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Murine hepatitis virus nsp4 N258T mutants are not temperature-sensitive
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Coronavirus replicase nsp4 is critical for virus-induced membrane modifications. An nsp4 mutant
(N258T) of murine hepatitis virus (MHV) has been reported to be temperature-sensitive (ts) and to alter
membrane targeting. We engineered and recovered all four possible codon variants of N258T in the
cloned MHV-A59 background. All mutant viruses demonstrated impaired replication compared to
wildtype MHV, but no nsp4 N258T mutant virus was ts, and all variants colocalized with viral protein
markers for replication complexes, but not with markers for mitochondria. This study emphasizes that
complete genome sequencing may be necessary, even with directed and confirmed reverse genetic

© 2012 Elsevier Inc. All rights reserved.

The study

Coronaviruses, like other RNA viruses, induce modifications of
cytoplasmic membranes in order to form replication complexes, as
sites of viral RNA synthesis. Three of the coronavirus-encoded repli-
case non-structural proteins, nsps3, 4 and 6, contain membrane-
spanning domains and are thought to be essential for cytoplasmic
membrane modifications (Baliji et al, 2009; Imbert et al., 2008;
Kanjanahaluethai et al., 2007; Oostra et al., 2008). The topology of
nsp4 in membranes has been described and nsp4 has been shown to
localize to replication complexes (Gadlage et al., 2010; Hagemeijer
et al, 2011; Oostra et al., 2007). Mutations in nsp4 of murine
hepatitis virus (MHV) decrease viral RNA synthesis and viral growth,
and modification of glycosylation sites within the first luminal loop of
nsp4, alters the electron micrograph morphology of virus-induced
double-membrane vesicles (DMVs) (Gadlage et al, 2010; Sparks
et al., 2007).

Sawicki et al. analyzed a known temperature-sensitive(ts)
mutant of MHV, Alb ts6, by sequence and reversion analysis.
They identified within the nsp4 coding region an AAg494T-to-A
Co494T nucleotide (nt) change resulting in an Asn258Thr (N258T)
substitution as the putative ts mutation (Sawicki et al., 2005;
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Sturman et al.,, 1987). Clementz et al. engineered the N258T
substitution in recombinant MHV using a two nt change
AATo494-9495-t0-ACAg494-9495. The resulting virus, Alb ts6 icv,
was reported to be ts at 39.5°C, and to demonstrate altered
distribution of nsp4 in the infected cell, colocalizing with
protein markers for the mitochondria. It was concluded that
nsp4, and particularly residue N258, is important for membrane
localization (Clementz et al., 2008). Subsequently, Sparks et al.
(2008) sequenced an Alb ts6 isolate and found four non-
synonymous mutations in the complete genome sequence that
did not include the previously reported N258T substitution, but
instead identified a Val148Ala (V148A) substitution in nsp5
(3CLpro), which was ultimately confirmed by reverse genetics
and complete genome sequencing to be responsible for the ts
phenotype.

We sought to reconcile these disparate results, using our
established reverse genetic system (Yount et al., 2002) to engineer
N258Taca into the same wildtype (WT)-MHV-A59 isogenic back-
ground as reported by Clementz et al. (2008). The introduced
mutations would require a two nt change for primary reversion to
Asn (Fig. 1). The N258Taca virus was recovered at 30 °C and two
rounds of plaque purification were performed prior to expansion
and determination of the genome sequence from nt 10 to 31334 by
the di-deoxy (Sanger) approach. The AAT to ACA change was
confirmed and no other changes from the cloned isogenic genome
sequence were identified. In order to measure temperature sensi-
tivity, efficiency of plating (EOP) is calculated as the titer at the non-
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Fig. 1. Analysis of nsp4 N258T codon variant mutants of MHV. (A) Proposed topology of MHV nsp4: nsp4 has 4 membrane-spanning regions (TM1-4, black rectangles) and
three loop regions (loop 1-3). Previously reported mutations in loop 1 are indicated as the gray double-headed arrows (glycosylation sites) and a gray dot (E226A/E227A)
(Gadlage et al., 2010; Sparks et al., 2007). The N258T (AAT to ACX at nt positions 9493-9495) substitution is shown as a black dot. (B) Titers were determined by plaque
assay in DBT cells at 30 °C and 40 °C. EOP was calculated as the titer at 40 °C divided by the titer at 30 °C. Titers represent the average titer of two independent
experiments. ! Codon variant previously reported by Clementz et al. (2008), 2 Codon variant previously reported by Sawicki et al. (2005). (C) DBT cells were infected at an
MOI of 0.1 PFU/cell with the indicated viruses and incubated at 30 °C for 28 h and titers were determined by plaque assay. Error bars represent the standard error of the
mean of two independent plaque assays done in duplicate. (D) DBT cells were infected at an MOI of 0.1 PFU/cell with the indicated viruses and incubated at 30 °C with a
temperature shift to 40 °C at 6 h p.i. and titers were determined by plaque assay. Error bars represent the standard error of the mean of two independent plaque assays

done in duplicate.

permissive temperature (40 °C) divided by the titer at the permis-
sive temperature (30 °C). When WT and N258Taca viruses were
compared for EOP, N258Txca demonstrated an EOP similar to WT,
and without a ts phenotype (Fig. 1).

The finding that N258Taca Was not ts by EOP lead us to the
questions: why our engineered mutant virus was different than
the one reported by Clementz et al.; whether there were addi-
tional changes in their virus that led to the observed phenotypes;
and if the phenotype was codon-specific . Therefore, we engi-
neered viruses containing the Tacc, Tacg and Tacr codon variants.
All three Thr258 codon variant viruses, N258Taca, N258Tacc, and
N258Tacr, were recovered at 30 °C. Sanger sequencing of the
complete nsp4 domain confirmed the introduced mutations and
no additional mutations were identified.

All codon variant N258T viruses were tested for temperature-
sensitivity by plaque assay in murine DBT cells at the permissive
(30 °C) and non-permissive (40 °C) temperatures and EOP was
calculated (Fig. 1). WT virus had an EOP of 0.79 demonstrating
that there is no growth impairment at 40 °C. As a ts control, the
EOP of nsp5 tsV148A, was performed in parallel and calculated to
be 1.4 x 10~5, confirming the ts phenotype. All four codon variant
viruses had WT-like EOPs (0.52-2.10) indicating that they are not
impaired for growth at 40 °C, inconsistent with a ts phenotype
(Fig. 1). Because plaque growth and numbers are only a measure
of fitness and temperature sensitivity, we next compared growth
of the mutant viruses at 30 °C. DBT cells were infected at an MOI
of 0.1 PFU/cell and supernatant was sampled at 0.6, 2, 4, 6, 8, 10,
12, 16, 24, and 28 h p.i. for plaque assay (Fig. 1). At 30 °C, all four
codon mutants had indistinguishable growth characteristics and
achieved peak titers similar to WT at 28 h p.i. However, between

8 and 24 h p.i.,, the codon mutant viruses exhibited a lag in
exponential growth with a 0.5 to 1 log 10 decrease in viral titers
during this phase, consistent with a stable replication defect and
likely decreased fitness compared with WT (Fig. 1).

We then tested growth following a temperature shift from
30 °C to 40 °C at 6 h p.i., with supernatants sampled at 0.6, 2, 4, 6,
8,10, 12, and 16 h p.i. WT virus growth kinetics demonstrated an
initial decrease in titer immediately following the temperature
shift, but recovered quickly, and achieved peak titers by 12 h p.i.
All four codon mutants grew indistinguishably from each other,
and achieved WT-like peak titers at 16 h p.i. Similar to growth at
30 °C, between 8 and 16 h p.i., the codon mutants exhibited a lag
in exponential growth and decreased viral titers compared to
WT (Fig. 1). These data demonstrate that while the N258T
substitution within nsp4 exhibited impairment in growth, it did
not confer temperature-sensitivity, contrary to what has been
previously reported.

The N258Taca Vvirus reported by Clementz et al. (2008). was
concluded to have altered localization of nsp4 to mitochondrial
membranes at 39.5 °C. To determine the localization of our mutant
nsp4 proteins, DBT cells were infected with WT, N258Taca, N258Tacc,
N258Tacc, and N258Tact on glass coverslips at an MOI of 5 PFU/cell
for 16 h at 30 °C or for 7 h at 40 °C (Fig. 2). Infected cells were then
fixed and permeabilized with methanol, immunostained with anti-
bodies specific to nsp4 and nsp8 or pyruvate dehydrogenase (PDH),
a mitochondrial matrix protein. Cells were imaged using a Zeiss
LSM510 confocal microscope.

At both 30 °C and 40 °C, for WT and all N258T codon substitu-
tions, nsp4 and nsp8 extensively colocalized to punctate peri-
nuclear foci (Fig. 2 and data not shown). In contrast, both WT and
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Fig. 2. (A) Nsp4 N258Txcx codon variant localizes to the replication complex. DBT cells were infected at an MOI of 5 PFU/cell for 16 h at 30 °C or 7 h at 40 °C. Cells were
fixed in methanol, probed for nsp4 (red) and nsp8 (green) or PDH (green) and imaged on a Zeiss LSM510 confocal microscope. Yellow pixels represent colocalization of
overlapping red and green pixels. The scale bar in the bottom right corner of merged images represents 10 pm. (B) Pearson’s correlation coefficient was calculated for nsp4-
nsp8 or nsp4-PDH for both WT and N258Txcx at 30 °C and 40 °C (n=5). Error bars represent standard deviation.

mutant viruses display non-colocalization of nsp4 and PDH. Nsp4
localized to punctate perinuclear foci, whereas PDH localized to
foci dispersed throughout the cytoplasm that were adjacent to
but distinct from nsp4 foci. Within the same fields of view, there
were infected cells that had not formed syncytia as well as
syncytial cells and the pattern of colocalization were consistent
between both sets of infected cells as well as within a z-stack .
In order to quantify colocalization, Pearson’s correlation coeffi-
cient was calculated using the JACoP plugin for Image] (Bolte and
Cordelieres, 2006; Schneider et al., 2012). To avoid bias, coloca-
lization was quantified for the entire field and the entire z-stack
of five images per condition. At both 30 °C and 40 °C, WT and
N258Taca nsp4 and nsp8 had Pearson’s correlation coefficients of
between 0.71 and 0.79, respectively, consistent with colocalization.
Nsp4 and PDH displayed Pearson’s correlation coefficients of 0.45
to 052 (p<.002), respectively, demonstrating non-colocalization
(Fig. 2). These results demonstrate that the nsp4 N258T substitution
did not result in altered localization of nsp4 to the mitochondria at
either 30 °C or 40 °C.

Conclusions

Our results demonstrate that the nsp4 N258T substitution is not
responsible for either the ts phenotype, or for the altered localiza-
tion of nsp4 to the mitochondria reported by Clementz et al.
Although the nsp4 N258T codon variant viruses were not ts, they
displayed decreased titers and delayed growth, demonstrating that
N258 or loop 1 of nsp4 is likely important for replication. Inter-
estingly, this residue is highly conserved among beta-corona-
viruses, including bovine coronavirus, human coronavirus 0C43
and SARS-CoV as an aspartic acid, with MHV being the exception.
The conservation of this residue suggests that it may be important.
Our lab has previously reported two nsp4 mutant viruses, with
mutations located in luminal loop 1. Nsp4 contains two glycosyla-
tion sites at N176 and N237 (Fig. 1), that when substituted with
alanine, demonstrate delayed growth and decreased viral titers
similar to those of nsp4 N258T, as well as altered DMV formation
(Gadlage et al., 2010). The nsp4 E226A/E227A mutant virus (Fig. 1)
is debilitated for growth and viral RNA synthesis (Sparks et al.,
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2007). Together, these mutations suggest that loop 1 of nsp4 is
important for viral replication, RNA synthesis, and formation
of DMVs.

We are unable to explain the results reported by Clementz
et al. because the virus was not available for direct comparison.
However, our EOP results were confirmed by the Baker lab (data
not shown). The reverse genetics system uses seven cDNA frag-
ments that are ligated for transcription of genomic RNA that is
then electroporated into cells for virus recovery. There is the
possibility that mutations arose during amplification or transcrip-
tion of the cloned fragments. Our lab and the Baker lab have the
same original source for the cDNA fragments. In order to account
for changes during amplification, we obtained all seven cDNA
fragments from the Baker lab and attempts to recover virus were
unsuccessful. We sequenced the cDNA fragment containing nsp4
and identified the N258Taca substitution, as well as a single
nucleotide deletion at nt 8582 that resulted in a possible stop
codon (UGA at nt 8644 to 8646). The virus reported by Clementz
et al. was difficult to recover (personal communication), leading
to the possibility of multiple adaptive changes. The virus was not
available for sequencing; therefore, we could not test for addi-
tional mutations. The experiments in this study were performed
in MHV-A59, and it is important to consider polymorphisms
within different strains of virus when analyzing the importance
of specific residues. The results of our study strongly suggest that
sequencing of the entire genome of mutant coronaviruses derived
from the reverse genetics approach may be necessary. Several
studies have documented mutations that arise during the process
of mutagenesis or propagation of cDNA clones, as well as adaptive
mutations that may occur in genes not thought to have any
relationship. We demonstrated that the original MHV infectious
clone had WT-like replication in culture, but was attenuated in vivo
(Sperry et al., 2005). Complete genome sequencing found mutations
in other fragments that arose during propagation of the clones that
were confirmed to be responsible for the attenuating phenotype.
Hurst et al. (2010) showed that impairment in MHV replication by
mutations in the nucleocapsid gene resulted in compensating
second-site mutations in the replicase protein nsp3. Thus corona-
viruses may have unexpected linked functions or epistatic relation-
ships that might be missed by partial sequencing. Fortunately, the
cost and time of genome sequencing is rapidly improving. Establish-
ment and availability of validated primer sets may allow for more
rapid sequencing in a 96 well format or by deep sequencing, further
reducing the cost and time associated with complete genome
analysis, and may identify novel and important new relationships
among coronavirus proteins.
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