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Particulate nitrate, a key component of fine particles, forms through the intricate gas-to-particle con-
version process. This process is regulated by the gas-to-particle conversion coefficient of nitrate (ε(NO3

�)).
The mechanism between ε(NO3

�) and its drivers is highly complex and nonlinear, and can be charac-
terized by machine learning methods. However, conventional machine learning often yields results that
lack clear physical meaning and may even contradict established physical/chemical mechanisms due to
the influence of ambient factors. It urgently needs an alternative approach that possesses transparent
physical interpretations and provides deeper insights into the impact of ε(NO3

�). Here we introduce a
supervised machine learning approachdthe multilevel nested random forest guided by theory ap-
proaches. Our approach robustly identifies NH4

þ, SO4
2�, and temperature as pivotal drivers for ε(NO3

�).
Notably, substantial disparities exist between the outcomes of traditional random forest analysis and the
anticipated actual results. Furthermore, our approach underscores the significance of NH4

þ during both
daytime (30%) and nighttime (40%) periods, while appropriately downplaying the influence of some less
relevant drivers in comparison to conventional random forest analysis. This research underscores the
transformative potential of integrating domain knowledge with machine learning in atmospheric
studies.
© 2023 The Authors. Published by Elsevier B.V. on behalf of Chinese Society for Environmental Sciences,
Harbin Institute of Technology, Chinese Research Academy of Environmental Sciences. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Nowadays, nitrate pollution contributes significantly to haze
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pollution. The formation and behavior of nitrate in the atmosphere
involve various physical and chemical processes, making it a
complex issue to address [1e5]. Nitrate is a crucial secondary
inorganic component of fine particulate matter (PM2.5), accounting
for 16e45% of the total PM2.5 mass, especially during haze episodes
in northern China [6,7]. As a semi-volatile component, nitrate un-
dergoes conversion between the gas phase (HNO3 (g)) and particle
phase (NO3

�) through ammonia neutralization in the atmosphere
[8]. The gas-to-particle conversion coefficient of nitrate (ε(NO3

�)) is
a crucial parameter that influences nitrate formation [9]. Multiple
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drivers can affect ε(NO3
�), including aerosol acidity (pH), tempera-

ture, liquid water content, ionic species in the aerosol, liquid phase,
and gaseous pollutants (such as HNO3 (g) and NH3) [4,10e13].
These drivers determine the efficiency of nitrate formation and its
partitioning between the gas and particle phases. Despite its sig-
nificance, there is still a lack of comprehensive and quantitative
understanding regarding the highly nonlinear relationship be-
tween ε(NO3

�) and these drivers.
Machine learning (ML) methods have become increasingly

valuable in advancing scientific discovery, attributed to their
mature algorithms, rich observation datasets, and powerful
computing power [14e16]. This advancement benefits from the
capacity that ML methods are highly effective in tackling complex
nonlinear problems, making them popular tools in a wide range of
fields, including climate change [17,18] and particulate matter
pollution [19e22]. Given the complex nonlinear structure of ML
methods, the success of ML methods heavily relies on carefully
selecting input variables. High-dimensional choices can adversely
affect model accuracy and interpretability, requiring the prioriti-
zation of relevant variables [23]. In addition, ML methods are
inherently data-driven models relying heavily on available labeled
data for development. Consequently, the results obtained from
these methods may lack clear physical meaning or even contradict
physical or chemical mechanisms [24,25]. This is an important
consideration when applying ML methods in environmental sci-
ences, where interpretations are crucial for understanding the
processes. Besides, high uncertainties are present in air pollution
concerns due to ambient factors interfering with observational
data, which presents challenges for using ML methods. The out-
comes of machine learning models need to be physically mean-
ingful and can be interpreted rationally. The process of identifying
appropriate variables and enhancing the physical interpretability of
the ML results poses a daunting task.

To overcome these challenges, researchers must strive to
enhance the interpretability of ML results. A careful integration of
the ML method with existing knowledge of physical mechanisms
and chemical processes has been implemented to provide mean-
ingful and interpretable insights into environmental phenomena.
Recent studies highlighted the potential of the theoretical approach
(TA), which is rooted in physical and chemical mechanisms and can
be used as prior knowledge to guide regular ML [26e28]. For this
reason, regular ML methods integrated with prior knowledge from
theory are suited to solve environmental issues. Therefore, it is
desirable to find some ways to make the outcomes of ML methods
consistent with the known laws of theory, facilitating the discovery
that reveals the gas-to-particle conversion of nitrate in the
atmosphere.

The primary goal of this study was to design a method that can
improve the performance degradation of the model caused by high
dimensional variables and avoid the ambiguous physical meaning
of ML's results by introducing prior knowledge. Here, we proposed
a knowledge-guided machine learning method using a theoretical
approach as prior knowledge to unravel the effect of drivers on
ε(NO3

�). We first used a multilevel nested random forest model to
elucidate the effect of individual drivers on ε(NO3

�). We further
made a theoretical approach as prior knowledge to guide the
multilevel nested random forest by searching for the globally
optimal solution to replace the mathematically averaged result of
machine learning. The study demonstrates that prior knowledge-
guided machine learning can robustly produce quantitative re-
sults with physical meaning and highlight the importance of sig-
nificant drivers on ε(NO3

�), which are closer to the actual value.
Furthermore, this novel approach exhibits exceptional performance
in solving complex environmental issues and yields higher result
accuracy than regular ML methods. As a result, this research holds
2

immense potential for environmental and climate research in the
future, as it provides a more robust and reliable framework for
addressing complex environmental issues.
2. Materials and methods

2.1. Site description and instrumentation

Real-time pollution measurements were conducted on the
campus of Nankai University (38�590 N, 117�20’ E), in the Jinnan
district of Tianjin, China, from November 2017 to October 2018. The
observation site is situated in a typical suburban area surrounded
by a wetland park (Fig. S1). Measurement instruments were sta-
tioned within the Air Quality Research Supersite, with sampling
inlets installed on the rooftop. Throughout the study campaign,
hourly online monitoring was conducted on particulate matter,
particle chemical species, trace gas pollutants, and meteorological
conditions. Details of the observed species can be found in the
Supporting Information (Table S1). Mass concentrations of PM2.5
were measured using beta ray particulate matter automatic mon-
itors (BPM-200, Focused Photonics Inc), while concentrations of
gases (SO2, NOx, and O3) were measured by gas analyzers (T101,
T201, and T400, Teledyne API Inc.). Water-soluble ions (NO3

�, SO4
2�,

NH4
þ, Cl�, Kþ, Mg2þ, and Ca2þ) and semi-volatile species in the gas

phase (HNO3 (g), NH3) were measured using ion chromatography
(URG9000 Thermo Fisher Scientific Inc, USA). Metallic elements (K,
Na, Mg, Zn, Fe, etc.) were measured using an atmospheric heavy
metal analyzer (AMMS-100, Focused Photonics Inc). Organic carbon
(OC) and element carbon (EC) were measured hourly with a sem-
icontinuous thermal-optical carbon analyzer (OCEC-100, Focused
Photonics Inc). Meteorological conditions, including relative hu-
midity and temperature, were measured using an automatic
meteorological observation system (WS600-UMB, LUFFT).
2.2. Mechanism-driven theoretical approach

The gas-to-particle conversion process of nitrate can be under-
stood through classic thermodynamic principles, which provide a
theoretical foundation for analysis. Previous studies have revealed
an S-shaped curve between ε(NO3

�) and aerosol pH, providing a
conceptual foundation for exploring the individual effect of drivers
on ε(NO3

�) [27]. We first calculated the theoretical value of ε(NO3
�)

(defined as ε(NO3
�)*) for each sample based on theoretical calcu-

lation (mechanism-driven) in equation (1) [8], which was deter-
mined by Hþ, aerosol water content, and ambient temperature. To
estimate liquid water content (LWC) and Hþ in aerosol, we
employed the thermodynamic model (ISORROPIA-II), which con-
siders corresponding gases for the Naþ-Kþ-Ca2þ-Mg2þ-NH4

þ-SO4
2�-

NO3
�-Cl�-H2O aerosol system [29].

ε

�
NO�

3
�*
z

3:2RTL exp
�
8700

�
1
T � 1

273:15

��

½Hþ� þ 3:2RTL exp
�
8700

�
1
T � 1

273:15

�� (1)

In this equation, R is the ideal gas constant equal
(0.08205 atm L mol�1 K�1); T (K) is the temperature; and L (g m�3)
is the aerosol liquid water content (as estimated by ISORROPIA-II).

We then calculated the effect of drivers on ε(NO3
�)* using the

empirical thermodynamic model. Further details on the calculation
process are presented in Text S1.
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2.3. Data-driven machine learning method

2.3.1. Random forest model (RF)
RF is a widely used machine learning model with satisfactory

performance that contains multiple decision trees constructed
randomly [30]. Each decision tree serves as a basic unit in the RF
framework, resembling a tree structure where the leaves represent
independent variables. In contrast to a single decision tree, RF
iteratively selects random samples from the original datasets to
generatemultiple decision trees, thus forming a random forest [31].
In this study, the dependent variable is ε(NO3

�), while the inde-
pendent variables include anions, cations, temperature, relative
humidity, etc. The construction method of the model adopts a ten-
fold cross-validation [32]. Here, the datasets are divided into two
parts: 90% of the samples are used as training datasets to fit the RF
model, and the remaining 10% are designated as test datasets for
evaluating the model's performance [31]. Evaluation metrics,
including the coefficient of determination (R2), root mean square
error (RMSE), mean absolute error (MAE), and mean absolute
percentage error (MAPE), are selected for assessing the model's
performance. Here, model building is carried out using the Python
package scikit-learn in Python 3.7. Further details about RF are
presented in Text S2(1).

f ðxÞ¼1
n

Xn
i¼1

giðxÞ (2)

In equation (2), f(x) is the predicted averaged value of an RF, such
as εðNO�

3 Þ in this study, gi(x) is the predicted value of each decision
tree i, such as ε(NO3

�) in this study; n is the number of decision trees
in RF.
2.3.2. Multilevel nested random forest model (MNRF)
To address the issue of reduced model performance due to the

high dimensionality of independent variables (i.e., drivers), we
propose a multilevel nested random forest model with a total of K
layers (Text S2(2)). The flow chart of the multilevel nested random
forest model is shown in Fig. S7, where K represents the number of
layers. In the new method, the initial K-1 layers of RF establish a
nonlinear response among initial drivers (e.g., some ionic species
and gaseous pollutants) and pH, allowing for the automatic selec-
tion of important drivers using four filter indicators. The final K of
layer RF further explores the effect of screened drivers on ε(NO3

�).
2.3.3. Multilevel nested random forest-permutation importance
(MNRF-PI) and multilevel nested random forest-partial dependence
plot (MNRF-PDP)
DDS
εðNO�

3 Þnj ¼
Xm
i

 
dEffe ktheiþ1

� dEffe kthei
dxiþ1 � dxi

�
�
dEffe kobsiþ1

� dEffe kobsi
dxiþ1 � dxi

�
j

!2

¼
Xm
i

 
dEffe kthe

dx
�
�
dEffe kobs

dx

�
j

!2

(5)
While the MNRF model can technically be created with
numerous parameter combinations, their interpretations can pose
challenges. To address this, the MNRF model incorporates two in-
tegral components: MNRF-PI and MNRF-PDP. The MNRF-PI algo-
rithm is designed to assess the importance of variables by
measuring variations in the prediction accuracy of the RF model
after permuting values of a single input variable (Text S2(3)) [33].
The MNRF-PDP algorithm analyzes the average effect of one or two
3

variables on prediction value. Specially, MNRF-PDP is a function of
Xk (driver) and model prediction values (equation (3)). The indi-
vidual effect of drivers on ε(NO3

�) is calculated using MNRF-PDP
(Text S2(4)).

f ðXkÞ¼
1
n

Xn
i¼1

RFðY ;Xk;XmÞ (3)

In equation (3), Y is the independent values input into the
model, such as ε(NO3

�) in this study; RF is a trained RF model; Xk is
the kth driving factor introduced into the machine learning model
(such as a certain driving factor, relative humidity); Xm is the mth
driving factor that was introduced into themachine learningmodel
with a fixed value, such as the other driving factors; n is the number
of samples, totaling 4175.
2.4. Supervised MNRF guided by theoretical approach

The MNRF-PDP method calculates the average effect of drivers
on ε(NO3

�) by averaging the results across all samples. However, this
approach is not constrained by physical or chemical mechanisms,
which may result in an incomplete characterization of the drivers’
impact on ε(NO3

�). To address this limitation, we propose a method
called supervised MNRF guided by a theoretical approach.

The MNRF-PDP algorithm can calculate the average effect of
drivers on ε(NO3

�) by averaging the results of all samples. The
average effect of drivers on ε(NO3

�) can be expressed as the out-
comes of the RF model. To make the results of RF more consistent
with theories, a theoretical approach is adopted to guide the results
of MNRF by searching for the globally optimal solution to replace
mathematical averages. Two indicators, VDS

εðNO�
3 Þnj (equation (4))

and DDS
εðNO�

3 Þnj (equation (5)), are selected to screen for globally

optimal results.

VDS
εðNO�

3 Þnj ¼
Xm
i

�
Effe ktheij � Effe kobsij

�2
(4)

In equation (4), DR
εðNO�

3 Þnj represents the square sum of the dif-

ferences between the value of ε(NO3
�)* (estimated by TA) and

ε(NO3
�) (estimated by MNRF) in the jth sample under the gradient

change of drivers; Effe ktheij represents the effect of the kth driving

factor (Xk) on ε(NO3
�)* in theoretical data; Effe kobsij represents the

effect of kth driving factor (Xk) on ε(NO3
�) in observational data; n is

the number of samples, totaling 4175; and i, m represent the
gradient change of drivers.
In equation (5), DD
εðNO�

3 Þnj represents the square sum of the

differences between the differentiation of ε(NO3
�)* (estimated by

TA) and ε(NO3
�) (estimated by MNRF) in the jth sample under the

gradient change of drivers.
In this academic article, we employed the following procedures

to search for globally optimal results: (1) Calculation of VDS
εðNO�

3 Þnj
and DDS

εðNO�
3 Þnj for each sample. (2) Selection of the top 10% of
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samples with the lowest VDS
εðNO�

3 Þnj and the lowest DDS
εðNO�

3 Þnj . (3)

Utilization of the intersection of these two datasets to calculate GOR
(equation (6)). GOR demonstrates greater consistency with the
theoretical approach compared with regular RF model. (4)
Assessment of the importance of drivers based on GOR. Further
details of MNRF-TA can be found in Text S3.

GOR¼
Xp
i

Effe kobsi (6)

In equation (6), GOR is the globally optimal searched result;
Effe kobsi represents screened samples; and p is the number of
screened samples.
3. Results

3.1. Gas-to-particle conversion of nitrate-based on observational
data

Online observations of PM2.5 and chemical species during the
campaign period were plotted to illustrate characteristics of nitrate
pollution (Fig. S2). The average PM2.5 concentration was
49 ± 49 mg m�3 (mean ± standard deviation). Secondary inorganic
ions (NO3

�, NH4
þ, and SO4

2�) accounted for 47% of PM2.5, highlighting
their dominant roles in the aerosol [34e36]. NO3

� emerged as the
key component with an average concentration of
10.3 ± 12.1 mg m�3 in PM2.5 (Fig. S2a), significantly higher than that
of SO4

2� (6.4 ± 7.5 mg m�3) [37]. The contribution of NO3
� to PM2.5

increased from 16.2% in non-haze periods (PM2.5 < 35 mg m�3) to
22.1% in the polluted periods (PM2.5 > 150 mgm�3), underscoring its
crucial roles in the formation of PM2.5 haze pollution [6]. The
average concentration of HNO3 (g) was 3.3 ± 11.8 mg m�3. Here,
ε(NO3

�) was calculated as NO3
�/(HNO3 (g)þ NO3

�), which reflects the
conversion of HNO3 to NO3

�. In this work, the mean value of ε(NO3
�)

was 0.77 ± 0.22, demonstrating that nitrate prefers the particle
phase.

Moreover, nitric acid gas-to-particle conversion exhibits distinct
patterns during both daytime and nighttime, contingent on the
nitrate formation mechanism. At daytime, HNO3 in the gas phase,
originates from the photochemical oxidation of NO2 and subse-
quently combines with alkaline gas (NH3) to form NH4NO3 in the
particle phase. Conversely, HNO3 in the particulate phase, gener-
ated from hydrolysis of N2O5, converts into HNO3 (g) at nighttime
(specific mechanisms see Text S4) [38e40]. Significant diurnal
variations were also found for the observed species (NO3

�, HNO3 (g),
etc., Fig. S2c). ε(NO3

�) displays a gradual decline during daytime
(with a mean value of 0.74) and a subsequent increase during
nighttime (with a mean value of 0.80). The fluctuations in ε(NO3

�)
are closely linked to gaseous pollutants, anion-cation balance, and
meteorological conditions [41]. Notably, the diurnal variation of
HNO3 (g) reveals a single peak pattern, with higher values during
daytime (4.0 mg m�3) than nighttime (2.7 mg m�3). Similarly, the
diurnal variation of NO3

� exhibits bimodal peaks, occurring at 2:00
a.m. and 10:00 a.m., with elevated values observed during night-
time (11.1 mg m�3) in contrast to daytime (9.7 mg m�3). As for
alkaline gas, the diurnal variation of NH3was highly consistent with
that of ε(NO3

�). It is noteworthy that meteorological conditions,
particularly temperature and relative humidity, significantly influ-
ence ε(NO3

�) by impacting the nitrate equilibrium constant and
facilitating nitrate formation or volatilization [42]. The temperature
exhibits a distinct pattern, rising from 6:00 a.m., peaking around
3:00 p.m., and gradually subsiding thereafter. This pattern contrasts
with that of relative humidity. The aforementioned elucidation
underscores the nonlinear relationship between ε(NO3

�) and drivers
4

in the ambient atmosphere, thus emphasizing the need to delve
deeper into the impact of these drivers on ε(NO3

�).

3.2. The mechanism-driven model ascertains drivers and ambient
factors

The mechanism-driven theoretical approach was adopted to
investigate drivers for ε(NO3

�) and validate the existence of ambient
factors with the observed data. As a function of pH, ε(NO3

�) can be
estimated by leveraging a thermodynamic equation based on the
properties of HNO3 (g) and NO3

� and assuming an ideal solution
condition [43]. Several previous studies have highlighted an S-
shaped curve between ε(NO3

�) and aerosol pH, the roles of multiple
drivers on NO3

� [27,28,38]. However, the anticipated S-shaped
relationship between observed ε(NO3

�) and pH was less evident in
this study (Fig. 1a). Building on our prior works, we captured the
sensitive band of the S-shaped curve after filtering the observed
data with the high weighting of sulfate (when SO4

2� concentrations
are more significant than 5 mg m�3, Fig. 1b). The observed data only
covers part of the S-shaped curve, instead of the entire curve [42].
The involvement of complex ambient processes may be responsible
for this phenomenon. Additionally, we calculated estimators
(ε(NO3

�)*) using an entirely thermodynamic formula (equation (1)).
A clear S-shaped curve was found between ε(NO3

�)* and pH
(Fig. 1c). Overlaying observed data (ε(NO3

�)) with theoretical esti-
mators (ε(NO3

�)*) revealed a noteworthy dispersion of outlier
points (Fig. S3). The theoretically estimated ε(NO3

�)* can serve as
the baseline relationship between ε(NO3

�)* and drivers, while
ε(NO3

�) computed from observed data was also affected by addi-
tional processes in the complex ambient environment (ambient
factors), in addition to drivers. Consequently, relationships esti-
mated based on observed data do not necessarily reproduce theo-
retical predictions duemainly to the interference of ambient factors
in the complex ambient atmospheric environment. Moreover,
outcomes derived from the theoretical approach exhibit an obvious
S-shaped curve, aligning with prior knowledge of the actual sce-
nario. This underscores that the result obtained through the theo-
retical approach can represent the actual result and be considered
as expected.

The thermodynamic equation (equation (1)) underscores the
relevance of HNO3 solubility and dissociation in shaping ε(NO3

�)
dynamics during daytime and nighttime. Multiple drivers also
contribute to this intricate process, including temperature, particle
liquid water content, etc. (Fig. S6) [44,45] Temperature greatly in-
fluences the nitrate equilibrium constant, and relative humidity
governs aerosol liquid water. Generally, certain anion-cation spe-
cies strongly impact aerosol pH. Concurrently, gaseous pollutants
such as NH3 operate as pH buffers. NH3 affects the conversion gas-
to-particle of nitrate by consuming Hþ, which elevates pH and
converts HNO3 (g) into NO3

�. Overall, ambient temperature, relative
humidity, NH4

þ, SO4
2�, NH3, Ca2þ, Cl�, Kþ, Mg2þ, and Naþ were

regarded as the drivers of ε(NO3
�), and the intricate manner by

which these drivers influence ε(NO3
�) necessitates thorough

exploration.

3.3. Quantifying the effect of drivers on ε(NO3
�) using MNRF

Numerous machine learning algorithms are available for utili-
zation, including RF, XGBoost, Gradient Boosting (GB), support
vector machine (SVM), Long short-term memory (LSTM), and deep
neural network (DNN) [20,46]. To find a suitable model for dealing
with the ε(NO3

�)-drivers system in this study, machine learning
methods (including RF, XGBoost, GB, and SVM) and deep learning
methods (including LSTM and DNN) were applied with the same
input data, and their performances were cross-compared. Model



Fig. 1. Relationship between pH and ε(NO3
�). a, All ambient data: the S-shaped curve between ε(NO3

�) and pH is less obvious in an ambient atmospheric environment. b, Selected
data in the ε(NO3

�)epH-sensitive band of the S-shaped curve when SO4
2� concentrations were greater than 5 mg m�3. The subsamples were shown as black points and readjusted by

the Boltzmann function. c, An obvious S-shaped curve was found between ε(NO3
�)* and pH. Observational data cannot represent the actual result (“S-shaped curve”) as a result of

interference of ambient factors (panel a). The result from the theoretical approach can reflect the expected actual result, and a clear S-shaped curve can be obtained.

Fig. 2. a, Three of the four filter indicators on the importance of variables, including
the mean squared error (MSE), node purity (NP), and P values. The importance of Kþ,
Mg2þ, and Naþ were not evident. b, Each variable's mean minimal depth. SO4

2�, NH4
þ,

and NH3 were closer to the root node than other variables. ced, The importance of
screened drivers during daytime (c) and nighttime (d). The multilevel nested random
forest (MNRF) model can iteratively screen for important drivers via four filter in-
dicators and further quantify the importance of drivers on ε(NO3

�).
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performances were evaluated using four metrics: R2, RMSE, MAE,
and MAPE (for more information, see Text S5), and the results were
presented in Figs. S8eS10. The evaluation of model performance
revealed that RF (R2¼ 0.82, RMSE¼ 0.09, MAE¼ 0.06, MAPE¼ 0.13)
outperformed XGBoost (R2 ¼ 0.78, RMSE ¼ 0.10, MAE ¼ 0.07,
MAPE ¼ 0.14), GB (R2 ¼ 0.77, RMSE ¼ 0.10, MAE ¼ 0.06,
MAPE ¼ 0.13), DNN (R2 ¼ 0.75, RMSE ¼ 0.10, MAE ¼ 0.07,
MAPE ¼ 0.14), LSTM (R2 ¼ 0.58, RMSE ¼ 0.12, MAE ¼ 0.08,
MAPE ¼ 0.13), and SVM (R2 ¼ 0.53, RMSE ¼ 0.13, MAE ¼ 0.06,
MAPE ¼ 0.20). Based on these performance metrics, RF has
emerged as the optimal choice for modeling the ε(NO3

�)-drivers
system. The parameters of the model directly affect the model
performance. The key parameters of the RFmodel primarily include
the number of decision trees, the maximum depth of decision trees,
and the maximum number of features (Fig. S11).

Here, we proposed the MNRF model to iteratively screen for
pivotal drivers via four filter indicators and further quantify the
effect of drivers on ε(NO3

�). The high dimensions of independent
variables elevate the complexity of the model, resulting in over-
fitting. Judicious selection of features will improve model perfor-
mance, expedite training, and enhance the interpretability of re-
sults. Hence, feature selection stands as a crucial data preprocessing
process, delineating the upper limit of model performance. Here,
the MNRF model, comprising K layers, follows a distinct architec-
ture. The initial K�1 layer established a nonlinear response to all
base variables (potential influence factors such as ions, gaseous,
etc.). The aim is to sieve out indispensable drivers that substantially
influence model performances via recursive feature elimination.
Unlike conventional applications of RF that rely on MSE as the sole
metric for evaluating variable importance, our model operates
under the constraints set by multiple indicators. Four indicators are
chosen to quantify the importance of each variable in the initial K-1
layer of MNRF: (1) increase in MSE, (2) increase in node purity (NP),
(3) P value, and (4) mean minimal depth (MMD) of variable (for
more information, see Text S6) [23]. These four indicators are
harnessed to pinpoint noteworthy variables from diverse per-
spectives that contributed to comprehensively choosing prominent
variables. This holistic method circumvents potential biases that
could emerge from reliance on a single filter indicator (Fig. 2a and
b). The findings spotlight certain variables, NH4

þ, SO4
2�, NH3, Cl�, and

Ca2þ exhibited a significant increase in MSE and NP. The associated
statistically significant P values also confirmed their importance
(Fig. 2a). Moreover, the distribution of MMD suggested that NH4

þ,
SO4

2�, and NH3 appeared more frequently toward the roots of the
tree than other variables (Fig. 2b). Overall, it can be concluded that
NH4

þ, SO4
2�, NH3, Cl�, and Ca2þ were found to be essential variables,

they were selected for next step in the estimation of ε(NO3
�). After

features screening, the model's performance has also been
improved, with R2 ranging from 0.75 to 0.81 and RMSE ranging
5

from 0.63 to 0.55 (Fig. S13). The importance of each driver,
including screened drivers and meteorological conditions, was
estimated separately for daytime and nighttime byMNRF-PI (Fig. 2c
and d). The results revealed that NH4

þ played a primary role for
ε(NO3

�) for both daytime (PI ¼ 28.2%) and nighttime (PI ¼ 36.6%),
followed by the temperature at daytime (17.4%) and SO4

2� at
nighttime (13.2%). The importance of RH at nighttime (PI ¼ 11.8%)
was significantly higher than that during daytime (PI ¼ 10.3%)
owing to the dependence of heterogeneous reaction rates on RH,
which is attributed to the role of water film in the aerosol surface
during gas uptake [45].

MNRF further revealed the individual effect of each driver on
ε(NO3

�) during daytime and nighttime, which provided insights into
relevant processes governing the conversion gas-to-particle of ni-
trate. The MNRF-PDP algorithm was used here to analyze the
sensitivity of ε(NO3

�) to these drivers. The individual effect of
drivers is shown in Fig. 3aef and Figs. S14eS15. NH4

þ positively
impacted the variations in ε(NO3

�), consistent with theoretical
knowledge that NH4

þ can significantly alter the aerosol pH (Fig. 3a
and b). When NH4

þ concentrations were between 0 and 30 mg m�3,
ε(NO3

�) at nighttime was between 0.53 and 0.91, slightly higher
than in daytime (0.51e0.85). When NH4

þ concentrations exceeded



Fig. 3. Sensitivity curves of each effect of the driver on ε(NO3
�) during daytime and

nighttime, as estimated by MNRF-PDP. aeb, The individual effect of NH4
þ on ε(NO3

�)
during daytime (a) and nighttime (b). ced, The individual effect of SO4

2� on ε(NO3
�)

during daytime (c) and nighttime (d). eef, The individual effect of RH on ε(NO3
�) during

daytime (e) and nighttime (f).
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12 mg m�3, ε(NO3
�) remained stable at 0.85 during daytime and

0.91 at nighttime. This stability hints at the occurrence of ther-
modynamic equilibrium, indicating that the system reached a
balanced state in terms of nitrate conversion. The above MNRF-PDP
results agreed with our previous works [44]: moderate NH4

þ levels
can enhance the aerosol pH, while rich NH4

þ results in a stable pH
level. Additionally, enhanced aerosol acidity also inhibits the
transformation of HNO3 (g) to the particle phase. An inverse rela-
tionship was observed between SO4

2� and ε(NO3
�), where higher

SO4
2� concentrations corresponded to lower values of ε(NO3

�)
(Fig. 3c and d). Our previous work showed that SO4

2� is negatively
associatedwith aerosol pH [47]. The enhanced aerosol acidity limits
the conversion of HNO3 (g) into the particle phase. In the range of
0e10 mg m�3 of SO4

2� concentrations, ε(NO3
�) varied in the range of

0.71e0.80 at daytime and 0.76e0.82 at nighttime. RH was posi-
tively correlatedwith ε(NO3

�) (Fig. 3e and f). Such a relationship was
likely caused by the highly hydrophilic properties of secondary
inorganic aerosols; that is, RH can promote the hygroscopic growth
of nitrate mainly by increasing liquid water content in aerosol
[45,48,49]. ε(NO3

�) was higher at nighttime (0.69e0.82) than at
daytime (0.66e0.76) with the same levels of relative humidity.

The relationship between NH3 and ε(NO3
�) was considerably

more complex. As an abundant alkaline gas in the atmosphere, NH3
can regulate aerosol acidity, thus affecting the gas-to-particle
conversion of nitrate. However, its impact on aerosol pH was
relatively weak when pH was above 4, attributed to the low ε(NH4

þ)
levels observed at higher aerosol pH [50]. The temperature nega-
tively impacted the changes of ε(NO3

�). Higher temperature favored
retention of nitric acid in the gas phase, and the range of variation
in ε(NO3

�) was slightly higher during daytime (0.81e0.72) than at
6

nighttime (0.80e0.75) with the same level of temperature.
Increasing Kþ and decreasing Cl� favored the partition of HNO3 (g)
into the particle phase, though the impacts of these ions were
relatively weak. In summary, MNRF-PDP provided quantitative in-
formation on the individual effects of drivers on ε(NO3

�) and
boosted the interpretability of the machine learning model.

The atmospheric environment is a complex system. The in-
consistencies between observed ε(NO3

�) and theoretical ε(NO3
�)*

were most likely caused by the interference of ambient factors.
Here, we also quantified the impacts of ambient factors (herein
referred to as Effeamb) using MNRF. The estimated Effeamb for
different drivers during daytime and nighttime were shown in
Figs. S16eS17. Detailed descriptions were provided in Text S7. As
discussed above, quantitative evidence on ambient factors further
indicated that there were still high differences between the results
from MNRF and those calculated by TA, reaffirming the need to
constrain MNRF models with theoretical mechanisms to enhance
their physical representativeness.
3.4. MNRF-TA method enhanced interpretability of machine
learning results

The outcomes of MNRF-PDP were mathematically averaged
values of all samples, which contain considerable uncertainties
from ambient factors. They may deviate away from the expected
actual results. To address this issue, a novel method called MNRF
guided by a theoretical approach was developed. This method
combined prior knowledge with data-driven models to further
search for the globally optimal physical result that replaces the
mathematical result in the complex atmosphere. The two previ-
ously described filter indicators, VDS

εðNO�
3 Þnj in equation (4) and

DDS
εðNO�

3 Þnj in equation (5), were utilized here.

The effect of drivers on ε(NO3
�) calculated by RF (herein referred

to as effect from RF) and the expected actual effect of drivers do
share similarities. However, significant gaps still existed, which may
be due to the interference of ambient factors. After applying the
MNRF-TA method (results referred to as the effect from MNRF-TA),
the gap was significantly reduced and was more consistent with
the expected actual effect. The screened variables were analyzed
separately, as shown in Fig. 4. For NH4

þ (Fig. 4a,c), both effects from
RF and the expected actual effect exhibited similar growth trends,
although discrepancies were still observed. On the other hand, the
effect from MNRF-TA was considerably closer to the expected actual
effect (Fig. 4b,d). The positive effect of MNRF-TA for NH4

þ may have
originated from the semi-volatility of NH4NO3. Under low pH con-
ditions, NO3

� prefers the gas phase; nitrate tends to convert into the
particle phase as pH increases. Theoretically, NH4

þ contributed to the
formation of NH4NO3 aerosol by neutralizing HNO3 (g). From the
perspective of ion conversion, aerosol acidity can be enhanced by
acquiring one additional Hþ, leading to the conversion of HNO3 (g) to
NO3

� and ultimately resulting in the loss of one Hþ from the gas
phase [50]. Hence, in acidic environments, aerosols are formed
[44,48,49]. For RH (Fig. S18), the gap is greatly narrowed between
the effect from RF and the expected actual effect, which was elimi-
nated mainly by MNRF-TA. From the effect from MNRF-TA, in the
range of 30e80% of RH, increasing relative humidity promoted ni-
trate formation, a finding consistent with past studies [51]. However,
ε(NO3

�) decreased under high humidity conditions (RH > 90%), here
water content in the aerosol increased, which competed for available
reaction sites on the particle surface, resulting in the inhibition of
nitrate heterogeneous reaction (Fig. S19) [52]. As for SO4

2�, the gap
was relatively more significant between the effect from RF and the
expected actual effect: the expected actual effect was greater than
that of RF before the guidance of the theoretical approach (Fig. S20).



Fig. 5. The comparison of the importance of drivers between MNRF-TA and RF during
daytime (a) and nighttime (b). MNRF-TA further emphasizes the importance of sig-
nificant drivers and downweighs some irrelevant drivers compared with regular RF.

Fig. 4. Results of MNRF-TA (supervised MNRF guided by theoretical approach). The
gray lines were the effect of drivers for all samples (during daytime and nighttime).
The green lines were the outcome of regular RF (MNRF in this case), which were simple
mathematically averaged results for all samples. The red lines were the expected actual
effect of drivers on ε(NO3

�), as calculated by the theoretical approach. The blue lines
were the effect of drivers for some samples screened by the MNRF-TA method. The
yellow lines were the outcome of MNRF-TA, which were averaged results of all the blue
lines. a, c, The effect of NH4

þ calculated by RF and expected actual effect of NH4
þ during

daytime (a) and nighttime (c). b, d, The effect of NH4
þ calculated by MNRF-TA and

expected actual effect of NH4
þ during daytime (b) and nighttime (d). Significant dif-

ferences existed between regular RF results and expected actual results, while MNRF-
TA can significantly reduce discrepancies, indicating that the results calculated by
MNRF-TA are much more consistent with expected actual results.
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Moreover, agreements were substantially improved between the
effect of MNRF-TA and the expected actual effect. The trends of
MNRF-TA plots for SO4

2� were also reasonable: the negative effect of
SO4

2� on ε(NO3
�) may be due to the hygroscopicity and acidity of

aerosol that was affected by SO4
2�. In addition, SO4

2� had a higher
priority to combine with NH4

þ than NO3
�, which inhibits the parti-

tioning of nitrate into the particle phase. Temperature curves also
had an apparent gap between the effect from RF and the expected
actual effect (Fig. S21), which MNRF-TA helped to reduce. The effect
of temperature on ε(NO3

�) had more significant changes during
daytime than at nighttime, possibly due to the involvement of
photochemical reactions. The effect of temperature from MNRF-TA
agreed with the theoretical principle: higher temperatures were
expected to enhance nitrate volatilization into the gas phase, leading
to lower ε(NO3

�). In contrast, the low temperature would enhance
nitrate formation by shifting gas-particle equilibrium. Moreover, we
applied MNRF-TA to calculate the importance of drivers for ε(NO3

�),
and its results were compared with RF, as shown in Fig. 5. NH4

þ still
played a primary role for ε(NO3

�) for both daytime (PI ¼ 30%) and
nighttime (PI ¼ 40%); while the importance of temperature
(PI ¼ 18%) and NH3 (PI ¼ 14%) was enhanced by MNRF-TA at day-
time, the importance of RH (PI ¼ 15%) and NH3 (PI ¼ 10%) was
enhanced by MNRF-TA at nighttime. Interestingly, some unimpor-
tant drivers, such as Cl� and Ca2þ, were downweighed by MNRF-TA.
In summary, while regular RF can identify drivers’ importance,
MNRF-TA can further highlight the importance of critical drivers.

In conclusion, these findings demonstrate that MNRF-TA yielded
7

significantly improved result compared to traditional machine
learning method. This enhancement increased physical represen-
tativeness, meaning the model's predictions closely aligned with
real-world observations. This study further enriched the applica-
tion of machine learning methods and guided a better under-
standing of nitrate formation in the ambient environment.

4. Conclusions

The gas-to-particle conversion of nitrate (ε(NO3
�)) was known to

be influenced by multiple drivers within the intricate ambient at-
mospheres. Machine learning methods offer a promising avenue to
address the highly nonlinear relationship between ε(NO3

�) and its
drivers. A regular random forest model was first proposed to screen
for essential variables automatically via recursive feature elimina-
tion. The result showed that NH4

þ, SO4
2�, RH, temperature, NH3,

Ca2þ, and Cl� played primary roles for ε(NO3
�) during daytime and

nighttime. It emerged that NH4
þ, RH, NH3, and Ca2þ generally

exhibit positive correlations with ε(NO3
�), whereas SO4

2�, temper-
ature, and Cl� demonstrate negative associations with ε(NO3

�).
These findings corroborate established theoretical insights into the
process. While the regular RF can adeptly identify the pivotal
drivers, it falls short in bridging the gap between regular RF's re-
sults and the expected actual result. Since regular RF is data-driven,
together with interference from ambient factors, the physical
representativeness of results can be concealed. Here, we propose a
novel approach (a multilevel nested random forest guided by a
theoretical approach (MNRF-TA)), aimed at elucidating physically
meaningful results by pursuing globally optimal solutions. The gaps
mentioned above were significantly ameliorated using MNRF-TA,
thus enhancing alignment with theoretical knowledge. Mean-
while, MNRF-TA can further highlight the importance of crucial
drivers and downweigh some irrelevant ones compared with the
regular RF.

This study extends the applications of machine learning
methods, focusing on the MNRF-TA model, to unravel the in-
tricacies of nitrate gas-to-particle conversion. The outcomes
demonstrated a robust alignment with theoretical principles and
provided enhanced elucidation of nitrate gas-to-particle conver-
sion in the atmosphere. Notably, this augmentation in clarity im-
proves the interpretability of the findings. The pivotal conclusion
drawn from this study is that machine learning guided by theo-
retical knowledge holds substantial promise in handling complex
environmental issues. By infusing pertinent theoretical knowledge
into the machine learning method, the outcomes gleaned exhibit
heightened reliability and coherence. This strategy stands as a
testament to the potency of merging theoretical knowledge with
advanced computational methodologies. Furthermore, this study



B. Xu, H. Yu, Z. Shi et al. Environmental Science and Ecotechnology 19 (2024) 100333
underscores the critical importance of further inquiries into the
theoretical mechanisms stemming from the laboratory. Such in-
vestigations can refine and validate the theoretical underpinnings,
ultimately bolstering the robustness of the MNRF-TA model. These
endeavors are indispensable for establishing a comprehensive
grasp of the potential and limitations of the methodology. Moving
forward, the advancements in knowledge-guided ML methods will
be pivotal for gaining deeper insights into the underlying process
and enable significant progress towards solving pressing environ-
mental challenges and promoting sustainable practices.
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