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ABSTRACT: The biocatalytic synthesis of amides from carboxylic
acids and primary amines in aqueous media can be achieved using the
ATP-dependent amide bond synthetase McbA, via an adenylate
intermediate, using only 1.5 equiv of the amine nucleophile. Following
earlier studies that characterized the broad carboxylic acid specificity of
McbA, we now show that, in addition to the natural amine substrate 2-
phenylethylamine, a range of simple aliphatic amines, including
methylamine, butylamine, and hexylamine, and propargylamine are
coupled efficiently to the native carboxylic acid substrate 1-acetyl-9H-
β-carboline-3-carboxylic acid by the enzyme, to give amide products
with up to >99% conversion. The structure of wild-type McbA in its
amidation conformation, coupled with modeling and mutational
studies, reveal an amine access tunnel and a possible role for residue
D201 in amine activation. Amide couplings were slower with anilines
and alicyclic secondary amines such as pyrrolidine and piperidine. The broader substrate specificity of McbA was exploited in the
synthesis of the monoamine oxidase A inhibitor moclobemide, through the reaction of 4-chlorobenzoic acid with 1.5 equiv of 4-(2-
aminoethyl)morpholine, and utilizing polyphosphate kinases SmPPK and AjPPK in the presence of polyphosphoric acid and 0.1
equiv of ATP, required for recycling of the cofactor.
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There is renewed interest in biocatalytic methods for the
formation of amide bonds, which is the number one

employed reaction within the pharmaceutical sector, because
enzymes can offer attractive alternatives to standard abiotic
methods of amide synthesis.1 Biocatalytic alternatives may
eliminate the need for stoichiometric coupling reagents and
also confer enantioselectivity in the case of chiral amine or acid
components.2−5 Lipases, for example, catalyze the aminolysis
of esters in organic solvents6 to form chiral amides, and
penicillin acylases (PACs) catalyze the amidation of phenyl-
acetic acid derivatives to form semisynthetic penicillins.7 In
addition, Li and co-workers have recently described an
intracellular lipase SpL from a Sphingomonas sp., which
catalyzes enantioselective amidation of both esters and
carboxylic acids with high selectivity in organic solvents.8

However, complementary routes to amides that permit the
coupling of carboxylic acids and amides in aqueous media are
also of interest. One natural strategy for amide bond formation
is the adenylation−thiolation−condensation cascade of re-
actions observed in, for example, the biosynthesis of
thiomarinols in Pseudoalteromonas,9 in which the adenylation
of a carboxylic acid is followed by thioesterification to
Coenzyme A and then aminolysis of the thioester to form an
amide bond. These reactions inspired the construction of
libraries of Coenzyme A ligases (CLs) and N-acyltransferases

(NATs) by Lovelock and co-workers,10 who then used the
best-performing enzymes to construct a whole-cell system for
the synthesis of the kinase inhibitor losmapimod from 6-
chloronicotinic acid and neopentylamine. Similar chemistry is
observed in nonribosomal peptide synthases (NRPSs),11 which
first catalyze the adenylation of a carboxylic acid, followed by
the formation of thioester linkage to a phosphopantetheine on
an acyl carrier protein, after which attack of an amine
nucleophile catalyzed by a ligase domain forms the amide
bond. Recent experiments by Kobayashi and co-workers,12−15

Kino,16 and Campopiano17 have demonstrated that members
of the adenylate-forming enzyme superfamily can be exploited
for amide bond formation reactions in which the adenylate
intermediate is attacked directly by an amine nucleophile.
However, the role of the domain in catalyzing amide bond
formation itself has yet to be conclusively demonstrated. In
one example, Flitsch and co-workers showed that the adenylate
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formed by a carboxylic acid reductase (CAR) adenylation
domain could be recruited for the milligram-scale synthesis of
the anticonvulsant compound ilepcimide, when presented with
a large excess of the amine precursor, piperidine.18

Enzymes that actively catalyze both the adenylation of
carboxylic acid precursors and amide bond formation within
one polypeptide chain also exist. These “amide bond
synthetases” (ABSs) are exemplified by the biosynthetic
enzyme McbA from Marinactinospora thermotolerans, which
was described by Ju and co-workers.19 McbA catalyzes the
adenylation of 1-acetyl-9H-β-carboline-3-carboxylic acid 1
(Scheme 1) to give intermediate 2, followed by amidation

with 2-phenylethylamine 3, provided in equimolar amounts, to
give the amide 4 as part of the biosynthetic pathway toward the
marinacarboline antibiotics.19

The same group investigated the substrate specificity of
McbA for the amine component of the coupling reaction, and
found that, while tryptamine, and halogenated derivatives of 3
were accepted as substrates, the specificity of the enzyme
appeared to be rather narrow.20 In further experiments, we
have shown that the carboxylic acid specificity of McbA
extends to bicyclic aromatic and heteroaromatic acids, in
addition to benzoic acid,21 suggesting scope for the application
of McbA to the synthesis of a wider range of amides than was
previously envisaged. We also reported the three-dimensional
structure of McbA, which revealed the possible basis for
relaxed carboxylic acid specificity within the active site.21 In
this report, in the interests of further expanding the
applicability of the enzyme, we have revisited the amine
specificity of McbA and, following a new screen of acid-amine
partners, applied the enzyme to the synthesis of the amide
pharmaceutical moclobemide. With a view to further
application, we have incorporated an ATP recycling system
in these reactions, using a 0.1 mol equiv of the cofactor to
effect up to 63% conversions in the reactions.
Having established a broader spectrum of carboxylic acid

substrates for the enzyme,21 we turned our attention to the
amine specificity of McbA, with a view to targeting the
synthesis of known pharmaceutical amide products. In the first
instance, we tested a library of amines, including aliphatic,
aromatic, and alicyclic representatives (Scheme 2) against 1 for
amide coupling, using only 1.5 equiv of amine for screening,
and 5 equiv of ATP. Conversions were monitored by HPLC
against chemically synthesized amide product reference
standards. The Supporting Information (SI) details protocols
for enzyme production (Section 2 in the SI), amide standard
synthesis and characterization (Sections 3 and 4 in the SI),
analytical procedures (Section 5 in the SI), biotransformations
(Section 6 in the SI), and representative NMR spectra
(Section 13 in the SI). A graph, showing the time course of
these reactions, is also provided (see Figure S1 in the SI). No
amide products were observed in control reactions that did not

contain either ATP or McbA. Scheme 2 shows that a wider
range of amines is accepted for coupling to 1 using McbA than
previously evaluated.20 Small or aliphatic primary amines, such
as methylamine 5, amylamine 7, and propargylamine 9 are
particularly well-tolerated. In addition, 4-(2-aminoethyl)-
morpholine 11, which is structurally similar to the natural
substrate 2-phenylethylamine 3, was also converted. A longer
aliphatic chain on the amine appeared to be a characteristic of
better amine substrates, as the conversion with benzylamine 15
was rapid but those with aromatic amine nucleophiles such as
aniline 14 and 3,5-dimethylalanine 12 were slower. However,
more activated anilines, including 5-aminoindazole 18 and 5-
amino-1,3-benzodioxole 17, were converted, if more slowly.
Secondary alicyclic amines, such as pyrrolidine 19 and
piperidine 20 were converted very slowly at the level of
amine equivalents (1.5 equiv) used in the screen. The results
suggest that steric factors, but also electronic factors that
determine the nucleophilicity of the amine, have a role in the
constraints on amine acceptance by McbA.

Scheme 1. Synthesis of β-Carboline Amide 4 via Adenylate
Intermediate 2 by McbA from Marinactinospora
thermotolerans

Scheme 2. Amine Substrates Used in This Studya

aMcbA-catalyzed coupling of β-carboline acid 1 with amines 5−20 to
give amides (21−36), with conversions after 1 and 16 h determined
by HPLC. Reactions contained 1 (0.4 mM); amine (1.5 equiv);
McbA (1 mg mL−1); ATP (5 equiv) in 50 mM KPi buffer (pH 7.5) at
37 °C.
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The amine specificity of McbA was evaluated in the context
of the structure of the enzyme. We have previously solved the
structure of a mutant of McbA in which an active site lysine
residue K483 has been mutated to alanine, in complex with 1
and AMP.21 In common with other members of the adenylase
superfamily,22 McbA has a two-domain structure and adopts
different conformations suitable for the two half-reactions that
lead from carboxylic acid to amide. Hence, the adenylation
conformer McbAAd catalyzes the synthesis of the adenylate 2
and then undergoes a domain rotation, to create a channel for
amine access in the amidation conformer McbAAm. The
rotation, and the formation of the channel, are analogous to
the change from adenylation to thiolation conformations
observed with other adenylases, such as 4-chlorobenzoyl-CoA
ligase (4-CBCL),23 and the subsequent accommodation of the
phosphopantetheinyl nucleophile in the new access channel in
that enzyme. We have now determined a higher resolution
structure, of wild-type (wt) McbA, in complex with 1 and
AMP (crystallization protocols and data collection and
refinement statistics are provided in Section 7 of the SI).
Interestingly, the asymmetric unit of the structure contained
four molecules of the McbAAd and one molecule of the
McbAAm conformer, as obtained for the K483 mutant.
The structure of wt-McbA reveals the position of active site

residues, including K483, in the adenylation conformer of the
enzyme McbAAd (see Figure S2 in the SI). To provide further
insight into the determinants of amine recognition in McbA,
adenylate 2 was first modeled into the active site of the
amidation conformer McbAAm, followed by 2-phenylethyl-
amine 3, using AutoDock Vina.24 The model (Figure 1)
illustrates the accommodation of the amine within the entry
channel created by the domain rotation that creates McbAAm
and suggests a hydrophobic binding site for the amine formed
by residues including I197, F241, A243, and Y246, from the
large domain, and A401 from the rotated smaller domain. The
model also places the amine in proximity to D201, which is
structurally homologous to histidine H207 in 4-CBCL that is
thought to be important in the catalytic mechanism of that
enzyme.23 We suggest that the role of D201 may be to activate
amines for attack at the adenylate intermediate. In order to
examine this hypothesis, mutant D201A was constructed
(Section 8 in the SI), expressed, purified, and assayed against
the wt-McbA enzyme in the coupling of β-carboline acid 1

with propargylamine 9. A comparison of the time courses of
each reaction showed that D201A was significantly less active
than the wt-McbA, showing just 2% residual activity (see
Figure S3 in the Supporting Information).
The broader amine specificity of McbA, particularly

including amines 10 and 11, in conjunction with our previous
observation that McbA accepts benzoic acid as a substrate,21

led us to evaluate the enzyme for small-scale syntheses of
pharmaceutical amide compounds. First, we envisaged a
synthesis of the monoamine oxidase A inhibitor moclobemide
38, through the coupling of para-chlorobenzoic acid 37 with 4-
(2-aminoethyl)morpholine 11 (see Scheme 3). Initial experi-

ments were encouraging, with conversions of 63% for 37→ 38
observed for reactions in which 4 mM of 37 was incubated
with 6 mM of 11 and 20 mM ATP. However, further
optimization failed to increase these conversions, and we
hypothesized that inhibition of McbA by AMP, inorganic
pyrophosphate (PPi), or ATP, which has been observed
previously with ATP-dependent ligases,25 may be a factor.
Reactions performed in the presence of 1 mM or 4 mM AMP
gave similar conversions (see Section 9 and Figure S4 in the
SI); however, conversions in the presence of 1 mM or 4 mM Pi
were significantly lower than in standard reactions. In order to
overcome the apparent Pi inhibition, 0.3 U inorganic

Figure 1. (A) Structure of wt-McbAAm modeled with the adenylate intermediate 2 and 2-phenylethylamine 3. (B) Surface view of wt-McbAAm−2−
3 rotated 90° relative to the view in panel (A), showing access channel for the amine.

Scheme 3. Synthesis of Moclobemide 38 from 4-
Chlorobenzoic Acid 37 and 4-(2-Aminoethyl)morpholine
11 Using McbAa

aThis scheme also illustrates the ATP recycling system comprising the
polyphosphate kinases AjPPK2-II, SmPPK2-I and polyphosphate
(PolyPn).
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pyrophosphatase (IPase) was added to the McbA-catalyzed
synthesis of 38.
The conversion after 24 h was increased to >99%, compared

to 60% with no IPase added (Section 10 in the SI). These
conditions were applied to the transformation of 10 mg of 37
with 1.5 equiv of 11, giving a conversion of 70%, as determined
by NMR (Section 11 and Figure S5 in the SI), and an isolated
yield of 38 of 11 mg (64%).
The amidation of the native substrate beta-carboline 1 with

propargylamine 9 was used as a model reaction to study
inhibition by ATP. The activity of McbA was highest at 4 mM
ATP but decreased thereafter to approximately half the
optimum value value at 16 mM ATP (Section 12 and Figure
S6 in the SI). One possible solution to this problem is the use
of an ATP recycling system that would permit lower
concentrations of ATP within the reaction. This would also
be advantageous, with respect to process costs in amidation
reactions using McbA and related enzymes. We envisaged, as a
suitable system, the polyphosphate kinases SmPPK2-I from
Sinorhizobium meliloti and AjPPK2-II from Acinetobacter
johnsonii described by Andexer and co-workers,26,27 which
use inexpensive polyphophoric acid (PolyPn) for the
phosphorylation of AMP and ADP to ADP and ATP,
respectively (see Scheme 3). Equivalent enzymes have recently
been employed for the regeneration of ATP in the reduction of
carboxylic acids using CARs by Winkler and co-workers.28 The
efficiency of the recycling system, with respect to the reaction
between 11 and 37, was tested in reactions consisting of
McbA, AjPPK2-II, SmPPK2-I, and polyphosphate, using
increasing equivalents of ATP (Figure 2). At 0.1 equiv of
ATP, the reaction in the absence of the recycling system
achieved, as expected, only the theoretical maximum of ∼10%
conversion after 48 h.
However, the inclusion of the polyphosphate kinase system

increased the conversion to 36% after 48 h. Further
optimization of the system, in which the concentration of

AjPPK2-II and SmPPK2 was doubled to 0.2 mg mL−1 and a
further 1 mg mL−1 of McbA was added after 6 h of reaction
time, resulted in a conversion of 63% at 0.1 equiv of ATP.
The need for more selective and sustainable routes to

amides suggests that biocatalytic routes may form part of the
selection of greener methods for amide synthesis in the future.
While a range of enzymes is available, each has its advantages
and disadvantages, so the development of complementary
systems will be beneficial. The ATP-dependent amide bond
synthetases are attractive because they permit, where required,
the coupling of carboxylic acid and amine partners, supplied in
equimolar amounts, and in an aqueous medium, to form
pharmaceutical-type amide products. In addition to improve-
ments in the system gained through the optimization of
process-specific technologies, such as ATP recycling, the
potential of these enzymes may also be realized through
directed evolution methods to increase stability and turnover,
and broadened substrate specificity for wider application.
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