is cleaved, and compound P is formed, for which four electrons and a proton are
simultaneously transferred from the active center to the O2 molecule. Three electrons
result from the oxidation of the Fe2+ ion of heme a3 to the oxoferryl state (Fe4+= O2−)
and CuB

+ oxidation to CuB
2+. The fourth electron and the proton come from the closely

located conserved tyrosine residue (Y288 in the aa3 oxidase from R. sphaeroides) that forms
a covalent bond with one of the histidine ligands of CuB during protein post-translational
modification [122–124].
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Figure 3. Catalytic cycle of the A family heme-copper oxidases. Shown are catalytic intermediates
(OH, EH, A, P, F), and the structure of the binuclear heme-copper active site for each intermediate.
The cycle can be divided into two parts, reductive and oxidative. The reductive part comprises
transitions from OH to A. The oxidative part comprises transitions from A to OH. Pumped protons
are shown by the blue arrows.

Two electron vacancies arising in the COX catalytic center are filled by the transfer
of the third and fourth electrons from cytochrome c molecules. The transfer of the third
electron from cytochrome c to Y288 leads to the formation of the F state of the BNC in
the COX catalytic cycle. The transfer of the fourth electron from cytochrome c to heme a3
reduces the oxoferryl state of heme a3 into the OH oxidized state.

The proposed catalytic cycle of cytochrome bd is shown in Figure 4. It can also be
divided into two half-reactions, reductive and oxidative. Quinol is involved in the cycle
as a two-electron-donating substrate [125]. The reductive part comprises two successive
transitions. The first, O1→A1 transition includes the intramolecular transfer of an electron
from the input redox site (heme b558) to heme d with concomitant binding of O2 to the
latter heme. Presumably, in this transition, a proton is also transferred to the hydroxide
ligand of heme d to release a water molecule. The second, A1→A3 transition involves
the transfer of two electrons from the first quinol molecule to hemes b558 and b595. As a
consequence, the fully oxidized DHAS becomes fully reduced with O2 bound to heme d.

The first reaction of the oxidative part of the cycle is A3→P transition [89]. The
structure of compound P is controversial. The O–O bond splitting at this stage has either
already happened or not yet. In the latter case, P is a true peroxy complex of heme
d (Fed

3+–O−–O−– (H+)). In the former case, the concerted transfer of four electrons from the
DHAS to the bound O2 molecule is required. Three electrons come from the ferrous heme
d. This converts heme d (Fed

2+–O2) into the oxoferryl state (Fed
4+ = O2−) with a porphyrin

π-cation radical. The fourth electron is provided by the ferrous heme b595 [89,126]. Two
protons could also be transferred to the oxygen molecule to produce one more water
molecule. If P is a compound I intermediate, the next stage involves the radical quenching
by the transfer of an electron from the ferrous heme b558 (P→F transition). The oxidative
part of the reaction ends with the transfer of two electrons from the second quinol molecule
and probably a proton to the DHAS (F→O1 transition). This reduces the oxoferryl state
of heme d into the ferric state with a bound hydroxide ligand. The DHAS becomes
completely oxidized whereas the input redox site, heme b558, gets reduced. The P→F and
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F→O1 transitions are coupled to membrane potential generation [82,83,91]. The proposed
formation of the bound hydroxide ligand and water molecules in the above-mentioned
transitions still awaits experimental support.

Figure 4. Catalytic cycle of bd-type oxidase. Shown are catalytic intermediates (O1, A1, A3, P, F), and
the proposed structure of a di-heme active site for each intermediate. The cycle can be divided into
two parts, reductive and oxidative. The reductive part comprises transitions from O1 to A3. The
oxidative part comprises transitions from A3 to O1.

2.1. O/OH

In the absence of electron donors, the oxidized “unrelaxed” OH state is spontaneously
converted into the oxidized stable state (O) within the second time scale. This process is
accelerated at acidic pH and it is believed that the oxidized fast state of COX can only
exist at alkaline pH. The O and OH states of the A family cytochrome oxidase differ in
their affinity for electrons of the corresponding redox centers and in the ability to perform
transmembrane proton transfer [127]. In contrast to the O resting state, injection of the
electron into the just oxidized state (OH) of the A family aa3 cytochrome oxidase from P.
denitrificans which is generated upon oxidation of the fully reduced enzyme by O2, results
in the rapid electron transfer into the BNC, to CuB. Besides, the electron injection into the
OH intermediate of the cytochrome oxidase is coupled to pumping of a proton through the
membrane (Figure 3) [127,128].

Several experimental investigations on different A family cytochrome c oxidases,
designed to prepare the OH state, could not find an increase in the CuB(II) midpoint
potential as compared to the resting O state, due most likely to the extreme reactivity and
short lifetime of the OH state [129–131]. At the same time, for the B family cytochrome oxidase
ba3 from T. thermophilus, the existence of high and low-energy forms of the oxidized enzyme,
which differ in the redox properties of heme centers, is also shown [27,121,127,132–135].

The 3D structure of the oxidized COX of the A family was solved for the mitochondrial
and bacterial enzyme, for the crystals obtained at pH below 7 [59,136]. This structure
corresponds to the acidic “slow” form of the enzyme. In this form, Tyr288 is proposed
to be protonated. Meanwhile, the “fast” form of the enzyme requires pH 8 or higher.
The structural differences between these two states remain to be investigated and are
believed to be related to the ligand sphere of CuB [137]. Recently the structure at pH 7.3
was solved [138]. No structural differences between crystals obtained at the neutral and
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acidic pH were detected within the molecules. Structure at alkaline pH has not yet been
obtained. Recently, the redox sensitivities of the new Raman marker band were observed
which suggest that a radical Tyr288 is present in the fast form and a protonated Tyr288 in
the slow form [63]. This is consistent with theoretical works [139,140] that in the OH state,
the electron is shifted from Tyr to CuB, and the tyrosine is deprotonated in the form of
a radical.

2.2. O/O1

The O1 state in cytochrome bd was first detected at steady-state in the presence of
oxygen and ubiquinol by using stopped-flow spectrophotometry [125]. It was shown that
under steady-state conditions, the O1 catalytic intermediate is populated up to 20%. Impor-
tantly, the O species was reported not to be an intermediate of the bd catalytic cycle [141].
The O species can be generated in vitro by incubating the “as isolated” cytochrome bd with
excess lipophilic oxidant [38,97,114,142]. An apparent difference between O1 and O is the
presence of an electron on the input redox site, heme b558 in O1, whereas the DHAS in both
states is fully oxidized. Whether there is any difference in redox potentials of the hemes
constituting the DHAS between O1 and O is not yet known. It is worth mentioning that
there is significant redox interaction between heme b558 and heme b595 [44]. The O1 and O
states in cytochrome bd could be analogs of OH and O in COX.

2.3. E/EH

The EH state, in contrast to the E state, is high-energy and occurs only during single-
electron reduction from OH. The single-electron reduction in EH is presumably accom-
panied by the pumping of a proton through the membrane. Time-resolved experiments
showed that there is a difference in the electron redistribution between E and EH states.
In the E state, the electron equivalent is distributed among heme a, heme a3 and CuB,
whereas in the EH state formed by electron injection into the OH state the electron is located
exclusively on CuB ([134] and references therein).

The redox potential of heme a3 (the electron acceptor in the E state) is too low
(~0.3 V) to provide proton pumping [143]. It is suggested that the E intermediate is
formed in an “activated” form EH in which the proton is not on tyrosine but in the center
of the BNC forming the second water molecule [144]. Thus, the EH state mixes the low
Fea3(III) reduction potential with the higher potential of the tyrosyl radical. The transition
from EH to E is presumably accompanied by the transfer of an electron to the tyrosine
radical and the protonation of tyrosine. In contrast to OH, in the E state, the tyrosine residue
is protonated and is no longer in the form of a radical, but in a reduced state [139,140]. In
the EH state, the tyrosine residue is either in the form of a radical or it is a mixture of a
tyrosine anion and a radical.

In cytochrome bd, E/EH (one-electron-reduced) is not a catalytic intermediate. The E
state can be produced in vitro by deoxygenation of the “as isolated” cytochrome bd under
anaerobic conditions, purging the sample repeatedly with argon gas with the aid of the
vacuum/gas line [82,145,146]. This turned out to be possible because in the bd oxidase
isolated under aerobic conditions, the one-electron-reduced A1 species predominates [142].
In the oxygen-free E state of cytochrome bd, the electron is located predominantly on
heme d.

2.4. R/R3

In contrast to the structure of the oxidized cytochrome oxidase, the structure of the
reduced enzyme lacks the oxygen ligands of heme a3 and CuB [61]. In addition, the
hydrogen bond between Tyr288 and the hydroxyethylfarnesyl side chain in the porphyrin
ring of heme a3 disappears, which is believed to open the possibility of proton transfer to
the active center through the K channel to break the O–O bond.
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R3 is not an intermediate of the cytochrome bd catalytic cycle. The R3 (three-electron-
reduced) state can be obtained in vitro by incubating the bd enzyme with excess reductant
under anaerobic conditions.

2.5. A and Ip

Using the CO flow-flash method it was shown that in the A family bo3 oxidase from E.
coli, the 42 µs lifetime of the first step (R→A) at 625 µM O2 corresponds to a second-order
rate constant of ∼3.8 × 107 M−1 s−1 for O2 binding. This rate is ∼2.5 times slower than
that observed in the bovine and R. sphaeroides aa3 enzymes which also belong to the A
family [147]. Reduced CuB is likely to form a transient O2 binding site on the way of the
oxygen molecule from the membrane via the oxygen channel and into the a3/CuB cavity.
Transient binding of oxygen to CuB in the A family oxidases is likely to be weak. It is
stronger in the B family oxidases like ba3 from T. thermophiles [26,148]. In contrast to COX,
heme b595, somewhat analogous to CuB, seems not to be a transient O2 binding site on the
way of the ligand from outside to heme d [41].

The 3D structures of the reduced COX with CO, NO, or CN- respiratory inhibitors,
which are competitive inhibitors of O2, were used to elucidate characteristics of the A state
(the oxy-complex) that is too unstable to be crystallized [21]. The X-ray structures of NO
and CO derivatives provided a structural basis for the bend end-on binding of O2 to Fe
of heme a3 and the structure of the A state as a mixture of Fe2+–O2 and Fe3+–O2

– states.
This strongly suggests the remarkable stability of the A intermediate and extremely low
availability of the second electron equivalent to the bound O2 from CuB. On the opposite,
the X-ray structure of the fully reduced cyanide anion bound form indicates that cyanide
binding significantly influences the CuB coordination structure. This structure suggests
that Fe3+–O2

− induces coordination in the BNC site to form three possible electron-transfer
pathways, each transferring one electron equivalent, for the nonsequential three electron
reduction in the bound O2. These pathways are as follows: from Fe of heme a3; from CuB;
and from Y288-OH via a water molecule (W510). W510 is not a product of the enzymatic
reaction but a cofactor stored in a water storage site near the O2-reduction site [21,149].

This X-ray structural analysis confirmed earlier theoretical work [150] which suggested
that the O–O bond cleavage proceeds through the two-step mechanism. It is initiated by
proton transfer from the cross-linked tyrosine, via one or two water molecules (W510 in the
structure) to the superoxide, to form the type of peroxide intermediate (Ip), Fea3(III)OOH–

CuB(II). The proton transfer is coupled to an electron transfer from the CuB-tyrosine
complex. In the second step, the O–O bond is cleaved and the PM intermediate is formed,
with Fea3(IV) = O2− plus CuB(II)OH– TyrO* [151–153]. Since both an electron and a proton
move from the tyrosine in the same direction and distance to the oxygen atom, the A→PM
transition does not generate a transmembrane voltage and virtually no phase of potential
generation during R→A→PM steps was obtained using the electrometric technique [154]
(Figure 3).

The Ip intermediate was experimentally resolved in a recent study on the B family
cytochrome oxidase (ba3 from T. thermophilus) at low temperature and pH. Electron trans-
fer from the low-spin heme b to the catalytic site was shown to be faster by a factor of
~10 (τ ~ 11 µs) than the formation of the PR ferryl (τ ~ 110 µs). This indicates that O2 is
reduced before the splitting of the O–O bond [152].

The significantly faster O2 binding and the O–O bond cleavage in the T. thermophilus
ba3 as compared to analogous steps in the aa3 oxidases could reflect evolutionary adaptation
of the ba3 enzyme to the microaerobic conditions of the T. thermophilus HB8 species [155].
In evolutionarily distant bd oxidases, nevertheless, the same problem is solved-survival at
low oxygen levels.

2.6. A1 and A3

Unlike COX, the presence of a single electron in the DHAS of cytochrome bd is
sufficient to form a stable globin-like oxy-complex. The likely reason for this is the high
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oxygen affinity of ferrous heme d, at least in E. coli and Azotobacter vinelandii [145,146].
Significant amounts of A1 are observed in the bd-containing bacterial membranes and the
isolated enzyme, as evidenced by an absorption band near 650 nm typical of the heme d
oxy-complex [142,156,157]. Stopped-flow experiments showed that at steady-state about
40% of cytochrome bd is in the A1 form [125].

Transient formation of A3 was registered by the flow-flash method with a microsecond
time resolution [89,146,158]. The fully reduced CO-bound cytochrome bd was photolyzed
in the presence of O2. The flash-induced absorption changes associated with the reaction
of oxygen with the oxidase were detected. The rate of the A3 production depends linearly
on the O2 concentration giving a second-order rate constant kon of ~2 × 109 M−1s−1. The
formation of A3 from the fully reduced enzyme is not electrogenic [82,83,89,91].

The available structures show that the bd enzymes from G. thermodenitrificans and
E. coli use different pathways for oxygen delivery [33–35]. This is likely due to the fact that
the O2-binding site, heme d, is located closer to the periplasmic side in the G. thermodenitrif-
icans structure, whereas in the E. coli structure it is positioned approximately in the middle
of the membrane. As a result, in the former structure, O2 can get access to heme d via an
oxygen entry site located laterally at a short distance from the heme. There is no need for a
functionally conserved protein cavity for the gaseous substrate to bind to heme d [33]. In
the latter structure, the oxygen pathway is parallel to the membrane plane and connects
the lipid interface to heme d [34,35]. It is provided by a specific hydrophobic channel that
starts near Trp63 of CydB and extends towards heme d on CydA.

2.7. P and F

Similar to peroxidases, the reduction of the state P (analog of compound I) by two
electrons through the intermediate state F (analog of compound II) converts the enzyme
into the oxidized state OH (third and fourth electrons in the catalytic cycle). The P and F
states of cytochrome oxidase contain heme iron a3 in the ferryl-oxo state. An essentially
identical A 1.70 Å Fe–O distance of the ferryl center of heme a3 which was resolved
in the X-ray structures of catalytic intermediates (P and F) could best be described as
Fea3

4+ = O2− rather than Fea3
4+–OH− [57]. In that work they found an interstitial water

molecule that could trigger a rapid proton-coupled electron transfer from tyrosine-OH to
the slowly forming Fea3

3+–O−–O−–CuB
2+ state preventing its detection, consistent with

the unexpected Raman results.
The state P differs from F by an additional oxidative vacancy located on the aromatic

residue near the binuclear center, covalently bound to one of the His ligands of CuB. This
aromatic residue, tyrosine Y288, is suggested to provide the fourth electron during the
cleavage of the O–O bond. The tyrosine radical Y288 is able to exchange with other aromatic
residues (for example, W236), but at what rate this occurs and which radical is the primary
one is not fully understood [152].

Flow-flash method in combination with electrometric or spectroscopy technics allows
us to follow the charge transfer steps during the catalytic cycle of the proton-motive force
generators [159–163]. In the case of the caa3 oxidase from T. thermophilus which has five
electron equivalents in the reduced state, the electrogenic component with τ ~ 50 µs is
associated with the PR→F transition. Together with the previous reaction step (A→PR)
this is coupled to the translocation of about two charges across the membrane. The three
subsequent electrogenic phases, with time constants of ~0.25 ms, ~1.4 ms, and ~4 ms, are
linked to the conversion of the binuclear center through the F→OH→EH transitions, and
result in the additional transfer of four charges through the membrane dielectric [134,135].

Earlier, using electrometric techniques and direct pH measurements of the A family
aa3 oxidases, it was also shown that the formation of the F state from the P state and the F
to OH transition are coupled to the pumping of protons across the membrane [164–170]
(Figure 3). Each of these transitions is associated with the absorption of two protons
from the internal solution of proteoliposomes with incorporated cytochrome c oxidase
and the release of one proton into the external bulk phase. The EH→R transition is
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the least explored with a time resolution and consequently less understood step of the
catalytic cycle due to technical difficulties with stabilization of cytochrome c oxidase
in this state. Assuming that the OH→EH, F→O, and PM→F transitions are coupled to
the pumping of approximately one proton, the resting forth pumped proton should be
associated with the EH→R transition [171]. Thus, the experiments performed with a
microsecond time resolution directly indicate that each of the four one-electron transitions
in the catalytic cycle of the A family cytochrome c oxidase (highly effective generator of
a proton motive force) is coupled to the pumping of one proton through the membrane
(Figure 3) [69,70,134,135,166,171–174]. At the same time, in the B family oxidases, some
time-resolved one-electron transitions (OH→EH [27] and P→F [26] or F→O, depending
on the interpretation [19]) are not associated with the transfer of the pumped proton that
explains the decrease in pumping stoichiometry in these oxidases (~0.5 H+/e vs. 1 H+/e)
observed under certain conditions in stationary measurements.

In cytochrome bd, P was discovered as a short-lived catalytic intermediate in-between
A3 and F in the flow-flash kinetic experiments [89]. It is formed from A3 nonelectrogenically
with τ of 4–5 µs at 21 ◦C [89,90]. The chemical structure of P is still a matter of debate. In the
original paper, Belevich et al. [89] suggested that P is either a true peroxy complex (analog
of compound 0) or oxoferryl species with a radical on the porphyrin ring or an amino
acid residue (analog of compound I). The authors leaned towards the former possibility
because the radical formation would be energetically unfavorable in the presence of the
reduced heme b558 in the proximity of the DHAS. Later, Paulus et al. using ultra-fast
freeze-quench trapping followed by EPR and absorption spectroscopy reported that P is
a heme d oxoferryl porphyrin π-cation radical intermediate that magnetically interacts
with heme b595 [126]. It has to be noted that Paulus et al. performed the experiments
at non-physiological, lower temperatures. It cannot be excluded that “P” observed by
Belevich et al. is a mixture of the peroxy and oxoferryl cation radical species provided
that they have similar spectral characteristics. Whatever the P intermediate is, at the next
catalytic step it decays into a nonradical F species (analog of compound II), concomitant
with the oxidation of heme b558. This transition occurs with τ of 47 µs (at 21 ◦C) and is
coupled to the membrane potential generation [89,90]. The F species absorbing maximally
at 680 nm is persistently seen in the static spectrum of the “as-prepared” cytochrome bd
and was first identified as oxoferryl (Fed

4+=O2−) by resonance Raman spectroscopy [175].
At steady-state the F species is populated up to 40% [125].

3. Noncatalytic States of Active Sites That Occur When External Ligands Are Added:
Heme-Copper, bd

Due to the fact that the active centers of terminal oxidases are able to interact with a
wide variety of external ligands, we consider only a few examples illustrating this variety.

The states of the binuclear center, similar to the states P and F, can also be obtained in
the reaction of an oxidized cytochrome oxidase of the A family with H2O2. It is possible to
solve the kinetics of the formation of intermediates P and F in the reaction with peroxide
using the fast mixing method. For example, the first intermediate of caa3 cytochrome
oxidase from T. thermophilus is formed with a bimolecular constant of 1540 M−1s−1 and
has characteristics in the visible region and Soret band similar to the P intermediate
resolved in the kinetics of enzyme oxidation in the single-turnover mode [134]. The second
intermediate is formed with a constant of 21.5 M−1s−1 and has spectral characteristics
similar to the intermediate F. The addition of the second molecule of H2O2 converts P to
the F state. It is suggested that in presence of peroxide, the P-to-F transition is due to the
binding of H2O2 to CuB triggering a structural change together with the uptake of H+ at
the catalytic center, complemented with the annihilation of Y288 radical by the intrinsic
oxidation of the enzyme [176].

In contrast to the A family oxidases, the binding of peroxide to the B family oxidases
in a fully oxidized state is not observed in similar experiments. It is assumed that the BNC
is in a closed state and peroxide begins to bind only when the enzyme is reduced by a
single electron [132].
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The interaction of the reduced BNC with CO in heme-copper oxidases allows us to
study the kinetics of the ligand migration to the binuclear center (CO recombination) and
the stages of the reverse electron transfer caused by photolysis of the bond of CO with
the iron atom of a high-spin heme by a short laser flash. As typical for the heme-copper
oxidases, upon photodissociation of CO from the mixed-valence caa3 cytochrome oxidase
from T. thermophilus in the absence of oxygen the reverse electron transfer from heme a3 to
heme a and further to the cytochrome c/CuA pair is resolved as a single transition with
τ ~ 40 µs. Unlike the mitochondrial cytochrome oxidase and typical prokaryotic oxidases
with four redox centers, this enzyme has an additional redox center, cytochrome c. Electron
exchange between CuA and the additional cytochrome c in this enzyme proceeds much
faster, therefore it is not isolated as a separate kinetic stage. The electron back-flow is
followed by the return of an electron to the BNC and rebinding of CO with a rate constant
of ~14 ms, a process that is only observed in the fully reduced state (Figure 5). Unlike the
A family oxidases in which there is a significant reverse electron transfer from the BNC to
the input redox centers, in the B family oxidases, this transfer is much smaller and does not
exceed a few percentage points [26,155]. This is likely due to the lower redox potential of
the low-spin heme of the B family oxidases as compared to the BNC under these conditions.
Similarly, in the bd oxidases, the reverse electron transfer is also not significant under these
conditions [45,47,48,82,177].

Figure 5. Proposed scheme for a cycle of photolysis and recombination of CO to the heme-copper
cytochrome oxidase caa3 from T. thermophilus (A2 family) in the two-electron-reduced mixed-valence
(MV) and fully reduced (R4) states. In the R4 state, photodissociation of CO from the ferrous heme a3

iron (Fe2+
a3) is followed by its rebinding to the heme with τ of 14 ms. In the MV state, in addition to

the CO rebinding, there is a transient back-flow of an electron from the binuclear center to the input
redox center (heme a, CuA, and cytochrome c) with τ of 0.04 ms. Intermediate binding of CO to CuB

is not shown. The scheme is based on time-resolved spectroscopic studies [26,135].

When ammonia is added at pH 9 to the F state, classically generated by reaction with
excess H2O2, a new PN state (in contradiction to the conventional direction of the catalytic
cycle) is shown to appear. It is suggested that ammonia coordinates directly to CuB in the
binuclear active center in this P state [178]. The structural and functional properties of this
artificial intermediate compound require further research.

A species with an absorption maximum at 680 nm can also be produced by the addition
of excess H2O2 to the bd oxidase being in the O or “as-prepared” state [82,94,179,180]. As
its spectral features are similar to those observed for the F intermediate in the flow-flash
and stopped-flow experiments [82,89,90,125], it can be suggested that these species also
have similar or even identical chemical structures. In other words, both are likely a heme d
oxoferryl intermediate.
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The oxygen-binding site of cytochrome bd, heme d, can also bind external ligands.
Usually, a ferrous heme binds electroneutral molecules whereas a ferric heme binds ligands
in the anionic form. In the case of heme d, it is true for cyanide and CO but not for NO.

MCD and absorption spectroscopy shows that cyanide binds to ferric heme d in the
O state of cytochrome bd [38]. At a high concentration, the ligand can also react with
part of ferric heme b558 in the isolated enzyme [38,181]. However, if the enzyme is then
reconstituted into phospholipid-based liposomes, cyanide no longer interacts with heme
b558 and binds predominantly to the heme d site [181]. Interestingly, the MCD study does
not reveal any substantial cyanide binding to the high-spin pentacoordinate ferric heme
b595, even at the highest concentration of the ligand used, 50 mM [38]. According to the
EPR study, conversely, the addition of the ligand to cytochrome bd results in its binding
to the DHAS as a bridging ligand (Fed

3+–C = N–Feb595
3+) [37]. As discussed below, it is

quite unlikely. The Fe–Fe distance between hemes d and b595 is too big to allow a bridging
structure in the DHAS. Resonance Raman studies report that in the cyanide complex heme
d is high-spin pentacoordinate [182,183]. This suggests that the binding of cyanide to heme
d is accompanied by dissociation of the heme axial ligand.

The addition of CO to cytochrome bd in the fully reduced state (R3) leads to the
ligand binding to ferrous heme d [38,40,49,77,184,185] with a high affinity [43,186]. The
formation of heme d-CO adduct is accompanied by a small spectral perturbation of heme
b595 [39,41,45]. The binding of the ligand with ferrous heme b595 as such is usually minor.
In the case of the bd oxidases from E. coli and A. vinelandii, the CO-reactive fraction of heme
b595 does not exceed 5–15% under different experimental conditions [36,40,46]. However,
in the bd enzyme from G. thermodenitrificans, this fraction is larger, 20–25% [77].

O2 in the A1 state can be replaced with CO that results in CO binding to ferrous
heme d and the formation of the one-electron-reduced CO-bound species (R1-CO). Studies
of photolysis and subsequent recombination of CO with heme d showed that the flash-
induced dynamics of the heme iron coordination sphere between the R1 and R3 states of the
enzyme is different (Figure 6) [47–49]. In the R3 cytochrome bd, the heme d-CO complex is
hexacoordinate and the protein-derived axial ligand to the heme iron (amino acid residue,
AAR) remains permanently indissociable during photolysis and recombination processes.
In the R1 cytochrome bd, on the contrary, the heme d-CO complex is pentacoordinate (i.e.,
AAR is not bound to Fed

2+) but photodissociation of CO from Fed
2+ is accompanied by

transient binding of AAR at the opposite side of heme d. AAR is either H19 [34] or E99 [35].
This flexibility of the heme d coordination sphere may have functional significance during
the catalytic cycle.

Unlike cyanide and CO, NO can react to different states of heme d. The reaction of
cytochrome bd in the A1 (Fed

2+–O2), R1 or R3 (Fed
2+) states yields a nitrosyl ferrous adduct

(Fed
2+–NO) [38,93,95]. The O enzyme (Fed

3+) reacts with NO producing a nitrosyl ferric
species (Fed

3+–NO or Fed
2+–NO+) [97]. Reaction between cytochrome bd in the F state

(Fed
4+ = O2−) and NO gives a nitrite-ferric (Fed

3+–NO2
−) derivative [94].

Cytochrome bd in the O state also interacts with ammonia. Surprisingly, in contrast
to cyanide, CO, and NO, NH3 does not inhibit but activates the bd oxidase at alkaline
pH [114]. It can be hypothesized that NH3 promotes the conversion of O into P thereby
accelerating the enzyme activity. It is also possible that ammonia reacts with O1 yielding F.
In these two reactions, NH3 may be oxidized to NH2OH.
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Figure 6. Proposed scheme for a cycle of photolysis and recombination of CO to bd-type oxidase in
one-electron-reduced (R1) and fully reduced (R3) states. In the R1 state, photodissociation of CO from
the ferrous heme d iron (Fed) is accompanied by binding of the axial ligand, an amino acid residue
(AAR), at the opposite side of the heme. CO rebinds to Fed with τ of 0.016 ms producing a transient
hexacoordinate state (AAR–Fed–CO). Then AAR is dissociated from Fed with τ of 30 ms. In the R3

state, AAR is a permanent indissociable ligand to Fed. Photodissociation of CO from Fed is followed
by its rebinding to the heme with τ of 0.02 ms. AAR is either H19 [34] or E99 [35]. The scheme is
based on time-resolved spectroscopic studies [47–49]. The electron transfer in the opposite direction
(back-flow) observed in the R1 state occurs to a much lesser extent than in heme-copper oxidases and
therefore is not shown in the scheme.

4. BNC vs. DHAS

A very short distance between Fe of heme a3 and CuB (4.5–5.2 Å, see references in [7])
allows the BNC of COX to bind a single diatomic molecule or ion, e.g., a peroxo group,
as a bridging ligand. The Fe–Fe distance between heme d and heme b595 is much larger
(11.1–11.6 Å [33–35]) that excludes such a possibility for the DHAS of cytochrome bd.
Therefore, in this sense, heme b595 is not a functional analog of CuB. Nonetheless, the
distance between the edges of heme d and heme b595 is rather small (3.5–3.8 Å [33–35])
suggesting they are in van der Waals contacts. The van der Waals interactions enable fast
electron transfer between the hemes. The first evidence of this was the observation that
the 4.5-µs transition of A3 to P is accompanied by the oxidation of heme b595 [89]. Later, a
CO photolysis/recombination study of the one-electron reduced cytochrome bd provided
evidence for electron transfer between hemes d and b595 within 0.2–1.5 µs [47,48]. Thus,
heme b595 rapidly donates an electron and possibly a proton to heme d for the oxygen
chemistry occurring in the DHAS. This function of heme b595 in cytochrome bd is similar
to that of CuB in COX.

Major recent advances in the heme-copper oxidases include the role of the unique
tyrosine residue which is now, in addition to the usual CuB and the iron atom of heme a3,
accepted to be included in the active center. Thus, the active site of cytochrome c oxidase
comprises an oxygen-binding heme, a nearby copper ion (CuB), and a tyrosine residue that
is covalently linked to one of the histidine ligands of CuB and conserved throughout the
superfamily of the respiratory heme-copper oxidases. The most recent results suggest that
the catalytic importance of this residue considerably exceeds the original idea of assistance
in the breaking of the O−O bond and that it is of key importance in modulating the redox
potentials of the catalytic site intermediates and gating of the proton transfer through the
K-channel. These redox potentials are now established with reasonable accuracy from
both experiments and calculations, and the remarkable “leveling effect” by the active site,
relative to the potentials of O2 reduction in solution, is more dramatic than originally
estimated [16,144]. Hence, the neutral radical form of Tyr288 is suggested to have a more
general role in the cytochrome c oxidase mechanism than thought previously.
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The fact is that in the organization of the active center of heme-copper oxidases, the
most important task of thermodynamic alignment (“leveling”) of all four single-electron
transitions is solved, providing the necessary amount of free energy for pumping a proton
in each single-electron transition when oxygen is reduced to water. At the same time, there
is no such tough task for the active center of the bd oxidases. There are no indications of
the presence of an aromatic radical in the active center or its participation in the catalytic
cycle of a bd oxidase; when the O–O bond is broken, an additional electron is taken from
the heme porphyrin. However, the organization of the bd active center can and should
meet other requirements that ensure the performance of special physiological and adaptive
functions of this unique cytochrome in prokaryotes. More specifically, fine-tuning of the
thermodynamics of redox transitions in the active center of the bd oxidase can provide the
solution of such problems as a high rate of partial stages of oxygen reduction which ensure
the adaptive value of these oxidases under oxygen-limited conditions; acceleration or, vice
versa, prohibition of side reactions with stress-induced metabolites (inhibitors) ensuring
adaptive benefits. The complex structural and functional aspects of these issues for the
bd oxidases are still under development, for which the necessary prerequisites have now
appeared due to the deciphering of the three-dimensional structure of all representatives
of the terminal oxidases, including the bd-type cytochromes. This seems to be a promising
direction and requires further research, both experimental and theoretical.

5. Concluding Remarks

Terminal respiratory oxidases are a broad group of membrane enzymes characterized
by a variety of organizations of the main catalytic nodes and evolutionary origins. Despite
the similarity of the main catalytic function, the reduction in oxygen to water, these enzymes
have important functional differences. On the one hand, heme-copper terminal oxidases
have a mechanism of transmembrane proton pumping and are therefore more important
as effective generators of a proton motive force. The bd-type cytochromes and some heme-
copper oxidases of minor families, although being less effective energy converters, at the
same time provide microorganisms with adaptation to low-oxygen conditions and survival
in chemically aggressive environments and, as a result, resistance to antibiotics. Currently,
three-dimensional structures of members of all major groups of terminal oxidases, the
main families of heme-copper oxidases and bd-type cytochromes, have been solved. This
provides a unique opportunity for a comprehensive structural and functional study of
these important enzymes. Elucidation of the general principles and specific features of
the organization and mechanisms of functioning of terminal oxidases of different types
will help to decipher the mechanisms of energy conversion in biological membranes and
create artificial and hybrid nanoscale objects with desired properties, establish mechanisms
for the regulation and adaptation of cellular respiration, the resistance of pathogenic
microorganisms, and search for new drugs.
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