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Abstract

Novel manipulations of the well-established multivariate calibration models namely; partial

least square regression (PLSR) and support vector regression (SVR) are introduced in the

presented comparative study. Two preprocessing methods comprising first derivatization

and orthogonal projection to latent structures (OPLS) are implemented prior to modeling

with PLSR and SVR. Quantitative determination of pyridostigmine bromide (PR) in exis-

tence of its two associated substances; impurity a (IMP A) and impurity b (IMP B); was uti-

lized as a case study for achieving comparison. A series consisting of 16 mixtures with

numerous percentages of the studied compounds was applied for implementation of a 3 fac-

tor 4 level experimental design. Additionally, a series consisting of 9 mixtures was employed

in an independent test to verify the predictive power of the suggested models. Significant

improvement of predictive abilities of the two studied chemometric models was attained via

implementation of OPLS processing method. The root mean square error of prediction

RMSEP for the test set mixtures was employed as a key comparison tool. About PLSR

model, RMSEP was found 0.5283 without preprocessing method, 1.1750 when first deriva-

tive data was used and 0.2890 when OPLS preprocessing method was applied. With regard

to SVR model, RMSEP was found 0.2173 without preprocessing method, 0.3516 when first

derivative data was used and 0.1819 when OPLS preprocessing method was applied.

Introduction

Pyridostigmine bromide (PR) is chemically known as 3-[(dimethylcarbamoyl) oxy]-1- methyl-

pyridinium bromide [1,2], Fig 1. It is the best medication in case of the myasthenia gravis [3,4]

due to its reversible choline esterase inhibition effect and parasympathomimetic effect [5]. The

broadest spread of the drug was in the first gulf war as a safeguard of soldiers from chemical

weapons like nerve gases [6].
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Various methods concerned with analysis of PR were revealed upon deep research in litera-

tures encompassing spectrophotometry [7], HPLC [8–11], GC [12–15] and CE [16–18]. Fur-

thermore, several HPLC methods [19–23], radioisotopic techniques [24–26] and green

HPTLC method [27] were illustrated to verify the purity profiling of PR. Moreover, previou-

sely developed HPTLC method was described for stability studies and determination of PR in

existence with its associated degradation product [28]. Regarding the literature survey, no

reported spectrophotometric methods were established to assess PR and its associated sub-

stances. Impurity A; Pyridin-3-yl-dimethylcarbamate (IMP A) and impurity B; 3-Hydroxy-N-

methylpyridinium bromide (IMP B) are the related substances of PR with reference to the Brit-

ish pharmacopeia BP [1]. They also proved to be the main inactive metabolites of PR [23].

Additionally, IMP B is also its alkaline-induced degradation product [28].

In the pharmaceutical industry, analysis of degradation products and process-related

impurities is an critical function. The prospect of toxic effects or even side effects and reduced

effectiveness of active ingredients must be lowered to a minimum level. Subsequently, pharma-

copoeias and ICH guidelines promoted establishing of very restrictive requirements for pro-

portions of impurities in pharmaceutical products. The major analytical challenge was the

massive variance between the proportions of active ingredients and impurities, thus the analyt-

ical method should have an adequate selectivity and be able to simultaneously analyze the tar-

get analyte and its impurities [29]. Chemometric methods are potential alternative approach

for instantaneous estimation of multicomponent pharmaceutical mixtures due to quick data

collection utilizing rapid scanning spectrophotometers. Former illustration od the basic prin-

ciples and application of PLS and also SVR was found in details [30].

Orthogonal projection to latent structures (OPLS) is a relatively new method for prelimi-

nary handling of data. Systematic flactuations of the spectral data are canceled via OPLS; facil-

iting the translation process of the results. On the other hand, the employment of first

derivative data has been recently studied in the implementation of chemometric analysis [31]

and the removed variations could be subjected to further analysis to give more knowledge

[32].

The developed work was devoted to provide a comparative study for the results of PLSR

and SVR models employing original first derivative and OPLS preprocessed data. The pre-

sented research involved six chemometric models namely; PLSR, DPLSR (PLSR coupled with

Fig 1. The chemical structure of Pyridostigmine bromide (PR), impurity A (IMP A) and impurity B (IMP B).

https://doi.org/10.1371/journal.pone.0222197.g001
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first derivative data), OPLS-PLSR (PLSR coupled with OPLS preprocessed data), SVR, DSVR

(SVR utilizing first derivative data) and OPLS-SVR (SVR utilizing OPLS preprocessed data).

Experimental

Instrument

UV-1601 model UV–visible double beam spectrophotometer (SHIMADZU, Japan) model PC

with quartz cell of 1 cm and UV–PC personal software version 3.7 was utilized. The width of

spectral band is 1 nm and 2800 nm min-1 is the speed of wavelength-scanning.

Samples

Pure samples. Pyridostigmine bromide and IMP A were purchased from Sigma-Aldrich

Chemie GmbH, Germany, their purities were investigated to be 99.98% and 99.90 for PR and

IMP A, respectively, according to the reference method [1] for PR and the published HPLC

method [19] for IMPA. Alkaline degradation of PR under specified condition was done result-

ing in IMP B [27, 28] with purity of 99.80% according the published HPLC method [19].

Pharmaceutical formulation. Each tablet of Mestinon1 (batch no. 80085169) is claimed

to provide 60 mg of PR by its producing company; Switzerland gmbh, Birsfelden, Switzerland.

Chemicals and solvents

Methanol with HPLC grade was imported from Sigma-Aldrich Chemie GmbH, Germany.

Solutions

Standard solutions. Stock standard solutions (1 mg mL-1) of PR, IMP A and IMP B were

made using methanol.Methanol was then used to dilute stock solutions accurately to make

their respective working solutions (100 μg mL-1). Both stock and working solutions were

freshly prepared and kept in refrigerator to be reused within 24 h.

Procedures

Linearity. UV spectra of the three compounds under study were scanned from 200 to 350

nm. The ranges of PR, IMP A and IMP B were shown to be 5–70 μg mL-1, 5–60 μg mL-1 and

5–50 μg mL-1, respectively. The linearity was revealed at their corresponding λmax (270 nm,

262 nm and 329 nm for PR, IMP A and IMP B, respectively). By application of beer-Lambert’s

law basing on the mean of three spectra of different concentrations, extinction coefficients

were calculated for all at each nanometer in this range [151 data points]. The scanned spectra

of the studied ingredients with concentration of 10 μg mL-1 for all are shown in Fig 2.

Experimental design

Calibration and test sets. The calibration set composed of the main drug and its associ-

ated substances (IMP A and IMP B) were designed as a 4 level 3 factor calibration design

employing 4 concentration levels coded as –2, –1, +1 and +2. The central level associated with

each compound is represented by the level coded +1. About PR, cocentrations of 20 μg mL-1,

30 μg mL-1, 50 μg mL-1and 60 μg mL-1 were codeded by –2, –1, +1 and +2, respectively. Con-

cerning IMP A 0.4 μg mL-1, 0.6 μg mL-1, 1 μg mL-1and 1.2 μg mL-1 were coded by–2, –1, +1

and +2, respectively. With regard to IMP B,–2, –1, +1 and +2 codes refered to concentations of

0.5 μg mL-1, 0.7 μg mL-1, 1.1 μg mL-1and 1.3 μg mL-1, respectively. The main objective of the

design is to confirm ultimate spanning for the mixtures in space; as there are 4 mixtures for
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each component at every level of concentration producing 16 mixtures to provide the training

set μ[13]. The central levels of the design were 50 μg mL-1, 1 μg mL-1 and 1.1 μg mL-1, respec-

tively, for PR, IMP A and IMP B. The concentration of every level for every compound was

determined on the basis of its calibration range and also on the fact that concentrations of IMP

A and IMP B in the design were involved in about 3% determined with respect to molar basis

of the main drug to provide a wide range of possibilities for future analysis. The optimum pre-

processing method which provided accurate results for the studied models was investigated to

be mean centering of data. The freshly prepared mixtures of the independent test set were

employed to prove the the validity and predictive ability of the promoted chemometric models.

For development of the independent test set, five mixtures of the training set were selected and

freshly prepared in addition to preparation of another four independent mixtures within the

concentration space of the design. Table 1 represents the concentration design matrix for both

calibration and test sets.

Fig 2. Zero order absorption spectra of 10 μg mL-1 of PR (____), 10 μg mL-1 of IMP A (———), 10 μg mL-1 of IMP B

(. . .. . .) using methanol as a blank.

https://doi.org/10.1371/journal.pone.0222197.g002

Table 1. The 4 level 3 factor experimental design of 16 training set mixtures together with the 9 test set mixtures shown as concentrations of the mixture compo-

nents in μg mL-1.

Mixture No. Training set Test set

PR IMP A IMP B PR IMP A IMP B

1 20 0.4 0.5 20 0.6 0.7

2 20 0.6 0.7 50 1 0.7

3 30 0.6 1.3 50 0.6 1.1

4 30 1.2 0.7 20 0.4 0.5

5 60 0.6 0.5 30 1 0.5

6 30 0.4 1.1 45 0.5 0.8

7 20 1 1.1 25 0.7 0.5

8 50 1 0.7 30 0.8 0.5

9 50 0.6 1.1 25 0.5 0.6

10 30 1 0.5

11 50 0.4 1.3

12 20 1.2 1.3

13 60 1.2 1.1

14 60 1 1.3

15 50 1.2 0.5

16 60 0.4 0.7

https://doi.org/10.1371/journal.pone.0222197.t001
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Application to pharmaceutical formulation (Mestinon1 tablets). Twenty tablets of

Mestinon1 were weighed, shattered and then finly-powdered. The well- powdered tablets

were mixed homogenously. Then an accurately weighed amount of the prepared powder equal

to 100 mg of pure PR was carefully placed inside 100-mL volumetric flask and then 75 mL

methanol was poured into the flask. Ultimate solubility of the active pharmaceutical ingredient

into methanol was provided via continuous ultrasonication of the prepared flask for half hour.

The hot ultrsonicated solution was allowed to cool at the room temperature. Finally, methanol

was carefully poured to complete the solution to the mark to give 1000 μg ml-1 stock solution.

Filtration and dilution of the solution with methanol were done subsequently to provide

100 μg ml-1 working solution.

Aliquot equivalent to 1 mL of the working solution was transferred to 10 ml-volumetric

flask and the accurate volume was adjusted via dilution with methanol. The average of three

respective spectra was stored. Six times repetitions of the experiment were done then the

resulted spectra were processed by the proposed suggested models.

Software. The codes for the SVR algorithm were downloaded from the internet website

http://onlinesvr.altervista.org/. Codes for PLSR (PLS1 algorithm [32]), bootstrap and grid

search for optimum SVR parameters were described in details in lab using Matlab1 7.1.0.246

(R14). All calculations were performed using a dual core CPU, 4.00 GHz, 4.00 GB of RAM

under Microsoft Windows Seven. OPLS codes were written by H. Li and downloaded from

MathWorks website (http://www.mathworks.com/matlabcentral/fileexchange/47767-libpls-1-

95-zip/content/libPLS_1.95/opls.m, Jan 2016).

Chemometric methods

The basic concept of multivariate calibration models is finding a relation between the spectra

in the data matrix X and the concentrations in a data vector c. For constructing a multivariate

calibration model, various methods were developed. The most common ones are multiple lin-

ear regression (MLR), principal component regression (PCR) and partial least squares regres-

sion (PLSR). PCR and PLSR can deal with a large number of spectral variables via

decomposing the X data into a relatively small numbers of what is known as the scores. The

scores matrix T then replaces the original X matrix in the subsequent regression steps [33, 34].

Partial least squares regression (PLSR)

Mathematical basis of PLSR results in PLS components number (latent variables LVs) from

decomposition of predictor matrix X and the response vector c [30, 32] according to the fol-

lowing equations:

X ¼ T:P þ E ð1Þ

c ¼ T:qþ f ð2Þ

T and P are, respectively, the scores and loadings for X, q is the loading vector for c, and E
and f are the residuals for X and c, respectively. PLSR is commonly implemented in the indus-

try. Furthermore, several applications reported that PLSR is superior to principle component

regression PCR which motivate us to insert this method in this comparative study.

Optimization of number of latent variables for the PLSR model. Randomly splitting

the training set into two thirds and one third; namely, bootstrap training set and bootstrap test

set, respectively, via bootstrap technique which predict how many optimum number of PLS

components are [35, 36]. Establishing the PLSR model via the bootstrap training set to predict

the bootstrap test set samples and calculating the error of prediction were clarified by this

PLSR and SVR chemometric models’ manipulation
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equation

RMSEP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
PN

n¼1
ðCn � CA

n Þ
2

r

ð3Þ

Where N is the number of bootstrap test set samples, Cn is the known concentration for

sample n and ĈA
n is the corresponding predicted concentration at a given number of PLS com-

ponents. Eq (3) represents just one iteration. Increasing the number of iterations clearly per-

mits picking up all samples in both training and test set data, consequently 1000 iterations

were utilized in this study. For optimum selection of PLS components, the average of the 1000

root mean square error of prediction (RMSEP) values for different number of PLS compo-

nents was plotted against the corresponding number of components. For bootstrap training

set, mean centering was applied every time.

Support vector regression (SVR)

Consider a data set X (I × J) and an output vector c. Finding a multivariate regression function

f(x) based on X by using a sample spectrum is the objective to predict a required output feature

such as a concentration of chemical compound. Equations of SVR are clearly explained in the

literature [37, 38] and summarized in the following equation

f ðxÞ ¼
XN

ij¼1
ðai � ai

�Þh ðxiÞ: ðxjÞi þ b ð4Þ

where αi and αi
�

are the Lagrange multipliers satisfying the necessity 0�αi, αi�� C. C is a sup-

plemental parameter named the penalty error or regularization constant which define the

trade-off between the model simplicity and training error. A comprehensive description of Eq

(4) and the parameters a and C are illustrated in the literature [38–40]. The parameter b is the

substitute of the regression function f(x). ε-insensitive loss function is an additional necessary

factor widely applied for SVR and will be studied and optimized in our study [41, 42]. The abil-

ity to handle linear data and also non-linear ones through kernels is a valuable characteristic of

SVR. In the introduced work, linear SVR model was applied, where preplanned experimental

design was constructed to guarantee linearity of spectral data. In the prediction step, the valid-

ity of the optimum model was examined, where an unknown ĉ value can be given as follows

[43]:

ĉ ¼
PI

i¼1
ðai � ai

�Þx0ixj þ b ð5Þ

Optimization of the linear SVR model parameters. An implementation of a grid search

based on 4-fold cross validation provided the optimum values for ε and C to give the lowest

root mean square error of cross validation (RMSECV). The primary range of values for ε was

(0.01–1) and for C (30–1000). With each set of SVR parameters, 4 samples (N = 4) were elimi-

nated, the remaining 12 (I–N) samples were processed by a linear SVR model, predicting the

RMSECV for the N samples that was eliminated, and then the average of RMSECV after all

samples were removed was computed as follows

RMSECV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

I
PI

i¼1
ðci � ĉi

r

Þ
2

ð6Þ

Where ci is the true concentration for sample n and ĉ i is the corresponding predicted

concentration.

ØØ
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Preprocessing methods

First derivatization. Recently, the combination of derivative techniques with multivariate

calibration methods has been proposed [31]. Bagtash et al [31] mentioned that first derivatiza-

tion overcomes the spectral overlapping and the best recoveries values were resulted after com-

bination of derivative techniques with PLS model. According to the presented study, the

autoprediction results were improved after coupling of PLSR with first derivative technique

comparing to PLSR with respect to RMSEC.

Orthogonal projection to latent structures (OPLS). Orthogonal projections to latent

structures method (OPLS) is a relatively newly introduced method for data preprocessing. It

removes variation from X (descriptor variables; spectral data) that is not correlated to Y (prop-

erty variables; concentration of PR in our case). In mathematical expressions, it removes sys-

tematic variation in X that is orthogonal to Y. Full description of the mathematical explanation

and proper application of the method is provided in literature [44, 45].

Both chemometric methods (PLSR and SVR) were applied on zero order absorption spec-

tra, fist derivative spectra and OPLS-spectra to construct a fully informative chemometric

comparison.

Results

PLSR and SVR parameters

The optimum number of PLS components chosen for establishing the calibration model for

the training set to determine PR by bootstrap technique was 2 for PLSR, 4 for DPLSR and 3 for

OPLS-PLSR, Fig 3.

For optimum SVR parameters, the lowest RMSECV (Eq (6)) which was given by the grid

search resulted in (e = 0.15 and C = 220), (e = 0.36 and C = 990) and (e = 0.21and C = 120) for

SVR, DSVR and OPLS-SVR methods respectively.

Data analysis results

Structural similarity of PR and its related substances cause their high overlap in UV spectra as

illustrated in Fig 2, exhibiting difficulty in analysis of such mixture by applying univariate

Fig 3. Selection of the optimum number of the latent variables (LVs) via plotting the number of PLS components

versus the corresponding root mean square error of prediction (RMSEP) by using the bootstrap technique.

https://doi.org/10.1371/journal.pone.0222197.g003
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approaches. Six methods of multivariate calibration (PLSR, DPLSR, OPLS-PLSR, linear SVR,

DSVR and OPLS-SVR) were compared in the presented work. These methods were applied

to protend the concentrations of PR in both of training and test sets; the prediction results

are given in Table 2 and Table 3, respectively. To assess models’ predictive abilities, the

RMSEP was selected as a parameter; RMSEP comparative plot for prediction of test samples is

shown in Fig 4. It is evident that the developed chemometric methods could be applied for

Table 2. Analysis results for the prediction of the training set (autoprediction) by the proposed chemometric methods for calibration.

Training set PLSR DPLSR OPLS-PLSR SVR DSVR OPLS-SVR

Taken

(μg mL-1)

Found

(μg mL-1)

%R Found (μg mL-1) %R Found

(μg mL-1)

% R Found

(μg mL-1)

% R Found

(μg mL-1)

% R Found

(μg mL-1)

% R

20 19.45 97.25 19.06 95.28 19.63 98.15 19.85 99.25 19.34 96.70 19.77 98.87

20 19.90 99.52 20.08 100.39 20.02 100.1 20.15 100.75 20.36 101.8 20.13 100.63

30 30.09 100.31 30.56 101.88 30.20 100.67 30.29 100.98 30.64 102.14 30.21 100.70

30 30.53 101.75 29.96 99.87 30.26 100.87 30.15 100.50 30.25 100.82 30.21 100.70

60 59.60 99.33 59.38 98.96 59.89 99.82 59.88 99.81 59.29 98.82 59.79 99.65

30 30.08 100.27 29.99 99.97 30.11 100.37 30.15 100.49 30.17 100.57 30.15 100.51

20 19.83 99.15 20.08 100.41 19.97 99.85 19.85 99.25 19.64 98.2 19.83 99.17

50 50.23 100.45 50.63 101.27 50.18 100.36 50.07 100.14 50.54 101.09 50.04 100.09

50 49.94 99.89 50.46 100.92 50.04 100.08 50.07 100.14 50.36 100.72 49.95 99.89

30 30.57 101.90 30.25 100.84 30.40 101.33 30.15 100.50 30.36 101.2 30.21 100.70

50 49.44 98.88 50.10 100.21 49.56 99.12 49.62 99.25 50.01 100.01 49.51 99.019

20 19.92 99.61 19.97 99.84 19.83 99.15 19.85 99.25 20.12 100.61 19.79 98.97

60 59.87 99.79 60.01 100.02 60.01 100.02 60.09 100.16 59.67 99.44 59.86 99.76

60 59.84 99.73 60.01 100.01 59.94 99.9 60.00 100.00 59.64 99.4 59.79 99.65

50 50.33 100.66 50.03 100.06 49.56 99.12 50.08 100.17 49.64 99.28 50.11 100.23

60 60.37 100.62 59.43 99.05 60.38 100.63 60.15 100.25 59.36 98.93 60.21 100.35

Mean

(%)

99.94 99.94 99.97 100.06 99.98 99.93

S.D 1.070 1.399 0.767 0.540 1.373 0.639

RMSEC 0.8350 0.4891 0.2920 0.1671 0.4369 0.2097

https://doi.org/10.1371/journal.pone.0222197.t002

Table 3. Analysis results for the prediction of the independent test set by the proposed chemometric methods for validation.

Test set PLSR DPLSR OPLS-PLSR SVR DSVR OPLS-SVR

Taken (μg mL-1) Found

(μg mL-1)

%R Found

(μg mL-1)

%R Found

(μg mL-1)

% R Found

(μg mL-1)

% R Found

(μg mL-1)

% R Found

(μg mL-1)

% R

20 19.72 98.59 19.39 96.96 19.74 98.71 20.12 100.58 20.28 101.38 20.05 100.27

50 49.96 99.93 50.58 101.15 50.58 101.16 50.24 100.48 50.36 100.72 50.21 100.42

50 49.19 98.37 50.24 100.49 49.78 99.57 49.61 99.22 49.64 99.28 49.79 99.58

20 19.60 97.98 19.06 95.28 19.59 97.96 19.82 99.10 20.36 101.80 19.79 98.95

30 30.63 102.10 30.48 101.61 30.31 101.05 30.10 100.34 29.64 98.80 30.21 100.7

45 44.29 98.42 45.18 100.41 44.95 99.89 45.09 100.21 44.64 99.20 44.79 99.53

25 24.53 98.11 27.47 109.88 24.93 99.74 24.89 99.58 25.36 101.44 24.87 99.48

30 29.31 97.70 32.09 106.95 29.92 99.74 29.92 99.73 30.36 101.20 29.89 99.62

25 24.97 99.89 25.23 100.94 24.83 99.34 24.64 98.54 25.36 101.44 24.79 99.16

Mean

(%)

99.01 101.52 99.68 99.75 100.58 99.75

S.D 1.320 4.242 0.949 0.664 1.094 0.556

RMSEP 0.5283 1.1750 0.289 0.2173 0.3516 0.1819

LVs 2 4 3

https://doi.org/10.1371/journal.pone.0222197.t003
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determination of the target analyte in its tablets eliminating any interference from tablets’

excipients. The results were compared with those obtained from the reference method [1] and

no significance differences was found in terms of the accuracy and precision (Table 4).

Discussion

Coupling of the traditional chemometric methods; PLSR and SVR with OPLS and first deriva-

tization as preprocessing methods is recently introduced and studied in our work.

The present study describe a fully- informative comparison between six chemometric mod-

els (PLSR, DPLSR, OPLS-PLSR, SVR, DSVR and OPLS-SVR) via their use in analysis of differ-

ent mixtures of PR and its related substances (IMP A and IMP B). The high similarity in the

chemical structures of the investigated compounds was behind the high overlap in their UV

spectra (Fig 2). This overlap makes their simultaneous analysis by the traditional univariate

approaches of handling of UV data is very difficult. Accordingly, multivariate approach was

more potential alternative for their simultaneous analysis.

Fig 4. RMSEP plots for the prediction of independent test set samples for PR using the proposed models: 1-PLSR,

2-DPLSR, 3- OPLS-PLSR, 4- SVR, 5- DSVR and 6- OPLS-SVR.

https://doi.org/10.1371/journal.pone.0222197.g004

Table 4. Statistical comparison of the results obtained by the proposed methods and the reference method for the determination Pyridostigmine bromide in Mesti-

non tablets1.

Parameters PLSR DPLSR OPLS-PLSR SVR DSVR OPLS-SVR Reference method��

Mean 98.71 99.20 99.24 99.79 98.76 99.49 99.97

SD 0.913 0.932 1.273 1.542 0.995 1.414 0.941

Variance 0.834 0.870 1.620 2.377 0.825 2.000 0.866

n 6 6 6 6 6 6 6

Student’s t-test�(2.228) 0.029 0.111 0.164 0.414 0.033 0.270 _________

F- test�(5.050) 1.062 1.019 1.828 2.684 1.073 2.258 _________

One-way ANOVA test

- F-critical (4.9503)

- P-value

0.880

0.506

� Figures in parenthesis are the corresponding tabulated values at p = 0.05.

�� Direct spectrophotometric determination at 269 nm [1].

https://doi.org/10.1371/journal.pone.0222197.t004
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Concerning results of auto prediction of PLSR-based models (PLSR, DPLSR and

OPLS-PLSR); coupling of PLSR with fist derivatization (DPLSR) provided auto prediction

results which are better than that of PLSR with original data, but the best results were obtained

after coupling of PLSR with OPLS with respect to root mean square error of calibration

RMSEC. On the other hand, RMSEC of SVR model utilizing original data is the lowest com-

paring to the other five models, so no influence was detected on the auto prediction results

after coupling of SVR with first derivatization (DSVR) or OPLS (OPLS-SVR) with respect to

RMSEP. The values of RMSEC of DSVR and OPLS-SVR were still acceptable.

The predictive ability of the chemometric model is presented by the root mean square error

of prediction (RMSEP) of the test set. Concerning PLSR-based methods, coupling of PLSR

with first derivatization improved the recoveries values of the test set, but the best results were

obtained after coupling of PLSR with OPLS with respect to RMSEP. With regard to SVR-based

models (SVR, DSVR and OPLS-SVR), RMSEP of OPLS-SVR is the lowest comparing to the

other five models, but no significant effect was detected on the prediction results after coupling

of SVR with first derivatization (DSVR) with respect to RMSEP.

Comparing the prediction results of test set for the six proposed methods with each other,

OPLS-SVR has the lowest RMSEP then SVR reflecting highest ability of SVR-based method to

handle future samples and then OPLS-PLSR method, Table 2.

A set of conclusive remarks could be observed and highlighted from the above mentioned

discussion. According to many published researches, PLSR is the most applicable model in

chemometrics and has several applications in pharmaceutical industry overcoming PCR and

multivariate linear regression MLR [30]. It was revealed that the SVR possessing higher predic-

tive power than PLSR in many case studies [30]. Coupling of the traditional PLSR chemo-

metric model with OPLS as a preprocessing tool provide higher predictive ability than PLSR,

so it can be applied instead of the complicated SVR model keeping the advantage of simplicity

of PLSR model and providing high predictive ability comparative to SVR model.

Finally, the six established methods were successfully implemented for assessment of PR in

Mestinon1 tablets. These methods offered additional advantages over the existing HPLC

methods [19–23] such as cost effective and time-saving. The results of analysis of Mestinon1

obtained by studied methods were compared to the reference one [1] statistically. The tabu-

lated t and F values were more than the automatically calculated ones proving that the signifi-

cant difference was generally absent regarding both of accuracy and precision. One way

ANOVA test was applied for statistical analysis of the results obtained by the proposed meth-

ods and the reference method. The test ascertains that the proposed methods are comparable

and as precise and accurate as the reference method, Table 4.

It is evident that the proposed methods could be used for quantitative determination of PR

in its bulk material and pharmaceutical tablets; keeping the advantages of spectrophotometric

methods for quantitative determination of samples with minimum sample preparations, eco-

nomic laboratory consumption and cheap materials.

Conclusion

The present study compared six different models for multivariate calibration methods and

highlighting novel manipulations of these methods. The six models were PLSR, DPLSR,

OPLS-PLSR, SVR, DSVR and OPLS-SVR that were compared using a pharmaceutical UV

dataset as a case study. For prediction ability of the future samples, values of RMSEP of inde-

pendent test set reveal that OPLS-SVR was the best one followed by SVR and OPLS-PLSR. For

comparing results and routine analysis, the 4 level 3 factor design has been confirmed as an

efficient and economical. The results revealed that these models were selective and accurate
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procedures in quality control analysis of PR without hindrance from its related substances.

Furthermore, the novel manipulations of the traditional chemometric methods can be

employed for further pharmaceutical research studies using simple and cost-saving instru-

ments like UV spectrophotometer even if the number of interfering components is high and

spectra of them are severely overlapped.
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