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Abstract

Neuroimaging evidence suggests that the aging brain relies on a more distributed set of cortical 

regions than younger adults in order to maintain successful levels of performance during 

demanding cognitive tasks. However, it remains unclear how task demands give rise to this age-

related expansion in cortical networks. To investigate this issue, functional magnetic resonance 

imaging was used to measure univariate activity, network connectivity, and cognitive performance 

in younger and older adults during a working memory (WM) task. Here, individuals performed a 

WM task in which they held letters online while reordering them alphabetically. WM load was 
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titrated to obtain four individualized difficulty levels with different set sizes. Network integration

—defined as the ratio of within-versus between-network connectivity—was linked to individual 

differences in WM capacity. The study yielded three main findings. First, as task difficulty 

increased, network integration decreased in younger adults, whereas it increased in older adults. 

Second, age-related increases in network integration were driven by increases in right hemisphere 

connectivity to both left and right cortical regions, a finding that helps to reconcile existing 

theories of compensatory recruitment in aging. Lastly, older adults with higher WM capacity 

demonstrated higher levels of network integration in the most difficult task condition. These 

results shed light on the mechanisms of age-related network reorganization by demonstrating that 

changes in network connectivity may act as an adaptive form of compensation, with older adults 

recruiting a more distributed cortical network as task demands increase.

1. Introduction

Despite substantial anatomical and functional decline, the aging brain retains a surprising 

degree of neural plasticity. In functional neuroimaging studies, for example, older adults 

often activate brain regions not engaged by younger adults during the same tasks (Cabeza 

and Dennis, 2013; Park and Reuter-Lorenz, 2009). Although over-recruitment in older adults 

is often interpreted as compensatory (Cabeza et al., 2018), it is unclear if and how the 

regions over-recruited by older adults are integrated with the network mediating task 

performance. To investigate this question, the current study assessed the effects of aging on 

network integration, an established concept of interest in characterizing brain dynamics 

(Tononi et al., 1994), during a working memory (WM) manipulation task. The study had 

three main goals.

The first goal of the study was to examine how the effects of age on network integration 

differ as a function of WM demands. As the number of items maintained in WM (load) 

increases, brain activity tends to rise monotonically in several regions, including dorsolateral 

prefrontal cortex (DLPFC) and lateral parietal cortex (LPC, Beauchamp et al., 2001; Braver 

et al., 1997; Rypma et al., 1999; Veltman et al., 2003). These activations tend to increase 

more rapidly in older than younger adults up to a certain level of WM demands (Cappell et 

al., 2010; Low et al., 2009; Schneider-Garces et al., 2010). According to the Compensation-

Related Utilization of Neural Circuits hypothesis (CRUNCH, Reuter-Lorenz and Cappell, 

2008), due to processing inefficiencies, older adults over-recruit neural resources at lower 

levels of task difficulty than younger adults. What is unclear from available CRUNCH 

evidence is whether the accelerated brain recruitment in older adults is limited to the 

activation of individual regions or whether it involves a reorganization of the underlying task 

network. Much recent work has focused on mapping functional brain networks in older 

adults, and a number of these more recent investigations of age-related changes in 

multivariate network connectivity have shown that PFC regions over-recruited by older 

adults often show stronger long-range functional connectivity outside of local cortical 

communities, and these changes are often associated with differences in cognitive 

performance (Damoiseaux et al., 2016; Geerligs et al., 2014, 2015, 2017). In the current 

study, therefore, we hypothesized that as task demands increase, the WM network would 
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become more integrated with the rest of the brain and this effect would be greater for older 

than younger adults (Hypothesis 1).

The second goal of this study was to examine hemispheric differences in network integration 

for young and older adults. In functional neuroimaging studies, activations are often more 

bilateral in older adults than younger adults, an effect known as Hemispheric Asymmetry 

Reduction in Older Adults (HAROLD, Cabeza, 2002). For example, during a verbal WM 

task that yields left lateralized activations in younger adults, older adults may show 

additional activity in the right hemisphere (Reuter-Lorenz et al., 2000). As in the case of 

CRUNCH, most evidence for HAROLD is based on univariate activity in individual regions, 

and hence, the network mechanisms of age-related hemispheric differences remain 

uncertain. In the current study, we therefore hypothesized that during the left-lateralized 

verbal WM task, older adults would show greater demand-related network integration in the 

right-hemisphere (Hypothesis 2).

The third goal of the study was to investigate if age-related changes in network integration 

relate to individual differences in WM performance. It has been suggested that more 

widespread activity in older adults is beneficial for performance (Cabeza and Dennis, 2013; 

Park and Reuter-Lorenz, 2009), and both CRUNCH and HAROLD effects have been 

interpreted as compensatory. However, the evidence for compensation has been mostly 

based on univariate activity and evidence that network changes in older adults contribute to 

cognitive performance is largely missing (however, see Monge et al., 2018). We 

hypothesized that age-related WM network integration would be associated with WM ability 

in older adults (Hypothesis 3).

To test these hypotheses, participants completed a verbal WM manipulation task in which 

they briefly maintained consonants in memory while mentally rearranging them into 

alphabetical order. fMRI analyses focused on the effects of WM load on functional 

connectivity during the delay period, while the WM network was defined as regions 

activated by the task irrespective of load. Here, network integration was measured as the 

ratio of within-versus between-network connectivity, while network integration was 

compared within and between hemispheres, and correlated with WM capacity to test the 

three stated hypotheses.

2. Materials and methods

2.1. Participants

Forty-four young adults aged 18 to 35 (21 females; mean age 22.8 ± 4.6) and 32 older adults 

aged 60 to 80 (15 females; mean age 69.1 ± 5.3) participated in the study for monetary 

compensation and consented to the protocol approved by the Duke Medical School IRB 

(#Pro00065334). All subjects were self-reported right-handed. Older adults were screened 

for possible incidence of dementia, as measured by a Mattis Dementia Rating Scale-2 

(DRS-2) total scaled score below 8 (Jurica et al., 2001). Qualifying participants were 

enrolled in a 6-day TMS protocol (Beynel et al., 2019; Beynel et al., in review), but only 

data from the screening session (Day 1) and MRI session (Day 2) are reported here. 

Participants had no history of psychiatric or neurological disorders and were not using 
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psychoactive drugs. Participants were excluded because of poor functional imaging quality 

(excessive movement or falling asleep during data acquisition, n = 3), or due to poor task 

performance in the scanner (accuracy greater than two standard deviations below the group 

mean, n = 6). Thus, 37 young adults and 30 older adults were included in the final analysis.

2.2. Experimental design and statistical analyses

2.2.1. Behavioral procedure and task design—Participants performed a verbal 

WM manipulation task (Fig. 1A). In this task, an array of 3–9 consonant letters was 

presented for 3 s followed by a 5-s delay period, during which participants mentally 

rearranged letters into alphabetical order. Vowels were excluded to prevent chunking. After 

the delay period, a letter and number were presented together for 4 s and the participants 

pressed one of three buttons to indicate if the probe letter (1) appeared in the position 

indicated by the number in the alphabetized list (Valid, 40% of trials), (2) was part of 

original set but the number did not match the position in the alphabetized list (Invalid, 40% 

of trials), or (3) was not part of the original set (New, 20% of trials). These three types of 

trials occurred in random order. During the subject-specific titration on Day 1 (see the 

following paragraph), the response phase was followed by a 5-s inter-trial interval (ITI). 

During practice, participants were given feedback during this ITI on their accuracy after 

each trial, and at the end of each block. Twenty-five trials were included in each of the 6 

blocks with a brief, self-paced rest interval between blocks.

As part of the overall protocol, subjects participated in up to 6 experimental sessions, but 

only the first two are relevant to this study. In the first session, participants performed the 

WM manipulation task outside the scanner in order to identify the range of WM loads 

producing parametric changes in performance for each participant. The optimal load was 

identified using 2-down-1-up staircase procedure: when a trial was answered correctly, the 

load was increased by 1, and when it was answered incorrectly, the load was decreased by 2. 

New trials were excluded from the analysis and accuracy data, collapsed across Valid and 

Invalid trials at each load, were then fitted to a sigmoid function with performance threshold 

criterion set at 82% accuracy. To ensure that the psychometric function was not strongly 

influenced by noise in loads with a low number of trials, 50% accuracy was used for the 

largest loads if less than 10 trials were tested. To achieve more stable curve fits, anchors 

were added by including points for loads of 1 and 2 at 100% accuracy and loads 10 and 11 at 

50% accuracy. Four individualized difficulty levels were defined according to the 

intersection between the sigmoid curve and an 82% accuracy threshold, referred to here as 

WM capacity (for similar staircase approaches, see Garcia-Perez, 1998). The two loads 

below this intersection were defined as the Very Easy and Easy levels, and the two loads 

above were defined as the Medium and Hard levels. Thus, the four Absolute Loads selected 

for an individual depended on his/her WM ability (e.g., 3–4-5–6 letters in one participant, 4–

5-6–7 in another participant) and therefore potentially reduced state-dependency that would 

be caused by fixed difficulty levels that do not match individual capabilities. Furthermore, 

given the intensive testing schedule inherent in our 6-session protocol, we excluded 

participants who could not accurately perform the WM task. Participants for whom this 

curve-fitting procedure (based on Day 1 data) did not estimate a minimum set size of at least 

3 letters were excluded from subsequent imaging and rTMS sessions. As such, for clarity the 
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Very Easy, Easy Medium and Hard conditions are referred to as WM Difficulty Levels. 

Individual sigmoid curves for all young and older adults, and subsequent determination of 

their Starting Load (i.e. the Absolute Load value of the Very Easy condition), are shown in 

Fig. 1B.

In the second session, participants performed the WM manipulation task inside the MRI 

scanner. Four blocks, each with 30 trials, were performed using the 4 individually-titrated 

Difficulty Levels. Stimuli were back-projected onto a screen located at the foot of the MRI 

bed using an LCD projector. Subjects viewed the screen via a mirror system located in the 

head coil and the start of each run was synchronized with the MRI acquisition computer. 

Trial-by-trial feedback was not given, but the overall block accuracy was presented at the 

end of each block. Behavioral responses were recorded with a 4-key fiber-optic response box 

(Resonance Technology, Inc.). Scanner noise was reduced with ear plugs, and head motion 

was minimized with foam pads. When necessary, vision was corrected using MRI-

compatible lenses that matched the distance prescription used by the participant. The total 

scan time, including breaks and structural scans, was approximately 1 h 40 min.

2.2.2. MRI scanning and data preprocessing—MRI was performed in a 3-T GE 

scanner at the at Duke Brain Imaging Analysis Center (BIAC). Structural MRI and 

diffusion-weighted imaging (DWI) scans were followed by performing 4 fMRI runs of the 

WM manipulation task. The anatomical MRI was acquired using a 3D T1-weighted echo-

planar sequence (matrix = 256 × 256, time repetition (TR) = 7.15 ms, time echo (TE) = 2.7 

ms, field of view (FOV) = 256mm2, slices = 196, slice thickness = 1 mm). In the fMRI runs, 

coplanar functional images were acquired using an inverse spiral sequence (64 × 64 matrix, 

TR = 2000 ms, TE = 25 ms, FOV = 220mm2, 34 slices, 4mmslice thickness, 280 images). 

Finally, DWI data were collected using a single-shot echo-planar imaging sequence (TR = 

17,000 ms, slices = 76, thickness = 2.0 mm, FOV = 256 × 256 mm2, matrix size 128 × 128, 

voxel size = 2 mm3, b value = 2000 s/mm2, diffusion-sensitizing directions = 26, total 

images = 960, total scan time = 7.5 min).

Functional images were preprocessed using image processing tools, including FLIRT and 

FEAT from the fMRIB Software Library (FSL), in a publicly available pipeline developed 

by the Duke Brain Imaging and Analysis Center (https://wiki.biac.duke.edu/

biac:analysis:resting_pipeline). Images were corrected for slice acquisition timing, motion, 

and linear trend; motion correction was performed using MCFLIRT, and 6 motion 

parameters estimated from the step were then regressed out of each functional voxel using 

standard linear regression. A comparison of mean displacement across all functional runs 

between younger and older adults revealed no group differences (t66 = 1.21). Nonetheless, 

motion regressors were used in all univariate models, and included in all subsequent 

correlational psychophysical interaction (cPPI) analyses (see below) to adjust for any 

potential confounds due to motion. Images were then temporally smoothed with a high-pass 

filter using a 190-s cutoff and normalized to the Montreal Neurological Institute (MNI) 

stereotaxic space. White matter and CSF signals were also removed from the data, using 

white matter/CSF masks generated by FSL’s FAST and regressed from the functional data 

using the same method as the motion parameters. Spatial filtering with a Gaussian kernel of 

full-width half-maximum (FWHM) of 8 mm was applied.

Crowell et al. Page 5

Neuroimage. Author manuscript; available in PMC 2020 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://wiki.biac.duke.edu/biac:analysis:resting_pipeline
https://wiki.biac.duke.edu/biac:analysis:resting_pipeline


2.2.3. Behavioral analyses—Accuracy and reaction times (RTs) of WM manipulation 

trials were analyzed for each individually-titrated WM Difficulty Level. RTs were analyzed, 

only for correct trials (74.6% of total trials), using a linear restricted maximum likelihood 

model. Accuracy was analyzed using a binomial logistic regression model including all 

trials. In both models, R (R Core Team, 2012) and lme4 (Bates et al., 2012) were used to 

perform mixed effects analysis. WM Difficulty Level was entered as a fixed effect, and both 

model intercepts and by-subject random slopes across WM Difficulty Levels were included 

as random effects. Gender and each subject’s WM capacity were also included to account 

for standardizing difficulty levels across subjects and general differences in task ability. No 

deviations from homoscedasticity or normality were observed. P-values were obtained by 

likelihood ratio tests of the full model with the variable in question against a null model 

without the variable in question using an ANOVA to compare the model fits. There was no 

missing data, but in 1.8% of trials participants failed to respond within the 4-s response 

window (143 out of 8040 trials); these trials were excluded from all analyses.

2.2.4. fMRI analyses—A parametric approach was used to investigate how activity 

varied as a function of WM load. First-level voxel time-series analysis was carried out using 

general linear modeling (GLM); fixed effects models were carried out to examine the effects 

of load; separate events were modeled for the array presentation (duration: 3 s), delay period 

(duration: 5 s), and response (duration: subject reaction time), each with an onset at the 

beginning of the event. Four separate delay-period regressors were used to model each of the 

WM Difficulty Levels for each subject; correct valid and correct invalid responses were 

modeled under the same task regressor; despite decreasing accuracy in difficulty conditions, 

the number of correct trials in each condition was still sufficient for fMRI response 

estimation (mean trial count = 23, 23, 21, 20 across difficulty levels). Incorrect and non-

response trials were modeled identically, but separately, and were not considered in the 

univariate results below. Subsequent to individual-level models, random-effects analysis was 

performed on parameter estimates of the delay-period regressors (p < 0.005). Subsequent 

group-level analyses were performed across the four delay-period regressors in SPM12.

2.2.5. Cortical parcellation—Before functional matrices were constructed, a consistent 

parcellation scheme was established across all subjects that reflects an accurate summary of 

full connectome effects (Bellec et al., 2015). Subjects’ T1-weighted images were segmented 

using SPM12 (www.fil.ion.ucl.ac.uk/spm/software/spm12/), yielding a grey matter (GM) 

and white matter mask in the T1 native space for each subject. The entire GM was then 

parcellated into 471 regions of interest (ROIs), each representing a network node by using a 

subparcellated version of the Harvard-Oxford Atlas (HOA), (Tzourio-Mazoyer et al., 2002), 

defined originally in MNI space. Subsequent follow-up analyses utilized a parcellation 

scheme defined by Yeo et al. (2011), also defined in MNI space. The T1-weighted image 

was then nonlinearly normalized to the ICBM152 template in MNI space using fMRIB’s 

Non-linear Image Registration Tool (FNIRT, FSL, www.fmrib.ox.ac.uk/fsl/). The inverse 

transformations were applied to the HOA atlas in the MNI space, resulting in native-T1-

space GM parcellations for each subject. Then, functional time series were extracted from 

the above MNI-normalized functional data for each individual, each ROI, for subsequent 

functional connectivity analyses.
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2.2.6. Functional connectivity—Functional connection matrices representing task-

related connection strengths were estimated using a cPPI analysis used previously by our 

group (Davis et al., 2017) and others (Fornito et al., 2012) to estimate a whole-brain 

connectivity matrix that describes task-related interactions between brain regions. Briefly, 

the model relies on the calculation of a PPI regressor for each region (or node), based on the 

product of that region’s time course and a task regressor of interest, in order to generate a 

term reflecting the psychophysical interaction between the seed region’s activity and the 

specified experimental manipulation.

The convolved task regressors from the univariate model described above were used as the 

psychological regressor, which were originally coded as the four Set-Size-modulated delay 

regressors (range = 1–4); all regressors are mean-adjusted in FSL; as such, our linear, mean-

centered parameterization forms an effective contrast of [−1.5 −0.5 0.5 1.5] across Very 

Easy, Easy, Medium, and Difficulty item loads (respectively). The correct-trial delay-period 

regressors were each multiplied with two network time courses for region i and j. As is 

typical in most working memory paradigms, our delay period interval was of a fixed length 

(4 s), and therefore not jittered with the array presentation or response periods of the task. In 

order to address the possibility that this delay period-activity was thus contaminated by these 

other events, we repeated this partial correlation by including convolved regressors for array 

and response periods in the z-term. Nonetheless, the inclusion of these regressors had no 

influence, suggesting that the confound in isolating delay-period activity during fMRI of 

working memory cannot be solved under the current data design parameters. The partial 

correlation ρPPIi,PPIj ⋅ z was then computed, removing the variance z, which includes both 

the psychological regressor and the time courses for regions i and j, as well as constituent 

noise regressors including 6 motion parameters and noise regressors coding for the 

concurrent signal in white matter and CSF during each run. This cPPI analysis resulted in 4 

separate output matrices, comprising connectivity delineated by WM load. Task-related 

connectivity was estimated from the resulting output matrices; negative connections were 

included in these analyses, as they may inform important, explicit interpretations about how 

networks may be segregated (Braun et al., 2012). Of note, our inclusion of the motion 

regressors did not have a significant effect on overall connectivity values; nonetheless, it 

remains an open question whether such an inclusion in task-related connectivity helps to 

control for the residual influence of motion not removed in initial preprocessing stages, or 

instead re-introduces noise into the data (see Lindquist et al., 2019). To facilitate future 

work, we have made available cPPI connectomes both with and without motion regressors 

included as controlling random variables.

Lastly, in order to summarize system-wide behavior in the task-related network, a previously 

reported measure of system segregation was applied with modifications (Chan et al., 2014). 

This measure is calculated as the difference between the mean magnitudes of between-

system correlations from the within-system correlations as a proportion of mean within-

system correlation.

Segregation =
Zw − Zb

Zw
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where Zw is the mean r-values between nodes of one partition, module, or system (similar to 

within-module degree or WMD), and Zb is the mean of r-values between nodes of separate 

partitions (similar to between-module degree or BMD, Davis et al., 2017). Accordingly, 

values greater than 0 reflect relatively lower between-system correlations in relation to 

within-system correlations (i.e., stronger integration of systems), and values less than 0 

reflect higher between-system correlations relative to within-system correlations (i.e., 

diminished integration of systems). This measure was then modified by taking 1 – 

Segregation to reflect system integration, or the inverse effect of segregation. In subsequent 

connectivity analyses, one older adult participant’s average network integration value was 

greater than two standard deviations below the mean and was thus excluded from this 

analysis. All plots were created using R (R Core Team, 2012) and ggplot (Wickham and 

Wickham, 2007). All connectivity data was visualized using BrainNet Viewer (http://

www.nitrc.org/projects/bnv/).

3. Results

3.1. Behavioral results

There were no significant group differences between young and older adults in either 

Starting Load (t66 = 0.46, p = 0.65) or WM capacity values (t66 = 1.26, p = 0.21) (Table 1). 

This suggests that both age groups were fairly equivalent in baseline performance level. 

Results from the linear and logistic regression models demonstrated that increasing WM 

Difficulty Level corresponded to lower accuracy (χ2 = 86.84, p < 2.2e-16) and slower RTs 

(χ2 = 63.37, p = 1.7e-15). Additionally, while there was no main effect of group on accuracy 

(i.e., correctly recognizing old probes), older adults demonstrated significantly slower RTs 

(χ2 = 12.30, p = 4.5e-4). This lack of group difference in accuracy is not surprising given 

that low performers were screened out of the experiment, and previous studies have 

demonstrated that titrating for individual performance largely removes age differences in 

task performance that are typically found (Cappell et al., 2010; Schneider-Garces et al., 

2010). Accuracy and response time was further summarized across difficulty level for valid, 

invalid, or new trials separately to further investigate performance differences across trial 

type (Fig. S1A; accuracies for the Valid/Invalid Position decision are presented in Table 

S1B, but not the focus of the current analysis). From these data, we see that older adult 

subjects correctly recognized both old probes (valid or invalid letter probes, which both 

constitute “old” trials) with a high degree of accuracy, (all subject means > 80%, even at the 

highest levels of difficulty). Furthermore, older adult subjects were also correctly identified 

lure probes (i.e., New trials; all subject means < 18%, even at the highest levels of 

difficulty). Higher WM capacity significantly predicted lower accuracy (χ2 = 10.98, p = 

9.2e-4) but not reaction time. Plots of response accuracy show a linear trend across WM 

Difficulty Level (Fig. 2A & B) wherein WM load strongly predicts performance, but no 

group-by-difficulty interactions were found. This titration therefore allows brain measures to 

be more directly compared both within and across age groups, as these differences would be 

unrelated to any disparity in task performance.
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3.2. fMRI results

As described in the introduction section, the study had three main goals: (1) investigate how 

age effects on WM network integration vary as a function of WM demands; (2) examine 

hemispheric differences in network integration in young and older adults; and (3) investigate 

if age-related changes in network integration relate to individual differences in WM 

performance. Before turning to each of these analyses, the next section describes how the 

task-related network was identified.

3.2.1. Task-related network identification—As illustrated by Fig. 3A, when 

collapsing across WM loads, the network of activated regions consisted of frontal and 

parietal areas, similar to what is typically found in fMRI studies of WM (Cabeza and 

Nyberg, 2000). To select ROIs for network analyses, all commonly activated ROIs across 

young and older adults that had average ROI-level t-value above 2.59, corresponding to a 

significance of p < 0.005 uncorrected, were included in the task network. This resulted in a 

35-node network consisting of bilateral frontoparietal and sensorimotor regions (see Fig. 

3B). Next, we address whether age was associated with differences in the symmetry of task-

network activation. Splitting the Task network activity by left and right ROIs, we then 

performed a Age x Hemisphere ANOVA on the univariate activity values to test this 

hypothesis (Fig. S2); As expected given the verbal nature of the task, average activity within 

this network was greater in the left hemisphere in young adults (F1,36 = 8.21, p = 0.007), but 

this hemispheric asymmetry activity was not observed in older adults (F1,29 = 1.09, p = 0.31, 

Fig. 3C); nonetheless, we found no significant hemisphere-by-age interaction. Average 

univariate activity in all task-related regions showed a weak inverse-U pattern as a function 

of WM load, with no significant differences between groups across difficulty level (Fig. 3D). 

This finding supports previous findings of load effects disappearing when normalized to 

individual performance (Schneider-Garces et al., 2010), and thus may be a better measure of 

directly comparing brain differences rather than WM capacity differences in aging. Thus, 

this task-based network is utilized to more effectively investigate changes in network 

connectivity, such as how task regions communicate with each other at network and whole-

brain levels.

3.2.2. Network integration and task difficulty—The first goal of the study was to 

investigate how age effects on WM network integration vary as a function of WM demands. 

Specifically, we tested the hypothesis that as task demands increase, the WM network 
becomes more integrated with the rest of the brain and this effect is greater for older than 
younger adults (Hypothesis 1). In order to test this hypothesis we applied task-related 

connectivity (as defined by cPPI, see Davis et al., 2017; Fornito et al., 2012), which 

examines the degree to which the correlation of fMRI timeseries between a pair of cerebral 

regions may be modulated by the hemodynamic response associated with a cognitive event. 

As illustrated by Fig. 4, the results were consistent with this hypothesis: as a function of 

WM Difficulty Level, network integration decreased slightly in young adults, but increased 

substantially in older adults. When entered into a 2-way group by difficulty ANOVA, there 

were significant differences in group (F1,64 = 6.19, p = 0.015) and no general Difficulty 

Level differences. The interaction between group and load was also significant (F1,196 = 

5.72, p = 0.018). This effect emerged particularly in the hardest level (Level 4: t65 = −4.21, p 
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= 8.1e-05). This finding is consistent with the univariate activity evidence for the CRUNCH 

hypothesis (Cappell et al., 2010; Low et al., 2009; Reuter--Lorenz and Cappell, 2008; 

Schneider-Garces et al., 2010), but it extends this evidence by showing that demand-related 

over-recruitment in older adults involves changes in network integration.

3.2.3. Hemispheric differences in network integration—The second goal of the 

study was to identify which regions are driving the integration effect by using informed 

decompositions of the networks examined above. First, we sought to test whether 

hemispheric differences in network integration in young and older adults help to explain the 

observed pattern above. This approach is motivated by the common finding that activations 

are less lateralized in older adults than younger adults. In particular, we tested the hypothesis 

that during a left-lateralized verbal WM task, older adults show greater demand-related 
network integration in the right-than the left-hemisphere (Hypothesis 2). To do so, 

integration measures were calculated separately within the left and right hemispheric 

components of the task network (Fig. 5A) and entered into a 3-way group by difficulty by 

hemisphere ANOVA. While the 3-way interaction was not significant, interactions emerged 

in group by difficulty (F1,456 = 10.06, p = 0.002) and group by hemisphere (F1,456 = 4.26, p 

= 0.040), with no interaction of difficulty by hemisphere. Thus, the lack of a significant 3-

way interaction precludes that “older adults show increased difficulty-related network 

connectivity in the right, more than the left hemisphere.” Nonetheless, such a conclusion is 

based on a more explicit comparison of the left and right hemisphere; we therefore 

performed follow-up tests to characterize the connection profile left and right hemisphere 

independently. Thus, separate 2-way group by difficulty ANOVAs for each hemisphere were 

then computed to probe this possibility. Consistent with the Hypothesis 2, the difficulty by 

age interaction remained significant in the right hemisphere (F1,196 = 3.90, p = 0.048), but 

not in the left hemisphere (F1,196 = 1.68, p = 0.19; Fig. 5B). This finding suggests that age-

related increases in network integration were driven by greater integration of the right 

hemisphere task nodes. To further investigate this effect, we split the connectivity of right-

hemisphere task nodes with other right-hemisphere nodes (right-right) and with left-

hemisphere nodes (right-left) focusing on the difference between Difficulty Levels 3 and 4 

since these consecutive levels demonstrated the greatest interaction effect. As illustrated by 

Fig. 5C, both right-right and right-left connections showed greater integration with WM 

demands in older adults. An age (young vs. old) by difficulty (Level 3 vs Level 4) by 

connection type (right-right, right-left) ANOVA showed a significant age by difficulty 

interaction (F1,192 = 5.45, p = 0.02), but no other interactions. These results are consistent 

with univariate activity evidence for the HAROLD model (Cabeza and Dennis, 2013), but 

extends this evidence by showing that age-related contralateral recruitment is associated 

with greater between-network connectivity of the contralateral hemisphere network both 

within- and across-hemispheres.

A potential concern of the hemispheric differences in network integration is that it could be 

driven by differences in canonical intrinsic networks, such as the default mode network 

(DMN). A growing body of evidence suggests that older adults show less modular 

architecture (Betzel et al., 2014), and that relationships between frontal control and DMN 

regions become less decoupled with age (Spreng and Turner, 2019). To investigate this issue, 
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our second approach was to investigate the alternative hypothesis that the task-based 

integration was driven by changes in the modularity of resting state networks. Each ROI in 

the 471-node network was assigned to one of the seven network parcellation schemes 

defined by Yeo et al. (2011) based on the greatest area of overlap. The regions were thus 

labeled as Visual, Somatomotor, Dorsal Attention, Ventral Attention, Limbic, Frontoparietal, 

and Default networks according to this standard atlas (Fig. 5D). In this analysis integration 

between nodes of each of the seven canonical resting-state modules (or networks) was 

calculated to determine whether the network integration effects observed in Fig. 5B were 

present in any specific standard resting-state network (the task network was excluded from 

this analysis). Integration scores were assessed for each canonical network using a repeated-

measures ANOVA for each module. The Limbic network, comprising regions in anterior 

temporal and orbitofrontal cortex, was the only resting state network to demonstrate a 

significant group by difficulty interaction after Bonferroni correction (Fig. 5E; F1,196 = 8.25, 

p = 0.032). There were no other significant interaction effects in any module, and there were 

no significant group or difficulty level effects in any module. It is noteworthy that while no 

limbic regions (e.g., hippocampus, inferior/anterior temporal cortex) exhibited greater 

univariate activity in the present study, sub-threshold activity in these regions may 

nonetheless be contributing to successful working memory performance. Many regions 

classified as Limbic in the Yeo atlas comprise loci implicated in multiple investigations of 

stimulus representation in working memory including age-related changes in anterior 

temporal connectivity during working memory (Nyberg et al., 2016; Viviano et al., 2019); 

nonetheless, there is no overlap between task-related working memory regions in the current 

study (which comprise largely frontoparietal regions), and regions in the Yeo Limbic 

module, suggesting that individuals in the current study may rely on connectivity-based 

support from an extended network of medial temporal lobe regions during increasingly 

difficult working memory conditions.

Lastly, in order to address the possibility that connectivity differences were driven by simple 

BOLD differences, the relationship between task-network univariate activity and integration 

in the task-related regions (i.e., nodes) was also investigated across all task difficulty 

conditions. No significant relationships between BOLD activity within the task network 

regions and network integration emerged at any level. Even in the most difficult condition, 

there was no trend between integration and activity in older adults (OA: r30 = 0.00, Fig. 

S3A). Nonetheless, because the putative task network was defined across all levels of 

difficulty, we sought to test whether the observed age-related increases in integration may 

have emerged due to the recruitment of additional regions outside the task network at the 

highest levels of difficulty. Post hoc tests of older versus younger adults revealed age-related 

increases in activity in right inferior frontal cortex, right inferior temporal cortex, and 

inferior parietal cortex (see Supplemental Results, Fig. S1), consistent with other reports (Li 

et al., 2015; Luo et al., 2016). Activation within these regions was similarly uncorrelated 

with integration scores in older adults (r30 = −0.02, Fig. S3B). These null results suggest that 

the observed age-related increases in integration in the task network cannot be attributed to 

either increases or decreases in univariate activity, and that connectivity information offers 

new information not revealed by univariate activity differences.
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3.2.4. Network integration and individual differences in WM performance—
The third goal of the study was to investigate if age-related changes in network integration 

relate to individual differences in WM performance. Specifically, we tested the hypothesis 

that age-related WM network integration would be associated with WM ability in older 
adults (Hypothesis 3). As illustrated by Fig. 6A, the results were consistent with this 

hypothesis: in older adults, there was a significant correlation between network integration 

in the most difficult condition and WM capacity (r = 0.37, p = 0.048). In younger adults, in 

contrast, this relationship was not significant (r = −0.26, p = 0.18); a Fischer r-to-z transform 

confirmed a significant difference in these relationships (z = 2.54, p = 0.011, two-tailed), 

providing further support for the idea that older adults rely more on the right hemisphere 

than their younger counterparts during difficulty working memory processing. The 

correlation of WM capacity with integration was also examined at the easiest difficulty level 

to determine whether this effect was specific to the highest difficulty level. Neither 

correlation was significant (young adults: r = −0.07, p = 0.67; older adults: r = 0.09, p = 

0.66; Fig. 6B). A Fisher r-to-z transformation was used to assess the significance of the 

difference between the brain-behavior correlations in younger and older adults. This 

difference was also significant only in the highest difficulty level (z = 2.54, p = 0.01), 

suggesting that network integration serves a different functional purpose in younger versus 

older adults. Nonetheless, to test for the possibility that individuals with higher WM 

capacity will also have a numerically higher number of items to maintain and manipulate in 

the most difficult condition (a natural consequence of our titrating procedure), we tested for 

any significant relationship between participant accuracies at the highest difficulties, and 

their WM capacity; we found no relationship between these measures (all |r| < 0.1). Thus, 

the tendency for older adults with higher WM capacity to integrate more in the difficult task 

condition implies that this increase in integration is an adaptive benefit to WM. This pattern 

of correlations also suggests that in younger adults, the segregation of the task network from 

non-task regions is similarly adaptive, but in the reverse direction; such a pattern of greater 

segregation associated with positive outcomes for behavior is consistent with other studies 

finding a link between increase modularity and WM performance in younger populations 

(Braun et al., 2015; Stanley et al., 2014).

To better understand hemispheric influences, the same pattern of brain-behavior 

relationships was examined when integration scores were split across left and right 

hemisphere task regions. Only the highest difficulty level was examined in order to reduce 

the number of comparisons, which is justified by the age by difficulty effect observed above 

(Fig. 4); correlations with the easiest difficulty level are included for comparison. Of 

particular interest was whether younger and older adults exhibited qualitatively different 

brain-behavior relationships, specifically whether the age-related difference in the 

correlation between network integration and WM capacity was significant. After correcting 

for the remaining number of correlations compared, the right hemisphere showed a 

significant difference in correlation values in older, compared to young adults (z = 2.24, p = 

0.025), while the left hemisphere did not show a significant difference (z = 1.59, p = 0.11; 

Fig. 6C). This indicates that older adults may rely more than their younger counterparts on 

right hemisphere network integration with the rest of the brain, and that the bilateral 

integration effects associated with WM capacity and age seen above (Fig. 6A) are likely 
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driven by the right hemisphere. This finding is in line with our result above, in the current 

analysis, that the age-related differences in network integration are largely attributable to the 

right hemisphere. Thus, an age-related difference in brain-behavior relationships is 

consistent with the interpretation that integration is good for older and bad for younger adult 

brains.

Correlations between average integration and accuracy during task performance at the 

highest difficulty level were also computed in both the bilateral task network and task 

network split by hemisphere; no significant relationships emerged (|r| < 0.2), suggesting that 

the relationship of integration with behavior may be driven more strongly by individual 

differences rather than task-related recruitment of a so-called compensatory mechanism.

4. Discussion

The current study examined how aging affects network integration during the manipulation 

of information in working memory and how this integration influences individual 

differences in WM ability. Our analysis focused on the use of task-related whole-brain 

connectivity, which describes the modulation in the correlation of timeseries between 

cortical regions in response to a cognitive event. The study yielded three main findings. 

First, as task difficulty increased, network integration decreased in younger adults but 

increased in older adults. Second, the increase in network integration due to task demands 

that was observed in older adults was driven by stronger connectivity in the right 

hemisphere, which is less activated in younger adults during the WM task. Third, older 

adults with higher working memory capacity had significantly higher levels of task network 

integration in the most difficult condition, consistent with a compensation account as 

articulated in the HAROLD and CRUNCH models. These three findings are discussed in 

separate sections below.

4.1. Age effects on network integration as a function of task demands

The first finding of the study was that older adults showed a significant increase in network 

integration as a function of WM demands (load), whereas young adults showed the reverse 

pattern. To our knowledge, this is the first demonstration of a demand-related increase in 

task-related network integration in older adults, as well as the first report of a clear age-by-

difficulty interaction in network connectivity. The age-related increase in network 

integration is generally consistent with studies observing load-related increases in PFC 

activity in older adults (Nagel et al., 2009), but it goes beyond univariate activation findings 

by showing that the task-related regions over-recruited by older adults are selectively 

integrated with the broader cortical network. This result also extends findings of age-related 

increases in bivariate functional connectivity (Daselaar et al., 2006; Dennis et al., 2008; St. 

Jacques et al., 2009) by showing the effect at the level of whole-brain networks and 

revealing the global context for these bivariate interactions. Finally, while the current results 

fit with previous evidence of age-related increases in network integration during rest (Chan 

et al., 2014, 2017), they also expand this evidence by showing a clear link between network 

integration and task demands.
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In contrast with older adults, integration decreased in younger adults as a function of 

difficulty. There is not currently a consensus on what the benefits of more widespread 

network community integration may be, and there is evidence showing task demands can be 

associated with either increased integration (Braun et al., 2015; Hearne et al., 2017) or 

decreased integration (Davis et al., 2018; Mattar et al., 2018), depending on task 

investigated. Furthermore, there is evidence that, depending on the task, greater integration 

can be associated with better (Braun et al., 2015; Cohen and D’Esposito, 2016) or worse 

(Cohen and D’Esposito, 2016) performance. In the current study, the task was the same and 

opposite effects of task demands on integration were seen for older versus younger adults. 

Given that networks tend to show less functional segregation in older adults (Betzel et al., 

2014; Chan et al., 2014; Cohen and D’Esposito, 2016), one possibility is that older adults 

benefit more from integration than younger adults. Opposing effects of univariate activity on 

WM performance in older and younger adults have been previously shown (Peira et al., 

2016; Rypma and D’Esposito, 2000)., suggesting that younger and older adults recruit task-

sensitive regions differently in response to shifting cognitive demands.

The first finding that older adults showed increased network integration is consistent with 

univariate activity supporting the CRUNCH hypothesis (Cappell et al., 2010; Low et al., 

2009; Reuter-Lorenz and Cappell, 2008), while also showing that faster recruitment in older 

adults at higher task demands is not limited to the activity of individual regions. In univariate 

fMRI studies, manipulating WM load typically results in an inverted-U fMRI activity 

pattern, first increasing with task difficulty but then declining at higher levels of difficulty 

(Cappell et al., 2010; Low et al., 2009; Schneider-Garces et al., 2010; Vidal-Pineiro et al., 

2017). In older adults, activity increases faster at lower levels of difficulty, but it also 

declines faster at higher difficulty levels. These findings are postulated to result from 

processing inefficiencies in older adults who over-recruit neural resources at lower levels of 

demands and, as a result, do not have additional resources at high demand levels. In contrast 

to univariate activity, network integration did not decrease at the highest difficulty level, 

despite clear limits in working memory capacity at this level (see Fig. 2). This pattern 

suggests that connectivity may represent a fundamentally different neural signal, one which 

remains more adaptive in aged participants.

4.2. Hemispheric differences in network integration in young and older adults

The second finding of the study was that increases in demand-related network integration in 

older adults were driven by connectivity changes in the right hemisphere. This finding fits 

with evidence for the HAROLD model (Cabeza and Dennis, 2013) showing age-related 

increases in univariate activity in the hemisphere less activated in younger adults, such as the 

right hemisphere in the current verbal WM task. Previous results speak in favor of the idea 

that bilateral activation patterns in the PFC are often associated with higher task demands 

across the lifespan (Belger and Banich, 1992; Davis and Cabeza, 2015), and therefore 

suggest a flexible bilateral cortical mechanism by which older adults may maintain youthful 

levels of performance. The current laterality findings, however, provide new insight by 

showing the consequence of these changes as expressed across whole-brain networks. 

Interestingly, right-hemisphere network integration increases in older adults were mediated 

by both connections within the right hemisphere and by connections between the right and 
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the left hemisphere. The latter observation is consistent with previous results showing 

greater bivariate connectivity between left and right DLPFC in older than younger adults 

(Davis et al., 2012). This therefore suggests that the bilateral compensatory pattern may not 

be limited to strictly contralateral regions of the brain.

A central debate cognitive neuroscience of aging is whether or not age-related increases in 

recruitment of neural processes outside those recruited by younger adults reflect an adaptive 

compensation for the deleterious effects of age, or instead reflect more non-specific neural 

activity that fails to contribute meaningfully to cognition. The more specific question of how 

best to interpret age-related increases in right-hemisphere BOLD activation in the context of 

memory-related behaviors has traditionally relied on indirect relationships between 

activation and performance (Mattay et al., 2006; Suzuki et al., 2018), while nonetheless 

ignoring how such bilateral neural systems emerge from more traditional unilateral 

networks. In a consensus opinion article, compensation was defined as a cognition-

enhancing over-recruitment of neural resources in response to cognitive demands (Cabeza et 

al., 2018). Thus, there are two essential criteria for attributing brain responses to 

compensation: they increase as a function of task demands and are associated with better 

cognitive performance. In the current results we found that age-related increases in task-

related, right hemisphere network connectivity both increased with task difficulty and were 

significantly related to WM ability. Thus, in the present paradigm the age-related increase 

was clearly adaptive, given the strong parametric increases in connectivity in response to 

increasing task demand (Fig. 4) and right hemisphere connectivity in particular was related 

to successful performance (Fig. 6), fulfilling two of the aforementioned criteria for 

successful compensation. Having clarified the utility of this approach, it is important for 

future work to clarify the reasons why such a neural mismatch in neural resources emerges

—namely declines in structural brain health. Furthermore, the justification for considering 

the left and right hemispheres separate in this respect is clear once one considers that this 

verbal task is left-lateralized (see Davis et al., 2018), and hence increased integration within 

the right hemisphere is consistent with contralateral recruitment (Davis et al., 2012). 

However, we found no concomitant increase in bilateral connectivity in OAs, suggesting that 

the task-related increase in right hemisphere connectivity in response to task difficulty is not 

reliant on signaling from the contralateral hemisphere. Such observations would not be 

possible by relying only on BOLD activation of left and right hemispheres. Thus, while this 

debate is typically formulated in terms of univariate activation, the current manuscript offers 

support that connectivity modulation in response to task difficulty may be more sensitive to 

right-hemisphere recruitment (for a generally left-lateralized lexical working memory task) 

than univariate activity.

When our connectivity patterns were decomposed by their membership to canonical resting 

state networks, rather than by hemisphere, only the Limbic network showed a significant age 

by difficulty interaction in network integration (Fig. 5E). Interestingly, the resting state-

derived Frontoparietal network did not demonstrate an interaction, suggesting that canonical 

parcellations may not be as sensitive to such task-related changes in network connectivity. 

Furthermore, a post hoc test of the correlation comparing between-network connectivity 

(between the task network and any of the resting state networks defined by the Yeo atlas) 

and behavioral performance (either WM capacity or performance during the task) failed to 
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identify any significant brain-behavior relationships (all r < 0.4, all N.S. after Bonferroni 

correction). Despite the popularity of resting state networks, it is unlikely that these 

partitions are fully representative of task-based networks (Cole et al., 2014; Davis et al., 

2016), which could explain lack of integration in all but one of the resting state networks, 

and a lack of behavioral impact for connectivity in these subnetworks. Thus, while a 

growing body of evidence from resting state data suggests that older adults show less 

modular architecture (Betzel et al., 2014), our finding highlights the importance of task 

specificity in the context of investigating network connectivity, the use of more standardized 

network labels may obscure effects specific to a unique task-related network.

Notably, task-related connectivity has been assessed previously using similar techniques to 

describe age-related changes in network organization (Geerligs et al., 2014; Grady et al., 

2016). Large-scale descriptions of network organization have largely focused on resting-

state connectivity, findings (Betzel et al., 2014; Vij et al., 2018); we and others have 

cautioned that the inferences available from these “task-free” data is limited (Campbell and 

Schacter, 2017; Davis et al., 2016; Spreng et al., 2016). Nonetheless, the current data suggest 

that Task Difficulty is a highly salient modulator of connectivity, specifically within regions 

activated by the task. Nonetheless, the generalizability of our task-based parcellation scheme 

rests on the fact that a bilateral frontoparietal activation pattern during working memory 

comprises one of the most ubiquitous patterns in cognitive neuroscience (Owen et al., 2005). 

To be sure, the data-driven nature of resting state analysis has afforded the field new 

capacities to determine highly reliable network definitions based on consistent intra- and 

inter-subject consistencies in coactivation (Gordon et al., 2017; Power et al., 2011; Yeo et 

al., 2014), local homogeneity in activation (Gordon et al., 2016), or convergent multimodal 

information (Glasser et al., 2016). The influence of a parcellation scheme on functional 

network properties is therefore an underappreciated, but growing domain of study (Romero-

Garcia et al., 2012; Zhong et al., 2015). Clearly more systematic work in this domain is 

needed, and an increase in data-and code-sharing practices will enable this work to proceed.

4.3. Network connectivity and WM capacity

The third main finding of the study was that older adults with higher WM capacity showed 

significantly higher network integration in the most difficult condition. While the association 

between higher integration and better behavioral performance has been shown in resting 

state data (Sala-Llonch et al., 2014), this is, to our knowledge, the first time this relationship 

is found in task-based functional connectivity. Interestingly, while WM capacity was found 

to relate to task network integration, no such pattern emerged with overall accuracy or 

reaction time at any given WM difficulty level. It is possible that the individual titration of 

difficulty may have obscured such effects, or that this finding reflects a relationship with 

individual ability rather than successful task performance. The lack of difference in 

behavioral performance between groups, thus, may be attributed to different patterns of 

network integration at high difficulty levels being utilized as alternative, and equally 

successful, processing strategies, resulting in equivalent WM capacity between age groups.

The significant difference in brain-behavior correlations between younger and older adults 

(Fig. 6E) provides some evidence for this interpretation. Given that network integration in 
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the current study increased with task demand and was driven by the hemisphere less 

engaged by younger adults, the link between more widespread connectivity and WM 

performance provides further support for the compensatory interpretation of both CRUNCH 

and HAROLD (Cabeza and Dennis, 2013; Park and Reuter-Lorenz, 2009). Taken together, 

these findings point to the possibility that younger and older adults differ fundamentally in 

their approach to the WM task. The factors driving this age-related reorganization in 

processing are unknown, but the current study sheds some light on the topology of that 

reorganization. Working memory tasks, in particular, have been associated with 5Hz theta-

band coupling between frontal and parietal regions during the memory retention period 

(Jensen and Tesche, 2002; Siegel et al., 2009) which increase parametrically with memory 

load. Empirical findings demonstrate that WM representations can be maintained in the 

absence of sustained activity during the delay in a distributed set of regions linked by 

oscillatory activity (LaRocque et al., 2013). The extent to which distributed activation/

connectivity and distributed representation drive age-related reorganization has not been 

studied, but a recent analysis suggests these measures are largely decoupled (Morcom and 

Henson, 2018). In a recent definition of compensation, the possibility was outlined that 

functional compensation in older adults reflects not simply the same cognitive process 

extended to new cortex, but rather the recruitment of additional cognitive processes not 

utilized in younger adults (Cabeza et al., 2018). Thus, the finding that successful 

performance in older adults relies on greater integration suggests that this group may rely on 

a more distributed set of processing cues, or a more flexible cognitive strategy, to perform 

the same task as younger adults.

5. Conclusions

In sum, this study yielded three main findings. First, as task difficulty increased, younger 

adults showed decreased network integration, whereas older adults showed increased 

network integration. Second, age-related increase in network integration was driven by 

increases in right hemispheric connectivity to both left and right cortical regions. Lastly, 

older adults with higher working memory capacity demonstrated significantly higher levels 

of network integration in the most difficult condition. These findings are generally consistent 

with two popular theories regarding age effects on brain function, CRUNCH and HAROLD, 

as well as with the compensatory interpretation of these effects, while also extending the 

evidence for these theories from univariate activity to network architecture.
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Fig. 1. 
Task paradigm and individual WM load determination. (A) Illustration of WM manipulation 

during an array of 3–9 letters was presented, followed by a delay during which participants 

were asked to rearrange the original array in alphabetical order and subsequently report if a 

probe number matches the serial position of a probe letter in the alphabetized array. (B) 
Individually-titrated Difficulty Levels were determined using sigmoid curves fitted to 

individual performance data from screening visit, based on accuracy.
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Fig. 2. 
Behavioral performance on Valid and Invalid trials in each group across difficulty, with 

figures representing (A) showing average Accuracy ± standard error and (B) RTs ± standard 

error. Linear mixed effects models for the effects of Age Group and WM Difficulty were 

performed on both forms of data. While clear Difficulty effects are present in both measures, 

Group differences are present for Reaction Time (χ2 = 12.3, p = 4.5e-4), but not for 

Accuracy (χ2 = 0.01, p = 0.92).
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Fig. 3. 
Converting univariate information into multivariate topology (p < 0.05 = *, p < 0.01 = **). 

(A) Thresholded average delay-period maps, averaging responses within each ROI in the 

HOA471, used to identify regions responsive to the task. (B) Nodes of the network with a t-

value greater than 2.57 common to both groups were then assigned to the task network. (C) 
Average activity was higher in left than right hemisphere task regions, with a significant 

main effect in younger adults. (D) While task network activity was higher for younger than 

older adults, univariate activity within the task network did not differ across WM Difficulty 

Level between age groups.

Crowell et al. Page 24

Neuroimage. Author manuscript; available in PMC 2020 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Components of integration value determination and parametric effects of WM Difficulty 

Level on network integration (±standard error, across WM Difficulty Level; p < 0.05 = *, p < 

0.01 = **).
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Fig. 5. 
Network integration of subdivided task and resting-state networks (p < 0.05 = *, p < 0.01 = 

**). (A) Parcellation of the task network split by hemisphere. (B) Average integration ± 

standard error of left-hemisphere and right-hemisphere task networks treated separately. (C) 
Right hemisphere task region between-network connectivity with right and left non-task 

regions. (D) Data-driven parcellation of modules determined by average resting state data 

across young and older adults. (E) Average integration ± standard error of each module as 

defined by resting state.
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Fig. 6. 
Relationship of task-network integration and WM capacity (p < 0.05 = *, p < 0.01 = **). (A) 
Task-network integration in the most difficult task condition positively correlates with 

individual WM capacity scores in older adults. (B) r values of these correlations are 

significant for older adults with a significant difference across group only in the high 

difficulty level. (C) Split by hemisphere, the difference in correlation values is significant 

only for the Right hemisphere in the high difficulty level.
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Table 1

ANOVA of factors affecting accuracy and RTs.

Effect Estimate Std. Error χ2 Value Pr > |t|

Accuracy

Intercept 7.76 0.66

Age Group −0.05 0.54 0.01 0.92

WM Difficulty Level −0.99 0.10 86.84 <2.2e–16

Age x WM Difficulty −0.09 0.13 0.40 0.52

WM Capacity −0.37 0.11 10.98 9.2e–4

RTs

Intercept 1210.63 236.10

Age Group 328.68 90.98 1230 4.5c–4

WM Difficulty Level 231.09 22.37 6337 1.7e–15

Age x WM Difficulty −34.43 34.18 1.04 0.30

WM Capacity 37.71 39.37 0.89 0.35

Note: χ2 statistics and p-values were obtained by likelihood ratio tests of the full model with the effect in question against the model without the 
effect in question.
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