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Abstract: Precursors of nicotinamide adenine dinucleotide (NAD+), modulators of enzymes of the
NAD+ biosynthesis pathways and inhibitors of NAD+ consuming enzymes, are the main boosters
of NAD+. Increasing public awareness and interest in anti-ageing strategies and health-promoting
lifestyles have grown the interest in the use of NAD+ boosters as dietary supplements, both in
scientific circles and among the general population. Here, we discuss the current trends in NAD+
precursor usage as well as the uncertainties in dosage, timing, safety, and side effects. There are
many unknowns regarding pharmacokinetics and pharmacodynamics, particularly bioavailability,
metabolism, and tissue specificity of NAD+ boosters. Given the lack of long-term safety studies,
there is a need for more clinical trials to determine the proper dose of NAD+ boosters and treatment
duration for aging prevention and as disease therapy. Further research will also need to address the
long-term consequences of increased NAD+ and the best approaches and combinations to increase
NAD+ levels. The answers to the above questions will contribute to the more efficient and safer use
of NAD+ boosters.

Keywords: nicotinamide adenine dinucleotide (NAD+); NAD+ boosters; NAD+ precursors; safety;
side effects

1. Introduction

The nicotinamide adenine dinucleotide molecule (NAD+) is a redox coenzyme in
electron transfer during oxidation–reduction reactions in mitochondria to generate ATP [1]
and as a cofactor for NAD+-dependent enzymes, such as sirtuins (SIRT1-7 in mammals),
poly (ADP-ribose) polymerases (PARPs), COOH-terminal binding protein (CtBP), cyclic
ADP-ribose (ADPR) synthetases, glycoproteins CD38 and CD157, and many other NAD+-
dependent enzymes [2,3]. NAD+ is required for over 500 enzymatic reactions and is
involved in numerous evolutionarily conserved signaling pathways that include DNA
repair, apoptosis, genomic signaling, endocrine signaling, senescence, proliferation, inflam-
mation, mitochondrial function, lipid and glucose homeostasis [3].

NAD+ levels decrease during aging because of decreased synthesis and increased
consumption of NAD+ due to (i) increased DNA damage and damage repair (activation
of PARPs and sirtuins), (ii) increased secretion of inflammatory factors and inflammatory
processes that activate CD38 or cause a defect in the enzyme nicotinamide phosphoribo-
syltransferase (NAMPT)-mediated NAD+ biosynthesis [4,5], and (iii) alcohol metabolism,
resulting in an overall tissue-specific depletion in the concentration of NAD+ [6–14]. NAD+
is also used during NAD+ kinase phosphorylation where NADP+ is generated, which
in turn is reduced by dehydrogenases to generate NADPH [15]. In summary, NAD+
levels decrease with age due to increased DNA damage, oxidative stress, and chronic
inflammation, which dysregulate NAD metabolism by activating CD38 and PARPs or by
inhibiting NAMPT [10,16]. As a result of decreased NAD+ levels, a reduction in cellular
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energy production and DNA repair, as well as altered genomic signaling, leads to aging
and an increased incidence of chronic diseases [2,7–9]. Indeed, during aging and in many
age-associated diseases, a decreased NAD+ availability was observed [6–9]. On the other
hand, by increasing the availability of NAD+ and by preventing NAD+ degradation, aging
and age-associated diseases could be modulated, delayed, and perhaps even reversed [6–9].
Scientific studies reports imply that besides life extension [17–20] and phenotypes consis-
tent with an aging delay [21], rising NAD+ levels influence a number of different diseases
and conditions, including metabolic syndrome, type 2 diabetes, and/or insulin sensitiv-
ity [5,17,22,23], cancer [24–28], cardiovascular disease [29–34], neurodegeneration [35–37],
renal function [38,39], Alzheimer’s disease [40,41], and reduce inflammation [18,42,43], as
well as help to prevent obesity [5,22,44–46]. NAD+ depletion was reported in neurological
diseases as an increase in the ratio of NMN to NAD+ triggers axonal degeneration due to
Sterile alpha and Toll/interleukin-1 receptor motif-containing 1 (SARM1) hydrolyzilation
of NAD+ [47]. Namely, SARM1 is a neuronally expressed NAD+ glycohydrolase whose
activity is increased in response to stress resulting in degeneration and programmed axon
death (Wallerian degeneration) [48–50]. NAD+ deficiency is also associated with retinal
degeneration and human vision impairment as deficits in NAD+ bioavailability promote
senescence in retinal cells [51,52].

2. Increasing NAD+ Levels

Tryptophan, nicotinic acid (pyridine-3 carboxylic acid), nicotinamide (nicotinic acid
amide), nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR) are pre-
cursors of NAD+ in mammals. NAD+ can be produced and reused by three pathways in
humans (Figure 1): (1) de novo synthesis (from L-tryptophan), (2) Preiss–Handler pathway
(from nicotinic acid or nicotinic acid ribose), and (3) salvage pathway (from nicotinamide
mononucleotide, niacinamide/nicotinamide (NAM) and nicotinamide riboside) [53–56].
De novo synthesis from tryptophan is an eight-step pathway; there are three steps from
NA, while two steps are required for its synthesis from Nam or NR [57,58]. Different
cell types preferentially use different NAD+ biosynthesis pathways under non-stress con-
ditions [59,60]. For example, liver cells depend largely on de novo biosynthesis, while
kidney cells use a combination of the Preiss–Handler and de novo pathways, and the
salvage pathway is generally used to recycle NAM generated by NAD+-consuming re-
actions. Pharmacologic restoration of NAD+ is at the moment intensively investigated
and approaches include NAD+-replacement therapy with NAD+ precursors such as NR,
NMN, and NA supplementation [4,22] or by halting NAD+ utilization by poly-ADP-ribose
polymerase (PARP) and CD 38 inhibitors [61–66]. Recently, a reduced form of nicotinamide
riboside NRH (1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl]-
4H-pyridine-3-carboxamide) was discovered to function as an orally bioavailable NAD+
precursor with the potential to significantly increase NAD+ levels and to overcome the
degradability of NR [67].
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these seem to be the most promising NAD+ boosters, since more steps are required for 
nicotinic acid (NA) and tryptophan to form NAD+ [69]. NAD+ availability can be elevated 
by PARPs pharmacological inhibitors (BGB-290, olaparib, rucaparib, veliparib, CEP-9722, 
E7016, talazoparib, iniparib, niraparib (MK—4827), PJ34, DPQ, 3-aminobenzamide) 
[70,71] and CD38 inhibitors [72–74], such as flavonoids including epigenin, luteolin, quer-
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[72,75–77]. There are also chemical inhibitors of the NAD+ biosynthesis enzymes, such as 
FK866, an NAMPT inhibitor, gallotannin, an inhibitor of NMNAT and phthalic acid (PA), 
an inhibitor of QPRT [67,78] hydroxynicotinic acid, an inhibitor of NAPRT [79]. However, 
little is known regarding their pharmacology and safety for human use to increase NAD+. 
The use of PARP inhibitors might have detrimental effects as PARPs are involved in fun-
damental cellular process and PARP inhibition induces genomic instability [80]. The men-
tioned inhibitors, including CD38 homologue CD157, are currently investigated as drugs 
for cancer treatment [24], and the inhibition of CD38 and PARPs in non-oncogenic condi-
tions is poorly explored so far. Activation of NAD+-generating enzymes by AMPK and 
NAMPT activators is another approach for boosting NAD+ levels [81,82]. Such activators 
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[81,83–91]. The most important NAD+-generating enzyme is NAMPT, which converts 
NAM to NMN [81]. NAMPT biosynthesis can be modulated by the small synthetic mole-
cule activators P73C and SBI-797812 [81], or notoginseng leaf triterpenes and a natural 
peptide IRW (Ile-Arg-Trp), natural compounds that activate Nampt gene expression 
and/or increase intracellular NAMPT protein abundance [92–94]. Further studies are 
needed to evaluate the health risks and benefits of continuous use of NAMPT activators 
and PARP and CD38 inhibitors in humans for medical purposes to increase NAD+ bioa-
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3. NAD+ Precursors and Boosters

NAD+ boosters include NAD+ precursors, pharmacological inhibitors of enzymes con-
suming NAD+, and modulators of enzymes of the NAD+ biosynthesis pathways [68]. As
NAD+ is mainly produced by the NAD+ salvage pathway from niacinamide/nicotinamide,
nicotinamide riboside (NR), and nicotinamide mononucleotide (NMN) [4,7,53–56], these
seem to be the most promising NAD+ boosters, since more steps are required for nicotinic
acid (NA) and tryptophan to form NAD+ [69]. NAD+ availability can be elevated by PARPs
pharmacological inhibitors (BGB-290, olaparib, rucaparib, veliparib, CEP-9722, E7016, tala-
zoparib, iniparib, niraparib (MK—4827), PJ34, DPQ, 3-aminobenzamide) [70,71] and CD38
inhibitors [72–74], such as flavonoids including epigenin, luteolin, quercetin, kuromanin,
luteolinidin, or thiazoloquin(az)olinones such as the compound “78c” [72,75–77]. There are
also chemical inhibitors of the NAD+ biosynthesis enzymes, such as FK866, an NAMPT
inhibitor, gallotannin, an inhibitor of NMNAT and phthalic acid (PA), an inhibitor of
QPRT [67,78] hydroxynicotinic acid, an inhibitor of NAPRT [79]. However, little is known
regarding their pharmacology and safety for human use to increase NAD+. The use of
PARP inhibitors might have detrimental effects as PARPs are involved in fundamental
cellular process and PARP inhibition induces genomic instability [80]. The mentioned
inhibitors, including CD38 homologue CD157, are currently investigated as drugs for
cancer treatment [24], and the inhibition of CD38 and PARPs in non-oncogenic conditions
is poorly explored so far. Activation of NAD+-generating enzymes by AMPK and NAMPT
activators is another approach for boosting NAD+ levels [81,82]. Such activators are 5-
aminoimidazole-4-carboxamide epigallocatechin gallate, leucine, metformin, resveratrol,
ribonucleotides, P7C3, small molecule SBI-797812, and proanthocyanidins [81,83–91]. The
most important NAD+-generating enzyme is NAMPT, which converts NAM to NMN [81].
NAMPT biosynthesis can be modulated by the small synthetic molecule activators P73C
and SBI-797812 [81], or notoginseng leaf triterpenes and a natural peptide IRW (Ile-Arg-
Trp), natural compounds that activate Nampt gene expression and/or increase intracellular
NAMPT protein abundance [92–94]. Further studies are needed to evaluate the health risks
and benefits of continuous use of NAMPT activators and PARP and CD38 inhibitors in
humans for medical purposes to increase NAD+ bioavailability.
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4. Safety Dose of NAD+ Precursors

WHO and the FAO recommend a daily intake of 11–12 mg of vitamin B3 (niacin),
commonly known as nicotinic acid and nicotinamide, for adults [95]. NAD+ can be
synthesized from the acid, amide, or riboside form of the vitamin B3 [96]. Based on
numerous results from human clinical trials of nicotinic acid and nicotinamide, two bodies
have established the highest daily dose for chronic ingestion that is unlikely to pose a
risk of adverse health effects for almost everyone in the general population. The UK
Expert Working Group on Vitamins and Minerals (EVM) [97] set a guideline for dietary
supplementation with nicotinamide of 500 mg/day for a 60 kg adult, while the European
Commission Scientific Committee on Food (EU SCF) set the tolerable upper intake level
(UL) at 900 mg/day [98]. For preventing deficiency (pellagra), 16 mg of B3 for adult men
and 14 mg for adult women are the recommended daily allowances (RDAs) [99]. Doses
of nicotinic acid at 50 mg/day and higher are associated with flushing and itching that
occur within 30 min after the oral administration [100]. Large doses of 250 mg per day of
nicotinamide have induced reversible hepatotoxicity in animals and humans [101,102] or
minor abnormalities of liver enzymes [103]. Although nicotinic acid and nicotinamide have
been studied for a very long time, there are some issues regarding the older studies. For
example, according to Knip and coworkers (2000), “Safety data have not been collected in
a systematic manner and many older reports failed to distinguish between nicotinamide,
nicotinic acid and combined vitamin regimens containing nicotinamide” [103]. NMN
and NR on the other hand are relatively newly discovered forms of NAD+ precursors;
consequently, there are fever studies on their toxicity and side effects. NR and NMN may be
better tolerated compared to other nicotinamide adenine dinucleotide substrates since they
do not trigger side effects, such as “flushing” or hepatotoxicity, which are characteristic
for nicotinic acid, nor side effects of nicotinamide, including sirtuin inhibition [104]. No
adverse effects (increased toxicity or increased mortality) were observed on wild-type
mice after a 12-month administration of NMN, indicating its long-term safety [105]. A
study assessing the safety of NR chloride at 300, 1000, and 3000 mg/kg/day over 14 and
90 days in rats revealed the lowest observed adverse effect level (LOAEL) for NR to be
1000 mg/kg/day, and the no observed adverse effect level (NOAEL) to be 300 mg/kg/day
for NR [106]. The upper level (UL), which is by definition »the maximum level of the daily
nutrient intake that is likely to result in no adverse effect« [99], was established for NR
intake of 3 mg/kg/day (180 mg/day for a 60 kg adult). This was calculated from NOAEL
by applying a 100-fold safety factor [106]. A few small human pharmacokinetics studies
have been conducted on NR, primarily investigating pharmacokinetics in humans and the
effects of treatment with NR on blood NAD+ levels. For example, NR was well-tolerated,
as no severe side effects were reported by participants in two studies [107–109]. In a clinical
trial with middle-aged human subjects, an oral dose of 1 g of NR once per day did not
produce any drug-related adverse effects and clearly increased NAD+ levels (around 60%
over the control group) in peripheral blood mononuclear cells [110].

There are more Phase 1 clinical trials with NR than with NMN. The ClinicalTrials.gov
database lists (on date 25 July 2022) 73 trials for nicotinamide riboside, 10 trials for nicoti-
namide mononucleotide, 619 trials for niacin (including nicotinic acid, niacinamide, and
nicotinamide), and 290 trials for tryptophan (Table 1).

The safety dose, therapeutic dose, therapeutic window, and optimal treatment duration
for NAD+ precursors is still not known, especially in the case of NMN and NR. This
information and the optimal therapeutic dose and treatment period of NAD+ precursors in
various diseases should be determined in future human clinical trials.

ClinicalTrials.gov
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Table 1. Information on clinical trials regarding NAD+ precursors: NR, NMN, niacin (nicotinic acid
and niacinamide/nicotinamide) and tryptophan.

NAD+
Precursor

Number of Studies

Not
Recruiting Recruiting Active Terminated Completed Suspended Unknown

Status

NR 3 10 4 1 24 2 8
NMN 0 5 2 0 7 0 0
Niacin 22 110 24 39 357 5 47

Tryptophan 16 57 14 21 131 0 38

5. Potential Safety Considerations/Concerns

Clinical trials on NR and NMN administration demonstrated their safety regarding
toxicity and their ability to efficiently increase NAD+ levels in healthy volunteers so
far [111]. NR was granted “Generally Recognised as Safe status” by the US Food and
Drug Administration (FDA). NR has also been reviewed and approved by Health Canada,
the European Food Safety Authority (EFSA), and the Therapeutic Goods Administration
of Australia, although there may be some safety concerns, at least in mice. A high dose
of dietary NR caused glucose intolerance and dysfunction of the white adipose tissue in
mice fed a slightly obesogenic diet [112]. Melo and coworkers (2000), as well as Ramsey
and coworkers (2008), reported impaired glucose metabolism in mice supplemented with
NMN and NAM [113,114]. Currently there are no long-term human safety trials evaluating
the safety of NAD+ boosters NR and NMN. Current data are based on small participant
numbers of a few small-scale human clinical trials that implied that increased NAD+ levels
from NAD+ boosters were safe in humans [69,107,108,110,115–118]. For example, in the
blood of 12 subjects with a single oral dose of 1000 mg, NR increased NAD+ by 2.7-fold [107].
Oral ingestion of NR, 250–1000 mg/d for 9 days, resulted in a 2-fold increase in NAD+ in
140 healthy volunteers [108]. There are seven clinical trials on NR [107,108,110,117,119–121]
and far fewer data on the safety and oral availability of NMN in humans. Only one clinical
trial involving 10 volunteers receiving a single oral dose of 100–500 mg NMN indicated
safety and efficacy of NMN, as no significant adverse effects were observed [116]. In a
recent study, NMN supplementation increased muscle insulin sensitivity, insulin signaling,
and remodeling in overweight or obese women with prediabetes [122]. Most side effects
reported during NAM, NR, and NMN administration are minor (e.g., diarrhea, nausea,
rashes, flushing, calf cramps, thrombocytopenia, erythema pruritis, skin burning, fatigue,
abdominal discomfort, and headache) and are relatively infrequent [123,124]. Increased
acetylcarnitine concentrations in skeletal muscle and minor changes in body composition
and sleep pattern were reported in a recent study of NR supplementation in healthy obese
individuals [125]. On the other hand, there have been more clinical trials evaluating the
safety of NA and NAM, and the pharmacokinetics of NA and NAM have been studied
in detail [96]. Supplemented NA can result in hot flashes and increased blood sugar as
well as homocysteine levels in high doses. Overdose of nicotinamide (NAM) can cause
hepatotoxicity in rare cases [103]. In NAM-treated rats, impaired glucose tolerance and
increased hepatic and renal markers of oxidative DNA damage have been observed [126].

Evidence for health risk assessment is still limited, and long-term oral ingestion of
NAD+ precursors NR and NMN has not yet been studied in long-term human clinical trials,
or human clinical trials have not been completed. In addition, there are insufficient data
on the elevation of NAD+ levels in various clinical conditions. Therefore, the long-term
consequences of increasing NAD+ levels have yet to be investigated in-depth in human
clinical trials.

6. Is Increased NAD+ Tumorigenic?

There are a few reports of genotoxicity of nicotinic acid, while NAM and NR were
not found to be genotoxic [106]. Nicotinamide, NR, and NMN were also not found to
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be directly carcinogenic [23,127]. No evidence was found that treatment with NR or
NMN for a prolonged period stimulated tumor development in animals [17,105] although
further studies are warranted since ingestion of NAD+ boosters results in elevated NAD+
levels that could indirectly influence tumorigenesis. Indeed, levels of NAD+ are a crucial
protective factor in early carcinogenesis and could later become a detrimental factor in the
phases of cancer development and promotion. Specifically, maintenance of adequate NAD+
levels regulates redox homeostasis and mitochondrial metabolism, which are predisposed
conditions for genome integrity and prevention of tumorigenesis [128]. However, in the
phase of cancer progression and treatment, elevated NAD+ levels may have deleterious
effects on the process of malignancy by promoting cell survival, encouraging growth,
increasing resistance to radio- and chemotherapy, and promoting inflammation (reviewed
in [24,129]) and stimulation of angiogenesis [130]. Although increased NAD+ levels can
induce resistance to radiotherapy, nicotinamide (as a radiosensitizer) is administered as a
strategy to improve the radio-sensitivity [131].

In contrast, it is feasible that restoration of NAD+ in the early stages of the carcinogenic
process induces cellular repair and adaptive stress responses and regulates cell cycle arrest
and apoptotic clearance of damaged cells, thus preventing or reversing the malignant
phenotype (reviewed in [24]). For example, the potential pro-tumorigenic side effects of
NAD+ precursor NMN were discussed by Nacarelli et al. (2019): NMN intake by mice
increased NAD+ levels, which influenced the secretory activity of senescent cells to promote
tumor progression of pancreatic and ovarian cancers [132]. In contrast, restoring NAD+
pools with NR prevented DNA damage and hepatocellular carcinoma formation in a mouse
model of a liver cancer [27].

Increased NAMPT activity was observed in several human cancers [133], and NAMPT
inhibition by drugs is promising as a cancer treatment. For example, FK866 has anticancer
effect. It is an inhibitor of nicotinamide-recycling enzyme (NAMPT/PBEF) that catalyzes
the rate-limiting step of NAD+ synthesis [134], resulting in apoptosis induction in a tumor
due to NAD+ depletion [135]. Activity of sirtuins and PARPs is modulated by NAD+
levels. They have both procancer and anticancer effects [136–141]. Therefore, their role in
cancer prevention and promotion must be fully elucidated in future studies. In conclusion,
severe deficiency of NAD+ stops cancer growth, whereas an increase in NAD+ level might
promote cellular NAD+ anabolism and accelerate tumor growth.

7. Undesirable Effects on Inflammation

Increased levels of NAD+ were reported to increase inflammation and aging [132].
Namely, increased NAD+ influences the inflammatory signaling of senescent cells in vivo
in mouse models of pancreatic and ovarian cancers through the higher mobility group A
(HMGA) proteins and NAMPT expression, which promotes the proinflammatory senescence-
associated secretory phenotype (SASP) through NAD+-mediated suppression of AMPK
kinase, leading to suppression of the p53-mediated inhibition of p38 MAPK and enhanced
NF-κB activity [132]. In particular, CD38 or cyclicADP ribose hydrolase is on the surface of
immune cells and is one of glycoproteins associated with pro-inflammatory SASP [142].
Its activity leads to NAD+ degradation and formation of cADP ribose from NAD+ and
therefore possibly limiting the deleterious effect of NAD+ on SASP-mediated inflammation.
NAD+ supplementation with the precursor NR for 5 months reduced and not increased
the neuroinflammation in a transgenic mouse model of Alzheimer’s disease [143]. More
senescent cells are formed with age increasing the SASPs. NAD+ worsens SASP-associated
inflammation [142]. As the senescent cells also secrete CD38, NAD+ levels may decrease,
perhaps forming a self-correcting system. Further studies are needed to assess the potential
problem of increased inflammation caused by elevated NAD+ levels and to clarify the
role of NAD+ in SASP regulation and mechanisms of regulation of CD38 expression in
aging tissues.
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8. The Potential Problem of Methylation

Methyl groups are important for the synthesis of creatine, choline, and other neuro-
transmitters, as well as for other biological functions. High dose supplementation with
NAM, NR, and NMN may increase nicotinamide levels [144–146]. Excessive NAM is
theoretically methylated to MeNAM, which could (i) lead to a deficiency of methyl donors
(e.g., S-adenosyl methionine) for dopamine and creatine synthesis and (ii) increased risk
of vascular disease neurodegenerative and chronic kidney disease by producing more
homocysteine [147,148]. Interestingly, Conze et al. [117] observed no homcysteine increase
in subjects consuming up to 1000 mg of Niagen (nicotinamide riboside chloride) over a
56-day period. Thus, further studies are needed to clarify the issue of methylation as a
consequence of NR and NMN supplementation.

9. Potential (In)Direct Harmful Effects of Increased NAD+

It is difficult to detect and investigate indirect adverse health effects in animal studies
and human clinical trials. Nevertheless, there are some reports of possible adverse effects.
NA and NR decreased physical performance in young rats [149] and the capacity of high-
intensity exercise in humans [150]. On the other hand, elderly people seem to benefit
from dietary NR supplementation. Specifically, increased NAD(P)H levels, decreased
oxidative stress, and improved physical performance were observed only in the elderly
participants of the study [121]. Cardiopulmonary exercise performance was improved
after 6 weeks of NMN supplementation due to enhanced O2 utilization of the skeletal
muscle in 48 recreationally trained runners [151]. The Japanese authors claim in a pre-print
publication that chronic oral supplementation of NMN for 12 weeks significantly improved
muscle strength and performance in 10 volunteers [152]. Kourtzidis et al. [153] expressed
concern that supplementation with compounds involved in redox homeostasis can lead to
adverse effects in healthy young people, as their endogenous antioxidant protection is still
functioning adequately. An increase in NAD+ levels could also have a negative effect on
longevity. Overexpression of SIRT1 did not extend the lifespan of mice on a standard diet,
although it improved overall health and decreased carcinomas [154]. Supplementation
with NAM improved health span and did not alter lifespan in the mouse model [155].

As mentioned above, the increase in NAD+ levels by NAD+ precursors could also
affect the process of cancerogenesis, because increased NAD+ levels have potentially both
cancer-promoting and cancer-inhibiting effects. Indeed, NAD+ is a crucial protective factor
in early cancer development and could become a detrimental factor later in the phase of
cancer development and promotion [24,25]. None of the animal studies in which NMN
or NR were supplemented reported increased cancer incidence. There is also controversy
about the involvement of NAD+ in the activation of PARPs and sirtuins in carcinogenesis
and inflammation/sepsis. Elevated NAD+ levels may have different roles in different
stages of sepsis. Activation of SIRT1 has beneficial effect in the initial (proinflammatory)
phase, characterized by a cytokine storm, overproduction of reactive oxygen species (ROS),
and metabolic shift [156], while SIRT1 expression should be inhibited in the later stages of
sepsis [157]. Therefore, the role of increased amounts of SIRT1 substrate, NAD+, cannot be
simply defined as beneficial or detrimental in sepsis. Increase in NAD+ could also have neg-
ative effects in rheumatoid arthritis and other inflammatory diseases because of stimulation
of inflammatory cytokine secretion by leukocytes [158]. Accumulation of toxic degradation
products and metabolites of NAD+ precursors, like N-methyl-2-pyridone-5-carboxamide
(2-PY), N-methyl nicotinamide (MeNAM), and nicotinic acid adenine dinucleotide (NAAD)
is also potentially harmful [118,159]. Their increase were reported upon the NR supplemen-
tation [118,159]. NAM, NR, and NMN supplementation can increase NAM levels, which
could inhibit PARPs and CD38 activities [160]. A potential inhibitory effect of NAM on
sirtuins was hypothesized [161–163], although SIRT1 feedback inhibition by NAM may
not play a significant role in vivo [164,165]. Possible adverse effects of a high-dose nicoti-
namide may alter the methyl pool that is used to methylate DNA and proteins [165] as
discussed above. Additionally, it is also necessary to highlight the effect of nicotinamide
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N-methyltransferase (NNMT), the master regulator of intracellular NAM, on NAD+ levels
and malignant transformation. NR and NMN may increase nicotinamide levels, thus en-
hancing the NNMT activity due to the higher substrate availability [166]. NNMT catalyzes
the N-methylation of nicotinamide, using S-adenosyl-L-methionine (SAM) as a methyl
donor, thus yielding N1-methylnicotinamide (MNA) as a product and releasing S-adenosyl-
L-homocysteine (SAH) [167]. NNMT activity can thus affect NAD+ biosynthesis and ATP
production, as well as drive epigenetic modifications and impact gene expression by modu-
lating the intracellular SAM/SAH ratio [167]. Further, the enhanced NNMT activity and
increased NNMT reaction products due to the conversion to nicotinamide from NAM,
NR, or NMN supplementation might potentially be related to cancer development [166].
There is active research on discovering the inhibitors of NNMT enzyme activity with some
small molecule inhibitors showing promising results [167–173]. Although NNMT may
exert a primary role in the first step of carcinogenesis by irreversibly methylating NAM,
thus generating MNA [166], the effective role of this enzyme as well as NAD+ boosters on
cancer development still need to be fully elucidated.

10. NAD+ Supplementation and Circadian Rhythm

The NAD+ level naturally fluctuates in a 24 h rhythm and is altered by exercise, diet,
sleep, and NAD+ boosters [174–176]. Thus, NAD+ supplements can affect the circadian
clock, as the circadian rhythm of sleep and wakefulness is also controlled by NAD+ levels
and sirtuin activity; NAD+ controls circadian reprogramming through the nuclear translo-
cation of a PER2 protein [177]. Circadian rhythms are important for hormone release,
eating habits, digestion, and body temperature in addition to sleep patterns. Therefore,
it is important to maintain robust oscillations without deterioration of circadian rhythm
(alteration of amplitude, period, and phase) by inappropriate timing of consumption of
NAD+ precursors and other lifestyle choices [2,178]. How NAD+ extended-release boosters
affect the 24 h clock oscillation and endogenous NAD+ levels is a question that remains to
be answered.

11. At What Age Does It Make Sense to Start Taking NAD+ Boosters?

Although there are no human studies that address this question, it would be reasonable
to wait to take NAD+ boosters until endogenous NAD+ levels begin to drop significantly
at older ages and NAD+ metabolism becomes altered. As shown by the results of several
studies, the improvements were greatest when the intake of NAD+ was started after the
developmental period (e.g., midlife) in mice. For example, treatment of old mice with
NAD+ precursors or PARP inhibitors improved health parameters including extension
of lifespan, protection against metabolic disease, increased insulin sensitivity, reversal
of mitochondrial dysfunction and reduced stem cell senescence [23,42,70,179]. The use
of NAD+ boosters when cellular NAD+ levels are already/still adequate may thus be
unwise [96]. Therefore, we need to establish the normal/healthy NAD+ levels and how to
measure them. The age-related reference intervals for NAD+ levels should be determined
in future clinical trials.

12. None, Continuous, or Intermittent NAD+ Supplementation?

Poljsak and colleagues [178] hypothesized that circadian rhythmicity was a mechanism
that prevented disruption of the negative feedback loops of organismal homeostasis. Circa-
dian rhythmicity inhibited the loss of the cell’s response to various endogenous substances,
while the constant stimulus, like the constant concentration of endogenous substances,
could have the opposite effect. Thus, problems could arise when people consume NAD+
boosters continuously or those with extended release and eliminate the intracellular circa-
dian fluctuations of NAD+ during the 24 h period. It should be emphasized that NAD+ is
required for over 500 enzymatic reactions in the human body [180], and it is estimated that
the expression of one in ten genes is under the circadian control [181,182]. There are no
scientific studies that prove or disprove to take NAD+ boosters at intervals. In the case of
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resveratrol (3,5,4′-trihydroxystilbene), a potent natural sirtuin activator, lifespan extension
was observed in mice fed a high-fat diet only when the animals were treated every other
day (intermittently) [62,183,184]. Such intermitted exposure seems necessary to prevent
the resistance development. Dellinger et al. [120] observed that repeated administration of
NR and pterostilbene increased NAD+ levels by 40% during continuous supplementation
after 4 weeks in 60- to 80-year-old adults and observed no side-effect in 8 weeks of trial.

Nevertheless, the concern remains that constant activation of sirtuins by NAD+ boost-
ers is not beneficial. For example, mice with consistently elevated SIRT1 in the brain show
increased anxiety; variations in the SIRT1 gene are also associated with an increased risk of
anxiety in humans [185,186]. Since nicotinamide mononucleotide (NMN) is produced by
the enzyme NAMPT, high concentrations of NMN may induce a “feedback inhibition effect”
on NAMPT, inhibiting the formation of NAD+. Although this effect has not been proven
so far, a similar NAM “feedback inhibition effect” has been observed in NAD-dependent
processes such as PARP/Sirtuin/CD38 reactions [53,164]; in vivo PARP-1 activity inhibition
by NAM remains arguable. As it has been reported that treatments with NMN and NR have
beneficial health effects in various model organisms and in humans [17,22,23,33,40,105],
the question arises whether the beneficial effects are even greater when NMN and NR are
administered at intervals (e.g., every other day). Indeed, the continuous supply of NMN
or NR could suppress the enzyme NAD(P)H dehydrogenase, quinone 1, which regulates
the NAD/NADH ratio by oxidizing NADH to produce NAD+ [187]. In conclusion, the
potential feedback suppression and adaptive response caused by elevated NAD+ levels
and the role of elevated NAD+ concentrations on circadian rhythms should be carefully
investigated in the future.

13. Role of Intestinal Microbiota in the Bioavailability of NAD+ Precursors

The gut microbiota produces hundreds of bioactive compounds, including B vitamins.
Human digestion and the microbiome play a role in the provision of B3 vitamin forms,
although their interaction has not yet been fully characterized [188]. Through the small
intestine, both nicotinamide and nicotinic acid are directly absorbed where nicotinic acid
is converted to nicotinamide [189]. Intestinal bacteria play an important role in NAD+
synthesis from tryptophan [188,190]. Different microorganisms that synthesize NAD have
been identified [188]. Gut microbiota are involved in de novo biosynthesis pathway gener-
ating NAD+ from L-aspartate [191]. Certain gut microorganisms increase the biosyntheses
of NAM in the presence of L-aspartate and L-tryptophan [192]. Gram-negative bacteria
release circulating lipopolysaccharides (LPS), and the possible link between infection, in-
flammation, and CD38 was reported [193]. An important role of the gut microbiome in
the assimilation of orally delivered NMN and evidence for indirect upregulation of the
NAD+ metabolome was recently reported as a pre-print [194]. Studies on the relationship
between gut flora and NAD+ boosters are sparse. Future studies should examine how
specific NAD+ boosters affect the microbiota, how they regulate immune cell activity, how
the gut microflora affects the uptake of NAD+ precursors, and how the gut environment
affects the potential degradation of NAD+ precursors, as it has been suggested, for example,
that NR may be degraded in the gut to NAM [195].

14. Which Precursor Is Better?

All NAD+ precursors: NMN, NR, nicotinic acid, and tryptophan increase the availabil-
ity of NAD+ [6–9]. As noted above, the precursors differ in their ability to enhance NAD+
synthesis via their position in the NAD+ assembly pathway and differ in the number of
steps required to form NAD+ in the biochemical pathways. There is a need for more data
on precursor differences in absorption, bioavailability, distribution, metabolism, excretion,
tissue specificity, and efficacy in increasing NAD+ levels in humans. Currently, there are no
studies that directly compare the efficiency of the different precursors to conclude which
of the NAD+ boosters has the best therapeutic prospects. Intravenous administration of
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NR and NMN to compare their efficiency to convert to NAD+ was only investigated in
peripheral rodent tissues [59].

15. Which Age-Associated Diseases Could Be Treated with NAD+ Boosters?

The therapeutic potential of dietary NAD+ boosters could improve the impaired NAD+
availability that may promote the development of age-related, cardiovascular, sarcopenic,
menopausal, metabolic, inflammatory, renal, neurodegenerative, muscle-damaging, and
mitochondrial diseases, cancers, and COVID-19 [68]. Animal studies revealed that NAD+
booster supplementation enhanced life span [17] and improved cardiovascular function [33]
enhanced muscle regeneration [17], improved mitochondrial and stem-cell function [179],
and altered glucose metabolism [23]. Detailed human studies should investigate which age-
related degenerative diseases can be treated, delayed, or prevented with NAD+ boosters,
and which booster, which treatment duration, and which dosing regimen is the best. Since
most human studies have been conducted on “healthy” individuals, patients with certain
diseases should also be included in clinical studies in the future.

16. Conclusions and Perspectives

Results from preclinical studies and preliminary results from small human clinical
trials imply that promoting intracellular NAD+ anabolism through NAD+ boosters is
a promising therapeutic strategy for age-associated degenerative diseases [96]. Little is
known about the pharmacokinetics, efficacy, safety, and potential side effects of long-term
supplementation with NAD+ precursors. There are many unanswered questions, due to the
limited number of human trials and lack of clinical data. Future clinical trials should focus
on the safety and risk assessment of NAD+-boosting therapies, as there is some evidence
of direct and indirect adverse effects. Human studies with larger participant numbers are
therefore desired to evaluate long-term toxicological outcomes. It is difficult to extrapolate
or transfer results from animal models to humans because of variations in metabolism,
longevity, and genetic variability. Current knowledge of the beneficial effects of NAD+ on
aging and healthspan is primarily based on cell-culture experiments and model organisms.
There are few human studies that have examined key outcomes such as increased vitality,
reduction in all causes of death, prolonged health, and lifespan. Further in-depth studies
and clinical trials are needed to understand the fundamental aspects of NAD+ biology and
physiology and to clarify the use of NAD+ precursors for prevention or treatment and to
promote health and longevity.

The effects of various NAD+ boosters in different disorders should be additionally
investigated. Special attention should be given to study synergistic/antagonistic effects
between NAD+ precursors, CD38 and/or PARP1 inhibitors, and the use of other drugs
and supplements. Data from human studies may be biased by lifestyle factors such as diet,
exercise, age, and genetic factors. Special attention should also be paid to interindividual
variations/differences in NAD+ amounts of participants at baseline in clinical trials. Need
for NAD+ supplementation should be precisely determined. Potential serious risks such
as tumor development and progression, adverse effects on inflammation, senescence,
circadian rhythm disruption, and feedback inhibition should be additionally investigated,
as well as the potential hormetic effect of increased NAD+ where a low-to-moderate dose
might stimulate beneficial effects, and a high (over)dose might induce an inhibitory or
even toxic effect. For example, supraphysiological dose of NAM was shown to decrease
lifespan in C. elegans and yeast [19,144,145]. In this regard, special attention is needed in
supplementation with NAD+ precursors NR and NMN, which induce high levels of NAM
to prevent undesirable effects [146]. Since the effects of NAD+ occur via the regulation of
DNA repair, stress responses, and energy metabolism, it seems worthwhile to test NAD+
precursors in a manner of drug development to better understand the therapeutic role of
NAD+ precursors in the prevention and treatment of human disease.
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