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Abstract: Clinical risk-scoring systems are important for identifying patients with upper
gastrointestinal bleeding (UGIB) who are at a high risk of hemodynamic instability. We developed
an algorithm that predicts adverse events in patients with initially stable non-variceal UGIB using
machine learning (ML). Using prospective observational registry, 1439 out of 3363 consecutive
patients were enrolled. Primary outcomes included adverse events such as mortality, hypotension,
and rebleeding within 7 days. Four machine learning algorithms, namely, logistic regression with
regularization (LR), random forest classifier (RF), gradient boosting classifier (GB), and voting
classifier (VC), were compared with the Glasgow–Blatchford score (GBS) and Rockall scores. The RF
model showed the highest accuracies and significant improvement over conventional methods for
predicting mortality (area under the curve: RF 0.917 vs. GBS 0.710), but the performance of the VC
model was best in hypotension (VC 0.757 vs. GBS 0.668) and rebleeding within 7 days (VC 0.733
vs. GBS 0.694). Clinically significant variables including blood urea nitrogen, albumin, hemoglobin,
platelet, prothrombin time, age, and lactate were identified by the global feature importance analysis.
These results suggest that ML models will be useful early predictive tools for identifying high-risk
patients with initially stable non-variceal UGIB admitted at an emergency department.

Keywords: emergency departments; machine learning; upper gastrointestinal bleeding; mortality;
hypotension; endoscopy

1. Introduction

Although the morbidity and mortality rates of upper gastrointestinal bleeding (UGIB) have
decreased recently, this condition remains a burden to public health, with a mortality rate of 6–12% and
hospital cost of more than $2.5 billion yearly in the United States [1,2]. Therefore, current guidelines
recommend early risk stratification of patients with non-variceal UGIB to identify high- or low-risk
patients in order to help in decision-making, including timing of endoscopy, disposition (admission vs.
outpatient), and level of care (general ward vs. intensive care unit) [3].

J. Clin. Med. 2020, 9, 2603; doi:10.3390/jcm9082603 www.mdpi.com/journal/jcm

http://www.mdpi.com/journal/jcm
http://www.mdpi.com
https://orcid.org/0000-0001-9282-3116
https://orcid.org/0000-0002-3438-2217
https://orcid.org/0000-0002-6904-5966
http://dx.doi.org/10.3390/jcm9082603
http://www.mdpi.com/journal/jcm
https://www.mdpi.com/2077-0383/9/8/2603?type=check_update&version=2


J. Clin. Med. 2020, 9, 2603 2 of 15

Several scoring systems such as the Glasgow–Blatchford score (GBS) and the Rockall score [4,5]
have been developed for assessing patients with UGIB; however, they have limitations in detecting
high-risk patients with UGIB who require endoscopy, embolization, or surgical treatment and who have
higher risk of developing hemodynamic instability [6–9]. Moreover, the subjectivity of the definitions
of hepatic disease and cardiac disease included in the GBS, given its complexity of calculation and
requirement for laboratory results or endoscopic assessment, makes its application in clinical practice
difficult [1,9,10].

Machine learning (ML) is a discipline that uses computational modeling to learn from data,
showing that executing a specific task improves with experience [11–15]. Thus, ML models may
improve upon the risk stratification provided by existing clinical risk assessment tools and help guide
clinical decision-making. However, studies of ML models in UGIB are limited by relatively small
sample sizes (all but two studies had <1000 patients) or identification of low-risk patients; therefore,
further evidence is needed [16,17].

Early identification of high-risk UGIB is an integral component in patient admission at emergency
rooms. ML models, which can use more variables than are possible with conventional clinical
scores, can improve decision-making regarding the timing of intervention or treatment option.
This study aimed to develop and validate an algorithm that predicts adverse events such as mortality,
hypotension, and rebleeding in patients with initially stable suspected non-variceal UGIB using several
ML algorithms.

2. Experimental Section

2.1. Data

The UGIB registry was collected in the Emergency Department (ED) of the Asan Medical Center,
which has a census record of 110,000 visits per year and serves as a tertiary referral center in Seoul,
Korea. The study period was from January 1, 2012 to April 30, 2017. All consecutive patients older
than 18 years visiting the ED with suspected non-variceal UGIB during the study period were included
in the registry.

UGIB was defined by the chief complaints of hematemesis, coffee-ground color vomiting,
or melena [1,9,18]. Patients who had liver cirrhosis with variceal bleeding or advanced neoplasm were
excluded. Patients who were already in a hypotensive state, defined by systolic blood pressure (SBP)
of <90 mmHg at admission to the ED, were also excluded; we focused on the development of a model
for initially normotensive patients with non-variceal UGIB. Our institutional review board approved
the study and waived the requirement for informed consent.

The variables used in this study included demographics, initial vital signs, comorbidities,
mental change, syncope, fresh blood in the nasogastric tube, melena on rectal examination, specific
medications that could cause gastrointestinal bleeding (non-steroidal anti-inflammatory drugs,
antiplatelet agents, anticoagulants), hemoglobin level, platelet count, prothrombin time, international
normalized ratio, blood urea nitrogen level, creatinine level, albumin level, base deficit, lactate level,
GBS, pre-endoscopy Rockall score, lactate, and hypotension development [1].

Nasogastric tube and rectal examinations were performed in all patients with UGIB except
those who refused. Patients with shock, clinical deterioration, or hemoglobin less than 7 g/dL were
considered for the blood transfusion. Transfusion decisions for coagulopathy or thrombocytopenia
were determined by the treating physician considering comorbidities. Pre-endoscopic intravenous
proton pump inhibitors were used in all patients with UGIB until there was no evidence of peptic
ulcer disease. Except in cases of refusal, we conducted endoscopy within 24 h in all patients with
UGIB. The mental status of patients was classified by the AVPU (alert, voice, pain, unresponsive) scale.
If fresh blood was found in a nasogastric tube after 500 mL of manual irrigation, the case was defined
as positive. Chronic liver diseases included chronic hepatitis B, hepatitis C, alcoholism, autoimmune
disease, or others. An advanced neoplasm was defined as a neoplasm by distant metastasis. After the
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first endoscopy, rebleeding was suspected when the patient showed unstable vital signs, melena,
hematochezia, hematemesis, or a decrease in hemoglobin of 2 g/dL or more. Rebleeding was confirmed
when active bleeding or a fresh blood clot was found in the endoscopy of suspected rebleeding patients.

The primary outcome was adverse events, including in-hospital mortality, the development of
hypotension within 24 h of ED admission (which was characterized by SBP < 90 mmHg without other
causes of hypotension except for UGIB), and rebleeding within 7 days [1,9].

2.2. Methods (Machine Learning Algorithms)

Four ML models were developed by 5-fold cross-validation: logistic regression with regularization
(LR), random forest classifier (RF), gradient boosting classifier (GB), and voting classifier (VC).
A 5-fold cross-validation might prevent the generation of overfitted models by avoiding cases that
biased the test-sets due to imbalanced single-hospital data. The models predicted whether a patient
would experience mortality, hypotension, or rebleeding within 7 days by learning 38 variables,
which are categorized by demographics, comorbidities, associated symptom signs, initial vital signs,
and laboratory findings. A grid-search with cross-validation was used to tune the hyperparameters
of the ML models. The grid-search method determined the optimal hyperparameters of the models
from user-defined grids of initial parameters. The grid-search method also helped the ML models
to determine the global optimal hyperparameters without falling into local maximums. We set
the grid-search method to optimize the area under the receiver operating characteristic curve of
cross-validation sets.

Logistic regression is one of statistical models to classify categorical outcomes [19].
Logistic regression can estimate the probability of outcomes as a function of many input variables.
In particular, LR has shown better performance on unseen data than logistic regression without
regularization. Because of its easy interpretability and familiarity, it was used as a baseline model
to evaluate the performance of other ML methods. RF is an algorithm that predicts the outcome by
voting of trained decision tree models for numerous randomly sampled data [20]. RF is suitable for our
analysis because it predicts outcomes robustly even if we input a large number of non-scaled features
that are not relevant to predicting the outcome. GB starts with a simple model and continually adds
more enhanced models described by the residuals of a previous model using gradient information [21].
RF is a bagging machine that is made up of independent decision trees, while GB is a boosting learner
that combines decision trees constructed sequentially. Therefore, GB is considered a more accurate
predictor than RF, but it tends to overfit a training dataset. Lastly, VC is a machine that classifies
outcomes by selecting the majority of results from several ML models [22]. In our case, VC was
composed of LR, RF, and GB at a ratio of 1:1:1.

2.3. Analysis

Continuous variables were expressed as the median with interquartile range (IQR). Categorical
variables were reported as numbers and percentages. The Mann-Whitney U test or Fisher’s exact test
was used to compare the values of continuous variables. The Chi-square test was applied for categorical
variables. For all the reports, a two-sided p-value of <0.05 was considered statistically significant.
The area under the curve (AUC) was used to evaluate the performance of the models; the Brier score
and the logarithmic loss were also calculated to provide a nuanced view of the accuracy of the models.
The mean values and 95% confidence intervals of all measurements were calculated using 7 iterations
with 7 different random seeds which were fixed for reproducibility. The global feature importance
was calculated by the degree of score drop in the model by randomly shuffling the one single variable
sequentially. Local interpretable model-agnostic explanation (LIME) was introduced to interpret the
outcome predictions of individual patients [23]. LIME is a way to approximate a complex non-linear
model to a linear model near variables of interest for improving human understanding, instead of
trying to explain the global working principle of the models. LIME works by sampling new input
variables, similar to variables of our subjects, and investigating which variable causes the predictive



J. Clin. Med. 2020, 9, 2603 4 of 15

probability to change significantly. ML analysis and plotting were performed using an open-source
program language (Python 3.7.1) and its packages (numpy-1.16.1, scikit-learn 0.20.3, imblearn 0.4.3,
lime 0.1.1.33, matplotlib 3.0.2).code.

3. Results

3.1. Baseline Statistics

To develop models predicting mortality, hypotension, and rebleeding within 7 days for initially
normotensive patients with non-variceal UGIB, data were collected from 1439 patients who met the
appropriate screening criteria. In this study, we excluded 1038 patients with known liver cirrhosis with
variceal bleeding, 519 patients who were already in a hypotensive state, 313 patients with advanced
neoplasm, and 54 patients with missing values. The baseline statistics of the variables for the class
groups of mortality, hypotension, and rebleeding within 7 days are summarized in Table 1. The baseline
statistics of the variables for the included patients are presented in Table S1.

3.2. Model Performances

The AUC for the Rockall score and GBS was 0.536 and 0.668 for hypotension, 0.693 and 0.710 for
mortality, and 0.550 and 0.694 for rebleeding within 7 days, respectively. The Rockall score and GBS in
the ML models for predicting these three outcomes are shown in Figure 1. All ML models for the three
outcomes outperformed the Rockall score and GBS in terms of the AUC. For mortality, the AUC of the
machine learning models was significantly different from that of Rockall score and GBS by 0.113–0.224,
but the improvement of ML for both hypotension and rebleeding within 7 days was relatively smaller:
0.059–0.221 and 0.020–0.183, respectively.J. Clin. Med. 2020, 9, x FOR PEER REVIEW 6 of 15 
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Figure 1. Receiver operating characteristic (ROC) and AUC of Rockall (blue), GBS (Glasgow–Blatchford
score, orange), LR (logistic regression with regularization, red), RF (random forest classifier, green),
GB (gradient boosting classifier, light purple), and VC (voting classifier, light brown) for mortality (a),
hypotension (b), and rebleeding within 7 days (c), from left to right. The shaded regions stand for 1
standard deviation from the mean of the ROC curves. Mean AUC and its 95% confidence interval of
the models are shown in the legends of the subplots.
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Table 1. Statistical characteristics of the two groups divided by the mortality, hypotension, and rebleeding within 7 days classes in the study population.

Characteristic
Mortality Hypotension Rebleeding within 7 days

No (n = 1422) Yes (n = 17) p-Value No (n = 1297) Yes (n = 142) p-Value No (n = 1305) Yes (n = 134) p-Value

Demographics

Age 63 (52–74) 75 (59–80) 0.011 64 (52–74) 63 (54–73) 0.900 64 (52–74) 64.5 (56–76) 0.062
Male 426 (30.0) 7 (41.2) 0.461 405 (31.2) 28 (19.7) 0.006 401 (30.7) 32 (23.9) 0.122

Comorbidities

Diabetes mellitus 304 (21.4) 5 (29.4) 0.614 269 (20.7) 40 (28.2) 0.052 276 (21.1) 33 (24.6) 0.410
Hypertension 538 (37.8) 4 (23.5) 0.338 490 (37.8) 52 (36.6) 0.857 488 (37.4) 54 (40.3) 0.571

Cardiac disease 313 (22.0) 5 (29.4) 0.662 286 (22.1) 32 (22.5) 0.980 296 (22.7) 22 (16.4) 0.120
Liver disease 64 (4.5) 1 (5.9) 0.753 60 (4.6) 5 (3.5) 0.697 55 (4.2) 10 (7.5) 0.132

Coagulopathy 267(18.8) 9 (52.9) 0.001 239 (18.4) 37 (26.1) 0.038 235 (18.0) 41 (30.6) <0.001
Ischemic heart disease 188 (13.2) 3 (17.6) 0.861 174 (13.4) 17 (13.2) 0.725 179 (13.7) 10 (9.0) 0.158

Heart failure 52 (3.7) 3 (17.6) 0.019 46 (3.5) 9 (6.3) 0.157 50 (3.8) 5 (3.7) 0.858
Neoplasm 187 (13.2) 9 (52.9) <0.001 168 (13.0) 28 (19.7) 0.036 165 (12.6) 31 (23.1) 0.001

Chronic kidney disease 123 (8.6) 4 (23.5) 0.086 118 (9.0) 9 (6.3) 0.345 114 (8.7) 13 (9.7) 0.829
Previous GIB history 229 (16.1) 8 (47.1) 0.002 209 (16.1) 28 (19.7) 0.327 210 (16.1) 27 (20.1) 0.279

COPD 29 (2.0) 1 (5.9) 0.804 27 (2.1) 3 (2.1) 0.776 27 (2.1) 3 (2.2) 0.852
Stroke 126 (8.9) 1 (5.9) 0.999 117 (9.0) 10 (7.0) 0.527 118 (9.0) 9 (6.7) 0.457

Associated symptom and signs

Syncope 52 (3.7) 1 (5.9) 0.870 43 (3.3) 10 (7.0) 0.045 43 (3.3) 10 (7.5) 0.028
Hematemesis 500 (35.2) 8 (47.1) 0.444 449 (34.6) 59 (41.5) 0.122 449 (34.4) 59 (44.0) 0.034

Melena, chief complaint 922 (64.8) 9 (52.9) 0.444 848 (65.4) 83 (58.5) 0.122 856 (63.6) 75 (56.0) 0.034
Melena on rectal examination 650 (45.7) 8 (47.1) 0.893 571 (44.0) 87 (61.3) <0.001 576 (44.1) 82 (61.2) <0.001

Fresh blood on
nasogastric tube 155 (10.9) 5 (29.4) 0.043 125 (9.6) 35 (24.6) <0.001 127 (9.8) 33 (24.6) <0.001

Mental change 29 (2.0) 4 (23.5) <0.001 28 (2.2) 5 (3.5) 0.463 29 (3.2) 4 (3.0) 0.796
Drug history

Antiplatelet agent 275 (19.3) 0 (0.0) 0.088 255 (19.7) 20 (14.1) 0.136 259 (19.8) 16 (11.9) 0.036

NSAIDs 47 (3.3) 0 (0.0) 0.940 44 (3.3) 3 (2.1) 0.571 45 (3.4) 2 (1.5) 0.338
Anticoagulation 103 (7.2) 2 (11.8) 0.808 91 (7.0) 14 (9.9) 0.286 92 (7.0) 13 (9.7) 0.342

Vital signs

SBP (mmHg) 123 (111–141) 118 (110–130) 0.534 125 (112–142) 109 (101–118) <0.001 124 (111–141) 116 (107–132) <0.001
DBP (mmHg) 75 (67–86) 72 (62–86) 0.703 76 (68–86) 68 (62–77) <0.001 76 (68–86) 73 (65–81) 0.009

Heart rate (/min) 89 (76–103) 100 (86–118) 0.048 89 (76–103) 90 (77–107) 0.229 89 (76–103) 92 (79–105) 0.149
Respiratory rate (/min) 20 (18–20) 20 (20–20) 0.045 20 (18–20) 20 (18.5–20) 0.229 20 (18–20) 20 (20–20) 0.331
Body temperature (◦C) 36.5 (36.2–36.8) 36.5 (36–36.9) 0.835 36.5 (36.2–36.9) 36.4 (36–36.6) <0.001 36.5 (36.2–36.9) 36.5 (36–36.8) 0.187

Saturation of peripheral oxygen, room air (%) 99 (97–100) 99 (96–99) 0.325 99 (97–100) 99 (97–100) 0.880 99 (97–100) 99 (98–100) 0.851



J. Clin. Med. 2020, 9, 2603 6 of 15

Table 1. Cont.

Characteristic
Mortality Hypotension Rebleeding within 7 days

No (n = 1422) Yes (n = 17) p-Value No (n = 1297) Yes (n = 142) p-Value No (n = 1305) Yes (n = 134) p-Value

Laboratory findings

Hemoglobin (g/dL) 10.3 (8.3–12.5) 8.5 (7.2–10.3) 0.018 10.4 (8.4–12.6) 9.4 (7.4–11.5) <0.001 10.5 (8.4–12.6) 8.7 (7.2–10.6) <0.001
Platelet count (×103/mm3) 223 (169–276) 104 (69–239) 0.011 223 (169–277) 211 (160–260) 0.209 225 (170–277) 191 (153–260) 0.002

PT/INR (%) 90.9 (79.2–103) 62.9 (51.6–78.6) <0.001 91.0 (79.3–103.2) 88.1 (70–97.4) 0.003 91.2 (79.5–103) 85.8 (70.3–97.4) <0.001
PT/INR (s) 2.47 (2.42–2.54) 2.7 (2.6–2.8) <0.001 2.47 (2.42–2.54) 2.5 (2.4–2.6) 0.004 2.47 (2.42–2.54) 2.5 (2.4–2.6) 0.001

BUN (mg/dL) 24.0 (15.0–38.0) 35.0 (24.0–62.0) 0.006 23.0 (15.0–37.0) 31.0 (22.0–43.0) <0.001 23.0 (15.0–37.0) 31.0 (22.0–45.8) <0.001

Creatinine (mg/dL) 0.8 (0.7–1.1) 1.2 (1.0–2.9) 0.015 0.8 (0.7–1.1) 0.9 (0.7–1.2) 0.156 0.0 (0.0–0.8
(0.7–1.1)1.0) 0.9 (0.7–1.2) 0.134

Albumin (g/dL) 3.3 (2.8–3.7) 2.3 (1.9–2.5) <0.001 3.3 (2.9–3.8) 3.0 (2.5–3.4) <0.001 3.4 (2.9–3.8) 2.8 (2.3–3.3) <0.001
Lactate (mmol/L) 1.3 (0.9–2.1) 2.2 (1.1–5.7) 0.051 1.3 (0.9–2.0) 1.6 (1.2–2.6) <0.001 1.3 (0.9–2.0) 1.6 (1.1–2.4) 0.013

Base deficit (mmol/L) 1.5 (−0.5–3.5) −0.9 (−6.8–6.0) 0.433 1.7 (−0.5–3.7) 0.8 (−1.7–2.8) <0.001 1.7 (−0.5–3.6) 0.5 (−0.8–2.8) 0.002

Risk scores

Glasgow-Blatchford Bleeding Score 10 (6–12) 13 (11–14) 0.003 10 (6–12) 12 (9–14) <0.001 10 (6–12) 12 (10–14) <0.001
Pre-endoscopy Rockall 1 (1–3) 2 (1–6) 0.005 1 (1–3) 1 (1–3) 0.147 1 (1–3) 2 (1–3) 0.049

Data are presented as median (interquartile range) and number (percentage), GIB (gastrointestinal bleeding), COPD (chronic obstructive pulmonary disease), NSAIDs (non-steroidal
anti-inflammatory drugs), SBP (systolic blood pressure), DBP (diastolic blood pressure), PT (prothrombin time), INR (international normalized ratio), BUN (blood urea nitrogen).
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The performance of the six models for three outcomes was compared by predicting numbers of
patients, the AUC, Brier score, and log loss, as shown in Table 2. In all four scorings, the performance
was largely improved in the order of Rockall score, GBS, LR, RF, VC, and GB. The predicted ratio of
positive patients was higher than the observed ratio of those even in the GB model because many
normal patients had false-positives, which is very severe when the outcome is mortality. The log loss
of mortality, an outcome with a severe data imbalance, was greater than 0.1; thus, the log loss was
a non-informative metric. Only log loss of the GB models for hypotension and rebleeding within
7 days were less than 0.33, better than that of a random classifier, considering the data imbalance
with the ratio of the two classes being 1:10. For imbalanced data like our study data, the Brier loss,
which focuses on the minority class, is more adequate for scoring the predicted probabilities. When
comparing the Brier skill score, which is computed from the Brier score, and the Brier reference
score, all models predicting mortality failed to perform better than a random classifier. The RF, GB,
and VC models predicting hypotension and rebleeding within 7 days, however, were effective in
prognosticating patients. The prediction result of a test-set by the VC is shown in the confusion matrix
(Table S2). In addition, the predicted number of outcomes, sensitivity, specificity, positive predictive
value, negative predictive value, AUC, and their 95% confidence intervals were computed to measure
the performance of the model dependence on the threshold values (Table S3).

3.3. Model Validation

In Figure 2, the AUCs according to the number of samples are plotted to determine whether the
models were overfitting and we had enough data to train the ML models. The models predicting both
hypotension and rebleeding within 7 days seemed to be fully trained, but more data made it possible
to improve the models’ prediction of mortality, especially in the GB model. The RF models seemed to
have overfit the training dataset because the AUC of the training dataset was equal to 1 regardless of
the number of samples and the test dataset showed slight improvement. In the learning curve studies
with all predicting variables, RF classifiers were readily overfitting with a small number of samples.
Therefore, more samples are needed for training classifiers with the RF algorithm.

The feature selection process was conducted to select useful variables to predict the outcomes and
ensure that the variables matched the intuition from the clinical experiences. We only examined the
relative features importance (RFI) of three classifiers except the VC in mortality (Figure 3), hypotension
(Figure S1), and rebleeding within 7 days (Figure S2). For computing the AUC and the accuracy of
models for mortality, the variables were added one by one from the largest RFI to the smallest one
in Figure 3. The RFI of the LR model had a large standard deviation due to the fact that some folds
of the training dataset did not converge properly. Because of some commonalities in the algorithm,
there were common important variables for the GB and LF models. Although the order of RFI in the
LR models was different from that in the GB and LF models, many significant variables were found in
the top nine of the models’ RFI for all three of the ML algorithm models. It was confirmed that the
larger the computed AUC, the more predictive variables the model contained (Figure 3b,e,h). However,
the accuracy of LR was shown as an L-shaped curve as the number of independent variables of the
model increased. This is because the LR model was inclined to predict actual positives (poor outcomes)
as false-negatives (good outcomes), which has been a common overfitting problem in training models
from imbalance data. The accuracy of a GB algorithm model with very few features might have an
overfitting problem, but it would not be as severe as that of the LR models. The accuracy of the RF
models, which is good at avoiding the problem of predicting almost-positive outcomes as negative
ones, is enhanced by an increasing number of included variables in the model.
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Table 2. The performance of models for predicting mortality, hypotension, and rebleeding within 7 days evaluated by the predicted positive ratio, AUC, brier score,
and log loss.

Outcomes Models Scorings Rockall Score GBS
Logistic

Regression
Classifier

Random Forest
Classifier

Gradient Boosting
Classifier Voting Classifier Actual Positive

Ratio (%)

Mortality

Predicted Positive ratio
(%, 95% CI) 29.3 (28.4–30.2) 25.2 (24.4–26.0) 14.7 (13.4–15.9) 14.6 (13.5–15.6) 15.4 (13.8–17.0) 16.5 (15.8–17.1) 1.18

AUC
(95% CI) 0.694 (0.649–0.738) 0.715 (0.676–0.754) 0.826 (0.792–0.861) 0.909 (0.896–0.921) 0.911 (0.893–0.930) 0.908 (0.893–0.922)

Brier score
(95% CI) 0.294 (0.285–0.303) 0.250 (0.242–0.258) 0.129 (0.120–0.139) 0.034 (0.032–0.036) 0.035 (0.032–0.039) 0.050 (0.047–0.054)

Log loss
(95% CI) 27.0 (26.7–27.3) 34.1 (34.0–34.1) 0.510 (0.435–0.563) 0.142 (0.137–0.147) 0.126 (0.116–0.137) 0.180 (0.171–0.189)

Hypotension

Predicted
Positive ratio
(%, 95% CI)

45.0 (44.1–45.9) 35.0 (34.1–35.8) 26.1 (25.1–27.2) 22.56 (21.52–23.59) 16.8 (15.4–18.2) 19.7 (18.7–20.8) 9.87

AUC
(95% CI) 0.536 (0.516–0.555) 0.668 (0.656–0.680) 0.747 (0.737–0.758) 0.739 (0.727–0.751) 0.756 (0.743–0.768) 0.766 (0.755–0.777)

Brier score
(95% CI) 0.233 (0.226 0.240) 0.273 (0.267–0.279) 0.194 (0.191–0.198) 0.0834 (0.0826–0.08416) 0.082 (0.081–0.084) 0.092 (0.091–0.093)

Log loss
(95% CI) 25.0 (24.8–25.3) 31.1 (31.0–31.1) 0.569 (0.559–0.579) 0.329 (0.310–0.348) 0.289 (0.283–0.295) 0.319 (0.316–0.322)

Rebleeding
within 7 days

Predicted Positive ratio
(%, 95% CI) 45.0 (44.3 45.8) 35.0 (33.8 36.1) 31.6 (30.6 32.7) 27.4 (26.2 28.5) 20.7 (19.0 22.3) 21.3 (20.2 22.4) 9.31

AUC
(95% CI) 0.550 (0.534–0.566) 0.694 (0.680–0.708) 0.712 (0.698–0.726) 0.707 (0.689–0.725) 0.717 (0.699–0.734) 0.729 (0.714–0.745)

Brier score
(95% CI) 0.223 (0.215–0.231) 0.258 (0.249–0.266) 0.201 (0.197–0.206) 0.081 (0.080–0.082) 0.081 (0.080–0.082) 0.092 (0.090–0.093)

Log loss
(95% CI) 25.0 (24.8–25.2) 31.3 (31.2–31.3) 0.589 (0.578–0.599) 0.319 (0.295–0.344) 0.287 (0.281–0.293) 0.323 (0.319–0.327)
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as a function of the number of samples of VC, GB, LR and RF respectively. The AUC learning curves of
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Figure 4b support a high chance of mortality of the patients. In cases of false-negatives (Figure 4c), 
it looked vague for predicting the possibility of mortality with a distribution of eight feature values. 
The values of hemoglobin, PT/INR (sec), and PT/INR (%) contradict the risk of mortality of the 
patients, but the values of albumin, creatinine, platelet count, coagulopathy, and respiratory rate 
denied the decision. The last case (Figure 4d) showed that the values of all features except 
coagulopathy and previous gastrointestinal history explained the high risk of mortality, but it 
actually did not as it was a false-positive. Despite this false-positive case, the RF seemed to have 
made the right decision for mortality of patients based on the predicted variable distribution. 
Almost statistically significant variables for the mortality of patients appeared again in the LIME 
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mortality by the three machine learning algorithms: LR, RF, and GB respectively. The black lines in
boxes show the median of RFI and green lines show the mean of RFI. The AUC of the three models,
with the included number of predictors in the order of RFI to predict mortality, are plotted in (b), (e),
and (h). The accuracies of the three models, according to the included number of predictors in the
order of RFI to predict mortality, are also plotted in (c), (f), and (i). The means of the AUC and accuracy
are shown as black dots and the 1 standard deviation ranges from them are shown as black error-bars.
See Table A1 for variable names.

The cases of true-negatives, true-positives, false-positives, and false-negatives by the RF were
used to explain the prediction of mortality with LIME interpretation in Figure 4. The four cases were
selected from the test-set randomly. Only the eight most important features in predicting mortality for
an individual patient were shown for simplicity. In cases of true-negatives (Figure 4a), the values of
coagulopathy, prothrombin ratio/international normalized ratio (PT/INR) (sec), age, and PT/INR (%)
supported a low probability of mortality in the patients, but the values of albumin, creatinine, base
deficit, and hemoglobin supported the positive prediction. In the case of true-positives, the values of
albumin, creatinine, base deficit, PT/INR (%), and PT/INR (sec) in Figure 4b support a high chance
of mortality of the patients. In cases of false-negatives (Figure 4c), it looked vague for predicting
the possibility of mortality with a distribution of eight feature values. The values of hemoglobin,
PT/INR (sec), and PT/INR (%) contradict the risk of mortality of the patients, but the values of albumin,
creatinine, platelet count, coagulopathy, and respiratory rate denied the decision. The last case
(Figure 4d) showed that the values of all features except coagulopathy and previous gastrointestinal
history explained the high risk of mortality, but it actually did not as it was a false-positive. Despite this
false-positive case, the RF seemed to have made the right decision for mortality of patients based
on the predicted variable distribution. Almost statistically significant variables for the mortality of
patients appeared again in the LIME explanation diagram. The four cases of LIME explainability of
hypotension and rebleeding within 7 days are shown in Figures S3 and S4.J. Clin. Med. 2020, 9, x FOR PEER REVIEW 10 of 15 

 

 
Figure 4. LIME (local interpretable model-agnostic explanation) explanation of true-negative (a), 
true-positive (b), false-negative (c), and false-positive (d) cases for the RF when the outcome is 
mortality. The orange bars are the variables that support the positive and the green bars are the 
variables supporting the negative. The larger the absolute value of weight, the greater the effect of 
the predicting outcome, mortality. See Table A1 for variable names. 

4. Discussion 

In this study, we demonstrated that ML approaches using prospectively collected high-quality 
GIB datasets (n = 1439) provide better diagnostic capacity for the detection of high-risk patients 
associated with hypotension, rebleeding, and mortality than conventional clinical risk scoring 
systems.  

Among patients with UGIB, early identification of high-risk patients may help provide 
appropriate intervention, thus reducing mortality and morbidity. However, the primary use of risk 
scores in clinical practice that are recommended by guidelines is the identification of very low-risk 
patients for outpatient management [3,8,24]. The optimal score for the detection of low-risk patients 
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Figure 4. LIME (local interpretable model-agnostic explanation) explanation of true-negative (a),
true-positive (b), false-negative (c), and false-positive (d) cases for the RF when the outcome is mortality.
The orange bars are the variables that support the positive and the green bars are the variables
supporting the negative. The larger the absolute value of weight, the greater the effect of the predicting
outcome, mortality. See Table A1 for variable names.

4. Discussion

In this study, we demonstrated that ML approaches using prospectively collected high-quality GIB
datasets (n = 1439) provide better diagnostic capacity for the detection of high-risk patients associated
with hypotension, rebleeding, and mortality than conventional clinical risk scoring systems.

Among patients with UGIB, early identification of high-risk patients may help provide appropriate
intervention, thus reducing mortality and morbidity. However, the primary use of risk scores in
clinical practice that are recommended by guidelines is the identification of very low-risk patients for
outpatient management [3,8,24]. The optimal score for the detection of low-risk patients who can be
safely discharged from the ED without early endoscopy was shown in published studies as a GBS
of 0 or 1 [3,24]. Although a recent large prospective study by Stanley et al. demonstrated that a GBS
score of more than 7 could be an indicator of a need for endoscopic intervention, the sensitivity and
specificity were not enough (80.4% and 57.4%, respectively) [18]. This is consistent with our results of
a relatively low AUC for GBS and Rockall score.

Our study demonstrated the superior performance of risk stratification for stable patients with
suspected UGIB using an ML approach, which has several applications and advantages. First, an ML
approach can be applicable using electronic health record derived data. Given the vast amount of
data currently being accumulated in electric health records (EHR), the importance of ML is expected
to increase. In other clinical areas, EHR is already used to deploy an ML approach for decision
support [25,26]. Second, an ML approach can use more variables than is possible with conventional
clinical scores. Third, it can be applied quickly in the clinical field by immediately learning from
data collected in real time. Learning through real-time data can show good results over time. Fourth,
the patients’ emergency room data used in our study were not extracted under well-designed research
like a randomized controlled trial. An ML approach is good for generalized pattern recognition,
classification, and prediction, even using data with complex features [27].

Previous studies using an ML approach for UGIB had limitations such as a small sample size or a
risk of bias from a heterogeneous dataset. In this field, the use of ML approaches is still in its infancy.
Rotondano et al. demonstrated a superior performance over the Rockall score for 1-month mortality
using a neural network model [28]. However, that study did not compare other well-known risk scores
like GBS. Moreover, several studies using predictive models had different subjects [29,30].
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Recently, Shung et al. developed a ML model that compared clinical risk scoring systems [16].
That study, like our study, attempted ML using data from a large sample. It had the advantage of
external validation including multi-racial patients. However, an exact comparison is difficult because
our study targeted only patients who came to the emergency room. The data collection period of our
study, 5 years, is relatively long, so the bias for time in our data is less than in that study. We presented
global feature importance results so that clinicians can compare them with their integrated clinical
experience of UGIB. A way to explain how this model predicted the adverse events of individual
patients with UGIB was also introduced. More emphasis will be placed on the predictive abilities of
models as the use of ML applications expands in medicine. To the best of our knowledge, our study is
the first to use ML to classify the risk of UGIB in patients admitted to an emergency room.

There are several limitations to our study. Although our study has the advantage of having a
large sample size, the data collected from a single hospital seemed to be subject to overfitting and
limitations of generalization. Other excellent scoring systems, such as AIMS65, PNED (progetto
nazionale emorragia digestive), and HARBINGER (Horibe gAstRointestinal BleedING scoRe), were not
compared in this study [18,31]. To be able to compare, we considered whether there were many citations
and excellent performance when selecting the scoring system [18]. We thought that comparing GBS and
Rockall score with our ML model could concisely show the purpose of the paper. In future studies, it is
necessary to build a machine learning model that can be compared to other scoring systems. Table-type
data from emergency rooms are prone to having insufficient information for predicting a patient’s
adverse events. The variables of tabular data can provide the averaged status or snapshot information
of a patient. The power of predicting patients’ adverse events in our model was also affected by this
limitation. Because of the small number of deaths, there is little confidence in the construction of the
model by artificial intelligence. The data used in our study are considered imbalanced data, which is
common in the field of medical research. Imbalanced data occur when there is a skewed distribution
of class representations: generally, several negative samples and a few positive samples. The problem
was especially severe when the outcome was mortality in this study. To overcome the problems caused
by the imbalanced data, various techniques such as a data-level method, algorithm-level method,
and their combination were suggested [32]. In our studies, data resampling methods, combining
random under-sampling of a majority group [33] and Tomek’s link [34], were only used to predict
mortality. Class weight arguments, inverse proportion to positive and negative class frequencies,
and adaptation of classifier’s thresholds were commonly applied to estimate all three outcomes.

5. Conclusions

A new approach using ML algorithms showed a higher detection ability of adverse events,
namely mortality, hypotension, and rebleeding, in patients with high-risk UGIB. These results suggest
that ML models can be a predictive tool for early identification of high-risk patients with initially stable
non-variceal UGIB admitted at an ED.

Supplementary Materials: The following are available online at http://www.mdpi.com/2077-0383/9/8/2603/s1,
Table S1: The baseline statistics in all variables for patients included in the study, Table S2. Confusion matrices
for a test-set data (n = 287) by the voting classifier with the threshold for mortality, hypotension, and rebleeding
within 7 days, Table S3. The number of outcomes, sensitivity, specificity, PPV, NPV, and AUC for a test-set data by
the 6 models with various thresholds in three outcomes, mortality, hypotension, and rebleeding within 7 days,
Figure S1: The relative feature importance (RFI) of the top 9 features predicting hypotension, and both AUC
and accuracy as functions of included number of predictors in descending order of RFI, Figure S2: The relative
feature importance (RFI) of the top 9 features predicting rebleeding within 7 days, and both AUC and accuracy as
functions of included number of predictors in descending order of RFI, Figure S3: LIME of four cases for VC
when outcome is hypotension, Figure S4: LIME of four cases for VC when outcome is rebleeding within 7 days.

Author Contributions: Conceptualization, W.Y.K. and N.K.; methodology, D.-W.S., H.Y., B.P., and I.W.; software,
D.-W.S., H.Y., and B.P.; validation, D.-W.S., H.Y., and B.P.; formal analysis, D.-W.S. and H.Y.; investigation, D.-W.S.,
Y.-J.K., C.H.S., D.H.J., B.P. and I.W.; resources, W.Y.K., D.H.J., B.S.K., and C.H.S.; data curation, W.Y.K., B.S.K.,
D.H.J., C.H.S., and Y.-J.K.; writing—original draft preparation, D.-W.S. and H.Y.; writing—review and editing,
D.-W.S., H.Y., and N.K.; visualization, H.Y. and B.P.; supervision, W.Y.K. and N.K.; project administration, W.Y.K.
and N.K.; funding acquisition. All authors have read and agreed to the published version of the manuscript.

http://www.mdpi.com/2077-0383/9/8/2603/s1


J. Clin. Med. 2020, 9, 2603 13 of 15

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. (left) and those in model training and figures (right).

Official Variable Name Convenient Variable Name

Demographics
Age age

Male:1 sex

Comorbidities
Diabetes Mellitus DM

Hypertension HTN
Cardiac disease cardiac disease

Liver disease liver disease
Coagulopathy coagulopathy

Ischemic heart disease IHD
Heart failure heart failure

Neoplasm Neoplasm
Chronic kidney disease CKD

Previous GIB history GIB Hx
COPD COPD
Stroke stroke

Associated symptom and signs
Syncope syncope

Hematemesis Hematemesis
Melena, chief complaint Melena

Melena on rectal examination melena
Fresh blood on

nasogastric tube blood NG

Mental change mental binary
Drug history

Antiplatelet agent offend antiplatelet

NSAIDs offend NSAID
Anticoagulation offend anticoagulation

Vital signs
SBP (mmHg) SBP
DBP (mmHg) DBP

Heart rate (/min) HR
Respiratory rate (/min) RR
Body temperature (◦C) BT

Saturation of peripheral oxygen (%) SpO2

Laboratory findings
Hemoglobin (g/dL) Hb

Platelet count (×103/mm3) PLT
PT/INR (%) PT/INR (%)
PT/INR (s) PT/INR (sec)

BUN (mg/dL) BUN
Creatinine (mg/dL) creatinine

Albumin (g/dL) albumin
Lactate (mmol/L) lactate

Base deficit (mmol/L) Base deficit
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