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ABSTRACT The complete genome sequence of maize mosaic virus (MMV) was ob-
tained using next-generation sequencing from infected Peregrinus maidis and rapid
amplification of cDNA ends from infected Zea mays. The genome of MMV is 12,170
bases, and this project completed the 5= and 3= ends and amended the polymerase
sequence.

Maize mosaic nucleorhabdovirus is a negative-sense single-stranded RNA virus and
a member of the family Rhabdoviridae and genus Nucleorhabdovirus. Maize

mosaic virus (MMV) is found in many tropical and subtropical regions in the world,
including North America, India, and islands of the Western Indian Ocean (1–4). Virus
infection of the host plants, i.e., corn, sorghum, and pearl millet, causes stunting,
chlorosis, and grain loss. MMV has an approximately 12-kb genome, with the following
six genes arranged 3= to 5=: nucleoprotein (N), phosphoprotein (P), putative movement
protein (3), matrix protein (M), glycoprotein (G), and polymerase protein (L) (5). There
is previous sequence information available for MMV; however, the genome was incom-
plete (5). As MMV is a model for insect transmission of rhabdoviruses (vectored by the
corn planthopper [Peregrinus maidis] [6]), there is great interest in completing the
genome. The goal of this study is to completely sequence MMV as the first step in
creating a full-length infectious clone for insect transmission studies.

The full-length sequence of the MMV genome was generated using two strategies,
next-generation RNA sequencing (RNA-Seq) and rapid amplification of cDNA ends
(RACE) of the viral genome. This isolate of MMV was originally collected in Hawaii in
1971 and passaged routinely by vector transmission. Briefly, to determine the full-
length sequences of MMV, total RNA was isolated from individual insects using the
TRIzol reagent, as previously described (7), and each insect was tested for the presence/
absence of virus via reverse transcription-PCR (RT-PCR) with previously described
primers (8). Three experimental replicates composed of pooled virus-infected or non-
infected insects were used for RNA-Seq for a total of six samples. The TruSeq RNA
sample preparation kit (Illumina, San Diego, CA) was used to convert the total RNA
(2 �g) to cDNA libraries for subsequent cluster generation and sequencing using the
manufacturer’s protocols. The six RNA-Seq libraries were single-end sequenced using
the HiSeq 2000 platform (Illumina) and TruSeq sequencing by synthesis (SBS) chemistry
workflow. A total number of 102,083,710 bases were sequenced, which were assembled
into 89,689 components (contigs) with a mean length of 1,138.2 bp (8). Burrows-
Wheeler (BWA-MEM) was used to map the raw reads (SRA number PRJNA540525) to
those of the MMV genome (GenBank accession number AY618418) (8, 9). The identi-
fication of single nucleotide polymorphisms (SNPs) and corrections to the L protein
sequence were done using the Integrative Genomics Viewer version 2.3.57. Three
missing bases in the L protein gene were identified, as well as 23 SNPs spanning the
entire genome. Interestingly, no SNPs were identified in the M sequence. To sequence
the missing MMV leader and trailer sequences, we used 5= and 3= RACE. Total RNA was
extracted from infected corn plants using the Qiagen RNeasy kit, following the kit
directions, and this RNA was the template for 5= and 3= RACE protocols. To identify the
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full leader sequences, 3= RACE of the viral genome was done by adding poly(A)
sequences to the leader utilizing Escherichia coli poly(A) polymerase (New England
BioLabs, Ipswich, MA) and SuperScript III (Invitrogen, Carlsbad, CA) for first-strand cDNA
synthesis and amplification with a poly(T) primer and an N-specific primer (5=-GCAGT
CGCCAAATTAGTCCAGTC-3=). This result was confirmed using ligation-anchored 3=
RACE, as described previously (10), using the primers HNEF 5=P-AAGCTTGCGGCCGCG
ATATC-3=ddC and HNER 5=-GATATCGCGGCCGCAAGCTT-3=. To complete the trailer
sequences, we used the Invitrogen (Carlsbad, CA) 5= RACE system. Once completed and
corrected, the total genome of MMV was 12,170 bases long (GenBank accession
number MK828539), and the entire genome had �10-fold coverage. The leader of MMV
is 155 bases long, and the first nine bases are identical to those of taro vein chlorosis
virus (TaVCV), 3=-AGAGACCCA-5= (11). The trailer is 97 bases long, and the terminal 3=
and 5= ends are complementary, forming a hypothesized “panhandle”-type structure
similar to that of other described rhabdoviruses (12). The closest blast hit is the existing
MMV genome present in GenBank (accession number AY618418), at 99% similarity.
Although there is similarity at the protein level to TaVCV (GenBank accession number
AY674964), as previously described (13), the nucleotide similarity of the entire genome
is 49%. Recently, the first infectious clone for a nucleorhabdovirus was created (14), and
the complete genome sequence of MMV provides the necessary sequence data for
developing a similar clone for MMV.

Data availability. The data for this paper are available at the NCBI as the completed
genome under GenBank accession number MK828539, and the MMV-infected P. maidis
RNA-Seq library sequences are under SRA project number PRJNA540525.
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