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Abstract

Posttraumatic stress disorder (PTSD) is associated with elevated risk for a variety of age-related 

diseases and neurodegeneration. In this paper, we review evidence relevant to the hypothesis that 

chronic PTSD constitutes a form of persistent life stress that potentiates oxidative stress (OXS) 

and accelerates cellular aging. We provide an overview of empirical studies that have examined 

the effects of psychological stress on OXS, discuss the stress-perpetuating characteristics of 

PTSD, and then identify mechanisms by which PTSD might promote OXS and accelerated aging. 

We review studies on OXS-related genes and the role that they may play in moderating the effects 

of PTSD on neural integrity and conclude with a discussion of directions for future research on 

antioxidant treatments and biomarkers of accelerated aging in PTSD.

Posttraumatic stress disorder (PTSD) is a serious and often disabling condition that affects 

approximately 8 percent of the general population at some point during their lifetimes.1 As 

many as one-third of individuals who experience a single episode of PTSD go on to develop 

a chronic form of the disorder that, in many cases, persists for years.2,3 Comorbidity is 

common among these patients who often present with a complex combination of psychiatric 

and medical comorbidities including heightened risk for various age-related conditions 

including diabetes,4 heart disease,5 functional somatic syndromes such as fibromyalgia, 

chronic fatigue syndrome, and irritable bowel syndrome,6 and neurocognitive disorders and 

dementia.7,8 In this paper, we propose that chronic PTSD constitutes a form of persistent life 

stress and identify mechanisms by which it may potentiate oxidative stress (OXS) and 

accelerate cellular aging. Other recent reviews have addressed related topics, including the 

relationship between life stress and OXS in the brain,9 the role of OXS in other psychiatric 

disorders and neurodegenerative disease (e.g., Hovatta et al.,10 Li et al.,11 and Palta et al.12), 

and the effects of psychological stress on aging.13 However, to our knowledge, no prior 

review has focused specifically on the possible link between PTSD and OXS and the role of 

the latter in PTSD-related neurodegeneration and accelerated aging. Therefore, our primary 

goals in undertaking this review were to (1) provide an overview of empirical studies on the 

relationship between psychological stress and OXS, (2) advance hypotheses about how the 
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stress-perpetuating symptoms of chronic PTSD might promote OXS and neurodegeneration, 

(3) review research on genetic moderators of these associations, and (4) discuss directions 

for future research.

Oxidative Stress: Concepts and Measurement

Oxidation is a chemical process ubiquitous in nature that involves the loss of one or more 

electrons from one atom to a second one known as an oxidant. Oxidants are introduced 

through endogenous processes such as the breakdown of glucose for energy by mitochondria 

or via external agents including chemical toxins, air pollution, and diet. Oxidant-promoting 

processes activate molecular signaling pathways that trigger the production of toxic free 

radicals and other potentially destructive reactive oxygen species (ROS).14 These processes 

are regulated by a molecular defense system comprised of antioxidant enzymes and non-

enzymes that maintain redox homeostasis and prevent cell damage. When levels of ROS 

and/or other pro-oxidant molecules exceed the capacity of available antioxidants to 

counteract their effects, OXS occurs. OXS is a fundamental molecular mechanism of aging 

and the organism’s capacity to counteract it is essential to physical wellbeing, longevity, and 

survival.16 OXS also triggers pro-inflammatory signaling pathways (and vice versa)17,18 and 

is known to play a role in a variety of diseases including diabetes, cardiovascular illnesses, 

and neurodegenerative conditions.16,17,19,20

Of all the organs in the body, the brain is perhaps the most vulnerable to damage from OXS 

because of its high glucose and oxygen utilization and high concentration of peroxidation-

susceptible lipid cells.21 Consequences of OXS in the central nervous system include 

increased blood-brain barrier permeability, disruption of neurogenesis, impairment of 

synaptic plasticity, alterations of neurotransmission, and remodeling of neural morphology 

(for reviews, see Schiavone et al.9 and Uttara et al.22). Aging is associated with increasing 

protein oxidation and diminishing levels of antioxidant enzymes in the brain23 and these 

changes are potentiated by various disease processes. OXS is also implicated in neuronal 

death and erosion in neurodegenerative processes including prodromal dementia and 

Alzheimer’s and Parkinson’s disease.24-30

OXS can be measured using a variety of biomarkers—each with its own advantages and 

disadvantages—and detailed recent reviews of these methods are available.31-35 In brief, the 

most common approaches aim to quantify either antioxidant capacity or the degree of 

oxidative damage present in a biosample. Antioxidant capacity refers to the ability of cells to 

counteract effects of oxidants and is estimated in vitro. Colorimetric and fluorometric probe 

assays can be used to measure the capacity of a sample to reduce oxidant molecules with the 

degree to which the oxidant agent changes color or fluorescence indexing the antioxidant 

capacity of the cells. The primary limitation of these methods is that the strength of 

association between in vitro measurement and in vivo antioxidant capacity is unknown. 

Alternatively, many studies have focused on biomarkers of oxidative damage to lipid, 

protein or DNA molecules. Oxidative damage to lipids can be estimated with assays for 

compounds called isoprostanes that are produced in vivo from peroxidation of lipid cells. 

F2-Isoprostanes are widely used because they are chemically stable, specific products of 

peroxidation, present in detectable amounts in all normal tissues and bodily fluids, and 
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unaffected by lipid content in the diet. F2-Isoprostanes have also been shown to increase 

substantially in animal models of oxidant injury,34 and elevated levels have been observed 

in patients with various OXS-related diseases. Similarly, protein oxidation results in the 

introduction of carbonyl groups into proteins which can be indexed using protein carbonyl 

assays or mass spectroscopy.35 One intriguing aspect of protein carbonylation research are 

the unique opportunities it for integrating data on protein modification with genomic and 

methylomic data to elucidate biological disease pathways spanning different levels of ”–

omic” analysis. At the genomic level, OXS-related DNA damage is commonly studied by 

examining oxidation of the DNA nucleobase guanine which yields 8-hydroxy-2′-

deoxyguanosine (8-OH-dG) and 8-hydroxyguanosine; 8-OH-G). The primary limitation of 

this approach is that it offers only a global measure of DNA damage and cannot implicate 

specific genes or the amount of damage to a particular region of interest. Furthermore, 

regardless of which of these approaches is used, it is impossible to determine to what extent 

observed oxidative damage is due to the intensity of the ROS attack or the antioxidant 

capacity of the cell at the time of the attack. More clinical studies evaluating change over 

time in measures of both antioxidant capacity and oxidative damage in patients and controls 

are needed to clarify this complex interplay.

Psychological Stress and Oxidative Stress

Although, to our knowledge, no studies have directly examined the effects of trauma 

exposure on measures of OXS in humans, a growing body of research suggests that less 

severe psychological stress—especially chronic stress—promotes OXS throughout the 

body.36,37 Elevated blood biomarkers of OXS have been found in chronically-stressed 

caregivers, with higher levels of perceived stress associated with higher levels of oxidative 

damage to RNA and lipid cells.38 In one study, life stress at work and home was found to be 

a stronger predictor of suppressed antioxidant activity than other established oxidant-

promoting factors such as cigarette smoking, alcohol consumption, poor diet, and exposure 

to ultraviolet radiation.39 Elevated blood biomarkers of OXS have also been found in 

college students during periods of examination stress (e.g., Cohen et al.,37 Nakhaee et al.,38 

and Sivonova et al.41) and in bereaved individuals following the loss of a spouse or close 

relative.43 Another study showed that cortisol levels mediated the relationship between 

perceived stress and OXS damage in chronically stressed caregivers.38 Links between OXS 

and various stress-related psychiatric diagnoses have also been found. For example, studies 

have shown that clinically depressed patients show elevated levels of oxidative DNA 

damage and suppressed antioxidant activity with the degree of damage covarying with 

depression severity even after controlling for behavioral factors.44-47 Similarly, studies of 

patients with anxiety disorders have shown evidence of elevated lipid peroxidation in 

generalized anxiety disorder48 and suppressed antioxidant activity in panic disorder.49

Animal models offer insight into potential mechanisms of association between 

psychological stress and OXS and, in turn, the effects of OXS on the brain. Oxidative DNA 

damage can be classically conditioned in rats through pairing of pain with administration of 

an oxidizing agent.50,51 Further, prolonged restraint induces generation of ROS in peripheral 

blood cells and these effects can be partially reversed by anxiolytic agents.52 Conversely, 

inducing ROS production through pharmacologic and non-pharmacologic methods produces 
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anxiety-like behavior in rats.53,54 In one noteworthy study that featured a novel animal 

model of PTSD, Wilson and colleagues55 studied effects of acute and chronic stress on OXS 

in rats using an extended 31-day stress protocol. Biomarkers of OXS and antioxidant 

activity were measured throughout the study and later in post-mortem analysis of brain and 

adrenal tissue. Compared to controls, rats in the stress condition exhibited slower growth, 

higher plasma corticosterone levels, greater anxiety-like behavior on an elevated plus-maze 

task, and a dose-response relationship between the duration of the protocol and levels of 

ROS. Post-mortem analysis of brain tissue revealed elevated levels of ROS and other 

byproducts of OXS in the hippocampus and pre-frontal cortex. Together, these findings 

demonstrate links between environmental stress and OXS and provide new insights into the 

effects of OXS on brain regions implicated in PTSD and other psychiatric conditions.

Mechanisms by which PTSD may potentiate Oxidative Stress and 

Neurodegeneration

Chronic PTSD is a stress-perpetuating syndrome characterized by hallmark episodes of 

sensory-memory reexperiencing of the traumatic event(s). Intrusions and flashbacks are 

accompanied by phasic activation of fear-related neurocircuitry,56 elevated peripheral 

autonomic nervous system activity,57,58 and enhanced cortisol and catecholamine 

output.59-62 In some patients, reexperiencing symptoms occur quite frequently. For example, 

one study found an average of 30 intrusions per week in patients awaiting treatment.63 Onset 

of intrusions can be spontaneous or triggered through exposure to stimuli reminiscent of the 

trauma,64,65 anniversaries of the event,66 or other adverse life events.67 These events occur 

against a backdrop of tonic hyperarousal characterized by sleep disruption, hypervigilance, 

anger, and dysphoria. Furthermore, chronic PTSD tends to be associated with other 

psychiatric comorbidities, most commonly, major depression, and anxiety- and substance-

related disorders.68-70 Thus, in chronic patients, a condition that often begins as an acute 

anxiety reaction evolves into a pervasive and persistent illness with systemic impacts 

throughout the body—a form of persistent life stress—with possible consequences including 

neurodegeneration and other forms of accelerated cellular aging.

The notion that trauma is associated with accelerated cellular aging has a foundation in 

literature and historical observations dating back hundreds of years. One famous example 

was Marie-Antoinette whose hair reportedly turned white with fear the night before her 

execution by guillotine in 1793. This phenomenon, often associated with intense fear or 

grief, has been reified in the medical nomenclature as “Marie-Antoinette Syndrome.”71 

Interestingly, it is believed to occur when hydrogen peroxide produced by OXS in the hair 

follicle causes the hair to lose its pigment, i.e., “the free radical theory of graying.”72 

Jelinek73 offered a fascinating review of this and other accounts of accelerated aging which 

together suggest that traumatic stress can render visible and permanent changes in the 

appearance of hair, skin, other physical attributes—all changes normally associated with 

aging, and all with established links to OXS.
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HPA-Axis Activation

Though research on links between PTSD and OXS is in its infancy, evidence points to 

chronic and repeated activation of the HPA-axis (i.e., via reexperiencing of the trauma) as an 

important pathway. The HPA-axis is a key neurobiological substrate of the stress response. 

Abnormalities in its functioning have long been implicated in the pathophysiology of 

PTSD74 and chronic and repeated activation of this system is understood as a primary 

mechanism of the deleterious effects of stress on the brain. The glucocorticoid-hippocampal 

atrophy model75 posits that glucocorticoids released during stress exert neurotoxic effects on 

the central nervous system, with the hippocampus particularly vulnerable due to its high 

density of glucocorticoid receptors. Numerous animal studies have shown that elevated 

glucocorticoid levels are associated with increased ROS and oxidative damage. For 

example, Constantini et al76 conducted a meta-analysis of 19 studies of vertebrate animals 

on effects of glucocorticoid administration on OXS parameters. Analyses revealed a mean 

effect size of r = 0.55 and also indicated that the longer the duration of glucocorticoid 

administration, the greater the oxidative damage. Other studies have shown that OXS is 

involved in mediating the effects of glucocorticoids on neurodegeneration. For example, 

Sato and colleagues77 demonstrated that subcutaneous corticosterone administration induces 

lipid and protein oxidation and suppresses antioxidant enzyme activity in the rat 

hippocampus. These effects were associated with damage to pyramidal cells and neuronal 

cell death, which, in turn, were linked to memory impairment on a maze learning task. 

Similarly, corticosteroid treatment and chronic restraint stress have been shown to reduce 

antioxidant levels in the brain of rats.78 Other animal studies that provide causal support for 

the role of glucocorticoids in OXS-related neurodegeneration have shown that 

glucocorticoids cause oxidative damage to neurons by increasing glutamate and calcium 

while decreasing antioxidant enzymes.79,80 Thus, evidence points to chronic threat-related 

HPA-axis activation as an important mechanism of glucocorticoid-related OXS damage and 

suggest that these processes may be relevant also to PTSD.

Sleep Disturbance

Another process that may have bearing on the potential link between PTSD and OXS is 

sleep disturbance—a common symptom of PTSD that manifests as recurrent nightmares, 

restless sleep, and difficulty falling and staying asleep.81,82 During sleep, neural activity, 

including glucose metabolism and oxidation processes, is reduced which tips the oxidant/

antioxidant balance in favor of antioxidant processes. This is a fundamental mechanism of 

the restorative function of sleep and is supported by human studies that have found 

reductions in antioxidant agents and increases in OXS biomarkers following laboratory-

induced sleep deprivation83 and in patients with primary insomnia.84 Sleep is increasingly 

recognized as essential to maintaining optimal neural functioning, detoxifying the brain, and 

stimulating neural restoration.85,86 Prolonged periods of wakefulness result in the 

accumulation of ROS in the brain due to the high conversion of oxygen into energy needed 

to maintain wakefulness.87 Animal studies have shown that sleep deprivation causes OXS in 

the hippocampus and deficits in memory and that these effects can be blocked with 

antioxidant agents.88 Similarly, increases in anxiety-like behaviors and higher 

concentrations of OXS have been found in the cortex, hippocampus, and amygdala of rats 
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following sleep deprivation.53 In sum, these studies suggest a causal link between sleep 

deprivation and OXS and indicate that sleep disturbance promotes OXS in the brain by 

interrupting elimination of free radicals, which, in turn, contributes to cognitive decline and 

neurodegeneration.

Neurodegeneration in PTSD

The foregoing is consistent with the hypothesis that chronic PTSD, through its impact on 

HPA-axis function, sleep deprivation, and likely other mechanisms as well, is associated 

with elevated OXS, and that over time, this condition may lead to neurodegeneration. 

Consistent with this, clinical structural neuroimaging studies have repeatedly found 

associations between PTSD and loss of neural integrity in the hippocampus, amygdala, 

medial prefrontal and anterior cingulate cortices (though there have been replication failures 

as well; for reviews, see Kuhn et al.89 and Pitman et al.90). Furthermore, emerging research 

suggests that PTSD-related neurodegeneration may be linked to the duration and severity of 

the illness such that the longer an individual lives with PTSD, the greater the impact on 

neural integrity. Lindemer and colleagues91 examined PTSD-related changes in cortical 

thickness using a novel index of the “cumulative lifetime burden” of PTSD reflecting both 

the duration and severity of illness. They found positive associations between this measure 

and reduction in cortical thickness in frontal, temporal, occipital, and insular regions. 

Similarly, other studies have found correlations between lifetime trauma load (i.e., total 

number of lifetime exposures) and reduced volume of cortical and subcortical 

structures.92,93 Postmortem studies have implicated OXS in these changes. For example, Su 

et al94 found 6 genes involved in the oxidative phosphorylation pathway to be differentially 

expressed in dorsolateral prefrontal cortex in post-mortem brain tissue of PTSD patients 

compared to controls. In sum, accumulating evidence suggests that PTSD, in its chronic 

form, is associated with neurodegeneration. We propose that this relationship may be 

explained, in part, by various OXS-promoting symptoms of the disorder, including repeated 

HPA-axis activation and sleep disturbance.

Genetic Factors, OXS, and Neurodegeneration in PTSD

The complex defense network of anti-oxidant enzymes and other molecules that respond to 

excessive accumulation of ROS is regulated by an equally sophisticated network of genes 

that confer individual differences in OXS response. Candidate gene and genomewide 

association studies (GWAS) in various species have linked numerous polymorphisms to 

OXS resistance95 and twin studies in humans have found levels of peripheral biomarkers of 

OXS to be highly heritable.96 Though OXS-related genes have been the focus of extensive 

research in neurodegenerative diseases, relatively few studies have examined their possible 

association with anxiety- or stress-related phenotypes. One important exception to this was a 

study by Hovatta et al97 who examined gene expression levels across various brain regions 

in strains of mice that were genetically-modified to manifest different levels of anxious 

behavior. By experimentally manipulating OXS-related gene expression, Hovatta et al97 

showed that two genes that produce anti-oxidant enzymes (glyoxalase 1 and glutathione 

reductase 1) in the cingulate cortex modulated anxious behavior on several validated 

laboratory tasks. Subsequent animal studies have shown that the association between 
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glyoxalase 1 and anxious behavior may be mediated by methylglyoxal, a GABAA receptor 

agonist (the latter being the primary molecular target of the benzodiazepine class of 

anxiolytic drugs).98

Other evidence supporting a possible link between OXS-related genes and stress-related 

phenotypes came from a GWAS of PTSD, which implicated a gene with a known role in 

moderating OXS as a significant risk locus for the disorder. Logue et al99 performed a 

GWAS using a sample of trauma-exposed veterans and their spouses and found a genome-

wide-significant association between a SNP in the Retinoic Acid Orphan Receptor Alpha 

gene (RORA; rs8042149) and a diagnosis of PTSD in Caucasians. Subsequently, an 

independent research group published a replication of the rs8042149-PTSD association,100 

and in another study, Miller and colleagues101 found that RORA SNP rs17303244 was 

associated with diagnoses of the fear spectrum (i.e., defined by panic, agoraphobia, specific 

phobia, and obsessive-compulsive disorders). Prior to this, RORA had been implicated in 

GWAS studies as a risk factor for various other psychiatric conditions including attention-

deficit hyperactivity disorder,102 bipolar disorder,103 depression,104 and autism.105,106

The RORA protein has four isoforms, one of which is expressed primarily in the central 

nervous system and found in cell nuclei in brain regions including the frontal cortex, 

hippocampus, and hypothalamus.107 Its expression is activated during OXS,108 and it 

protects neurons from apoptosis by increasing the expression of genes involved in the 

clearance of ROS (Gpx1 and Prx6).109 Miller et al101 hypothesized that the neurons of 

individuals carrying the RORA risk variant(s) mount an abnormal response to the OXS 

associated with PTSD, leading to neurodegeneration and functional abnormalities in regions 

of the brain subserving fear- and anxiety-related psychopathology. Consistent with this, 

RORA SNP variants have been linked in genetic-imaging studies to global measures of 

human cortical thickness and fractional anisotropy of cerebral white matter,110 as well as to 

volume of the entorhinal cortex, the main interface between the hippocampus and 

neocortex.111 Moreover, in the latter study, RORA SNPs were highly correlated with 

Alzheimer’s disease-related atrophy. These findings point to the potential value of 

examining the role that RORA variants and other OXS-related genes play in moderating the 

effects of PTSD on neural integrity and brain morphology.

Directions for Future Research

Recent advances in the field of molecular genetics offer new directions for research into 

mechanisms of accelerated aging and its possible links to PTSD and OXS. Telomeres, which 

are nucleotide sequences located at the ends of chromatids that erode with normal aging as a 

result of repeated DNA replication, offer one potential metric of this process. Telomere 

shortening is accelerated by OXS through its effects on telomerase—an enzyme that 

maintains telomere length—whereas antioxidants decelerate telomere shortening and 

prolong telomerase activity.112 Preliminary studies linking adverse life events113,114 and 

PTSD to telomere shortening115-117 point to the value of using telomeres in future research 

to measure accelerated aging in PTSD. For example, one recent cross-sectional study found 

lower relative leukocyte telomere length in veterans with probable PTSD than age-matched 

controls.118

Miller and Sadeh Page 7

Mol Psychiatry. Author manuscript; available in PMC 2015 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



DNA methylation profiling offers another approach. DNA methylation is the addition of a 

methyl group to the DNA base cytosine in regions known as CpG sites where a cytosine 

nucleotide occurs next to a guanine nucleotide (i.e., a C—phosphate—G sequence). 

Methylation in the promoter region of genes causes gene silencing and thereby represents a 

process by which gene expression is regulated. Methylation levels generally decrease with 

age, though certain regions show opposite effects. These processes are influenced by OXS 

via the oxidation of guanine in the CpG sequence.119-121 Thus, as with telomeres, the 

methylation status of certain genetic loci can be used to index cellular age and the rate of 

cellular aging. In a landmark study on the development of an “epigenetic clock”, Horvath122 

analyzed methylation data from 8,000 samples of 51 different tissue types and identified 353 

sites that together offered a near-perfect predictor of age for non-cancerous tissues. Future 

studies of the accelerated aging hypothesis in PTSD may greatly benefit from the insights 

offered by this type of epigenetic clock.

In the treatment domain, an obvious direction for future research is to explore whether 

antioxidant compounds can prevent or slow OXS-related processes. Evidence supporting 

antioxidant supplements comes primarily from (a) in vitro studies demonstrating the 

antioxidant efficacy of Vitamins A, C, and E, (b) epidemiological nutrition studies showing 

the health benefits of antioxidant-rich diets (e.g., in reducing risk for Alzheimer’s 

disease123), and (c) mouse models showing that antioxidant supplements reduce OXS-

related mitochondrial damage.124 A few clinical studies have also yielded positive results. 

For example, one randomized trial over 500 veterans with mild to moderate Alzheimer’s 

disease found that vitamin E significantly reduced the rate of functional decline and 

decreased caregiver burden over a two-year follow-up period compared to placebo.125 

Unfortunately, the majority of human clinical trials of antioxidant therapeutics have shown 

little benefit or inconclusive results.

There are a number of plausible explanations for the gap between the promise of antioxidant 

therapies and the generally disappointing findings of clinical trials (for a review, see Firuzi 

et al.).126 For one, it is likely that not all patients will benefit equally from antioxidant 

therapy. Given the substantial genetic individual differences in OXS reactivity, 

pharmacogenically-informed approaches may be needed to better match patients to specific 

antioxidant therapeutics. Another consideration is that most of the antioxidants studied 

operate globally with poor target specificity, whereas OXS damage may be limited to 

specific brain regions, cells types, or even certain membranes within cells. An antioxidant 

compound that offers a more targeted delivery is the mitochondria-targeted antioxidant 

SS31, which has been shown, in vitro, to protect neurons from neurotoxins.127 Similarly, L-

carnitine, which works as a free radical scavenger, readily crosses the blood–brain barrier128 

and has been found to reduce OXS damage in brain tissue, and enhance functional outcomes 

in patients with mood disorders, neurometabolic disorders, and Alzheimer’s disease.129-131 

Thus, more targeted treatments and/or pharmacogenetically-informed approaches remain 

important directions for future intervention studies.
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Caveats and Conclusions

We have reviewed evidence suggesting that chronic PTSD constitutes a form of persistent 

life stress that potentiates OXS and accelerates cellular aging. However, the evidence that 

led to this hypothesis is indirect and no studies have established a causal link between PTSD 

and OXS, or demonstrated that PTSD confers a greater risk for OXS and accelerated aging 

relative to other mental illnesses or stress-related conditions. Furthermore, we recognize 

though that OXS is just one of many possible molecular mechanisms for accelerated aging 

and note that other pathways such as pro-inflammatory signaling pathways that are 

reciprocally related to OXS are undoubtedly involved as well. We focused on OXS because, 

despite the evidence that we and others have laid out for its role in stress-related 

mechanisms of psychopathology and disease, it has received relatively little attention in the 

field of traumatic stress. In doing so, we hoped to elevate awareness of the relevance of 

OXS to PTSD and its comorbidities and to stimulate new research on accelerated aging in 

PTSD and other disorders of the trauma- and stressor-related disorder spectrum. Finally, 

given the seemingly ubiquitous role of OXS in aging and disease, it is untenable to 

conceptualize it as stress- or PTSD-specific mechanism. Rather, OXS is more appropriately 

viewed as molecular mechanism of disease and aging common to many illnesses but one 

that it may also be initiated or potentiated by traumatic stress, chronic PTSD and related 

conditions. As such, it represents a potentially useful avenue for future PTSD-related 

biomarker research and treatment development.

Acknowledgements

Preparation of this manuscript was supported by National Institute on Mental Health award R21MH102834 and a 
Department of Veterans Affairs Merit Review Grant (1I01BX002150-01) awarded to MWM.

References

1. Kessler RC, Sonnega A, Bromet E, Hughes M, Nelson CB. Posttraumatic stress disorder in the 
National Comorbidity Survey. Arch Gen Psychiatry. 1995; 52:1048–1060. [PubMed: 7492257] 

2. Kessler RC. Posttraumatic stress disorder: the burden to the individual and to society. J Clin 
Psychiatry. 2000; 61(Suppl 5):4–12. [PubMed: 10761674] 

3. Solomon SD, Davidson JR. Trauma: prevalence, impairment, service use, and cost. J Clin 
Psychiatry. 1997; 58(Suppl 9):5–11. [PubMed: 9329445] 

4. Agyemang C, Goosen S, Anujuo K, Ogedegbe G. Relationship between post-traumatic stress 
disorder and diabetes among 105,180 asylum seekers in the Netherlands. Eur J Public Health. 2012; 
22:658–662. [PubMed: 21953061] 

5. Boscarino JA. A prospective study of PTSD and early-age heart disease mortality among Vietnam 
veterans: implications for surveillance and prevention. Psychosom Med. 2008; 70:668–676. 
[PubMed: 18596248] 

6. Afari N, Ahumada SM, Wright LJ, Mostoufi S, Golnari G, Reis V, et al. Psychological trauma and 
functional somatic syndromes: a systematic review and meta-analysis. Psychosom Med. 2014; 
76:2–11. [PubMed: 24336429] 

7. Burri A, Maercker A, Krammer S, Simmen-Janevska K. Childhood trauma and PTSD symptoms 
increase the risk of cognitive impairment in a sample of former indentured child laborers in old age. 
PLoS One. 2013; 8:e57826. [PubMed: 23469076] 

8. Yaffe K, Vittinghoff E, Lindquist K, Barnes D, Covinsky KE, Neylan T, et al. Posttraumatic stress 
disorder and risk of dementia among US veterans. Arch Gen Psychiatry. 2010; 67:608–613. 
[PubMed: 20530010] 

Miller and Sadeh Page 9

Mol Psychiatry. Author manuscript; available in PMC 2015 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



9. Schiavone S, Jaquet V, Trabace L, Krause K. Severe life stress and oxidative stress in the brain: 
from animal models to human pathology. Antioxid Redox Signal. 2013; 18:1475–1490. [PubMed: 
22746161] 

10. Hovatta I, Juhila J, Donner J. Oxidative stress in anxiety and comorbid disorders. Neurosci Res. 
2010; 68:261–275. [PubMed: 20804792] 

11. Li J, O W, Li W, Jiang ZG, Ghanbari HA. Oxidative stress and neurodegenerative disorders. Int J 
Mol Sci. 2013; 14:24438–24475. [PubMed: 24351827] 

12. Palta P, Samuel LJ, Miller ER 3rd, Szanton SL. Depression and oxidative stress: results from a 
meta-analysis of observational studies. Psychosom Med. 2014; 76:12–19. [PubMed: 24336428] 

13. Epel ES. Psychological and metabolic stress: a recipe for accelerated cellular aging? Hormones. 
2009; 8:7–22. [PubMed: 19269917] 

14. Apel K, Hirt H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. 
Annu Rev Plant Biol. 2004; 55:373–399. [PubMed: 15377225] 

15. Riley PA. Free radicals in biology: oxidative stress and the effects of ionizing radiation. IJRB. 
1994; 65:27–33. [PubMed: 7905906] 

16. Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000; 
408:239–247. [PubMed: 11089981] 

17. Ceriello A, Motz E. (2004). Is oxidative stress the pathogenic mechanism underlying insulin 
resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. 
Arterioscler Thromb Vasc Biol. 2004; 24:816–823. [PubMed: 14976002] 

18. Pace GW, Leaf CD. The role of oxidative stress in HIV disease. Free Radic Biol Med. 1995; 
19:523–528. [PubMed: 7590404] 

19. Barnham KJ, Masters CL, Bush AI. Neurodegenerative diseases and oxidative stress. Nat Rev 
Drug Discov. 2004; 3:205–214. [PubMed: 15031734] 

20. Fukagawa NK. Aging: is oxidative stress a marker or is it causal? Proc Soc Exp Biol Med. 1999; 
222:293–298. [PubMed: 10601888] 

21. Floyd RA, Hensley K. Oxidative stress in brain aging: implications for therapeutics of 
neurodegenerative diseases. Neurobiol Aging. 2002; 23:795–807. [PubMed: 12392783] 

22. Uttara B, Singh AV, Zamboni P, Mahajan RT. Oxidative stress and neurodegenerative diseases: a 
review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol. 2009; 
7:65–74. [PubMed: 19721819] 

23. Smith CD, Carney JM, Starke-Reed PE, Oliver CN, Stadtman ER, Floyd RA, et al. Excess brain 
protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proc Natl 
Acad Sci U S A. 1991; 88:10540–10543. [PubMed: 1683703] 

24. Emerit J, Edeas M, Bricaire F. Neurodegenerative diseases and oxidative stress. Biomed 
Pharmacother. 2004; 58:39–46. [PubMed: 14739060] 

25. Keller JN, Schmitt FA, Scheff SW, Ding Q, Chen Q, Butterfield DA, et al. Evidence of increased 
oxidative damage in subjects with mild cognitive impairment. Neurology. 2005; 64:1152–1156. 
[PubMed: 15824339] 

26. Pratico D, Clark CM, Liun F, Lee VYM, Trojanowski JQ. Increase of brain oxidative stress in mild 
cognitive impairment: a possible predictor of Alzheimer disease. Arch Neurol. 2002; 59:972. 
[PubMed: 12056933] 

27. Nunomura A, Honda K, Takeda A, Hirai K, Zhu X, Smith MA, et al. Oxidative damage to RNA in 
neurodegenerative diseases. J Biomed Biotechnol. 2006; 2006:1–6.

28. Shan X, Lin CLG. Quantification of oxidized RNAs in Alzheimer’s disease. Neurobiol Aging. 
2006; 27:657–662. [PubMed: 15979765] 

29. Kikuchi A, Takeda A, Onodera H, Kimpara T, Hisanaga K, Sato N, et al. Systemic increase of 
oxidative nucleic acid damage in Parkinson’s disease and multiple system atrophy. Neurobiol Dis. 
2002; 9:244–248. [PubMed: 11895375] 

30. Zhang Y, Dawson VL, Dawson TM. Oxidative stress and genetics in the pathogenesis of 
Parkinson’s disease. Neurobiol Dis. 2000; 7:240–250. [PubMed: 10964596] 

31. Il’yasova D, Scarbrough P, Spasojevic I. Urinary biomarkers of oxidative status. Clinica Chimica 
Acta. 2012; 413:1446–1453.

Miller and Sadeh Page 10

Mol Psychiatry. Author manuscript; available in PMC 2015 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



32. Monaghan P, Metcalfe NB, Torres R. Oxidative stress as a mediator of life history trade offs: 
mechanisms, measurements and interpretation. Ecology letters. 2009; 12:75–92. [PubMed: 
19016828] 

33. Somogyi A, Rosat K, Pusztai P, Tulassay Z, Nagy G. Antioxidant measurements. Physiol Meas. 
2007; 28:R41–R55. [PubMed: 17395989] 

34. Montuschi P, Barnes PJ, Roberts LJ. Isoprostanes: markers and mediators of oxidative stress. 
FASEB J. 2004; 18:1791–1800. [PubMed: 15576482] 

35. Fedorova M, Bollineno RC, Hoffman R. Protein carbonylation as a major hallmark of oxidative 
damage: update of analytic strategies. Mass Spec Rev. 2013:79–97.

36. Miller GE, Chen E, Parker KJ. Psychological stress in childhood and susceptibility to the chronic 
diseases of aging: moving toward a model of behavioral and biological mechanisms. Psychol Bull. 
2011; 137:959–997. [PubMed: 21787044] 

37. Gidron Y, Russ K, Tissarchondou H, Warner J. The relation between psychological factors and 
DNA-damage: a critical review. Biol Psychol. 2006; 72:291–304. [PubMed: 16406268] 

38. Aschbacher K, O’Donovan A, Wolkowitz OM, Dhabhar FS, Su Y, Epel E. Good stress, bad stress 
and oxidative stress: insights from anticipatory cortisol reactivity. Psychoneuroendocrinology. 
2013; 38:1698–1708. [PubMed: 23490070] 

39. Lesgards JF, Durand P, Lassarre M, Stocker P, Lesgards G, Lanteaume A, et al. Assessment of 
lifestyle effects on the overall antioxidant capacity of healthy subjects. Environ Health Perspect. 
2002; 110:479–486. [PubMed: 12003751] 

40. Cohen L, Marshall GD Jr, Cheng L, Agarwal SK, Wei Q. DNA repair capacity in healthy medical 
students during and after exam stress. J Behav Med. 2000; 23:531–544. [PubMed: 11199086] 

41. Nakhaee A, Shahabizadeh F, Erfani M. Protein and lipid oxidative damage in healthy students 
during and after exam stress. Physiol Behav. 2013 e-pub ahead of print 18 May 2013; doi: 
10.1016/j.physbeh.2013.05.028. 

42. Sivonová M, Zitnanová I, Hlincíková L, Skodácek I, Trebatická J, Duracková Z. Oxidative stress 
in university students during examinations. Stress. 2004; 7:183–188. [PubMed: 15764015] 

43. Irie M, Asami S, Nagata S, Ikeda M, Miyata M, Kasai H. Psychosocial factors as a potential trigger 
of oxidative DNA damage in human leukocytes. Jpn J Cancer Res. 2001; 92:367–76. [PubMed: 
11267949] 

44. Forlenza MJ, Miller GE. Increased serum levels of 8-hydroxy-2′-deoxyguanosine in clinical 
depression. Psychosom Med. 2006; 68:1–7. [PubMed: 16449405] 

45. Irie M, Asami S, Ikeda M, Kasai H. Depressive state relates to female oxidative DNA damage via 
neutrophil activation. Biochem Biophys Res Commun. 2003; 311:1014–1018. [PubMed: 
14623283] 

46. Irie M, Miyata M, Kasai H. Depression and possible cancer risk due to oxidative DNA damage. J 
Psychiatr Res. 2005; 39:553–560. [PubMed: 16005897] 

47. Stefanescu C, Ciobica A. The relevance of oxidative stress status in first episode and recurrent 
depression. J Affect Disord. 2012; 143:34–38. [PubMed: 22840610] 

48. Bulut M, Selek S, Bez Y, Karababa IF, Kaya MC, Gunes M, et al. Reduced PON1 enzymatic 
activity and increased lipid hydroperoxide levels that point out oxidative stress in generalized 
anxiety disorder. J Affect Disord. 2013; 150:829–33. [PubMed: 23706841] 

49. Ozdemir O, Selvi Y, Ozkol H, Tuluce Y, Besiroglu L, Aydin A. Comparison of superoxide 
dismutase, glutathione peroxidase and adenosine deaminase activities between respiratory and 
nocturnal subtypes of patients with panic disorder. Neuropsychobiology. 2012; 66:244–251. 
[PubMed: 23095458] 

50. Adachi S, Kawamura K, Takemoto K. Oxidative damage of nuclear DNA in liver of rats exposed 
to psychological stress. Cancer Res. 1993; 53:4153–4155. [PubMed: 8364908] 

51. Irie M, Asami S, Nagata S, Miyata M, Kasai H. Classical conditioning of oxidative DNA damage 
in rats. Neurosci Lett. 2000; 288:13–16. [PubMed: 10869804] 

52. Núñez MJ, Novío S, Amigo G, Freire-Garabal M. The antioxidant potential of alprazolam on the 
redox status of peripheral blood leukocytes in restraint-stressed mice. Life Sci. 2011; 89:650–654. 
[PubMed: 21851827] 

Miller and Sadeh Page 11

Mol Psychiatry. Author manuscript; available in PMC 2015 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



53. Vollert C, Zagaar M, Hovatta I, Taneja M, Vu A, Dao A, et al. Exercise prevents sleep deprivation-
associated anxiety-like behavior in rats: potential role of oxidative stress mechanisms. Behav 
Brain Res. 2011; 224:233–240. [PubMed: 21621560] 

54. Salim S, Asghar M, Chugh G, Taneja M, Xia Z, Saha K. Oxidative stress: a potential recipe for 
anxiety, hypertension and insulin resistance. Brain Res. 2010; 1359:178–185. [PubMed: 
20816762] 

55. Wilson CB 1, McLaughlin LD, Nair A, Ebenezer PJ, Dange R, Francis J. Inflammation and 
oxidative stress are elevated in the brain, blood, and adrenal glands during the progression of post-
traumatic stress disorder in a predator exposure animal model. PLoS One. 2013; 8:e76146. 
[PubMed: 24130763] 

56. Shin LM, Liberzon I. The neurocircuitry of fear, stress, and anxiety disorders. 
Neuropsychopharmacology. 2010; 35:169–191. [PubMed: 19625997] 

57. Keane TM, Kolb LC, Kaloupek DG, Orr SP, Blanchard EB, Thomas RG, et al. Utility of 
psychophysiological measurement in the diagnosis of posttraumatic stress disorder: results from a 
Department of Veterans Affairs cooperative study. J Consult Clin Psych. 1998; 66:914–923.

58. Pole N. The psychophysiology of posttraumatic stress disorder: a meta-analysis. Psychol Bull. 
2007; 137:725–746. [PubMed: 17723027] 

59. Bremner JD, Vythilingam M, Vermetten E, Adil J, Khan S, Nazeer A, et al. Cortisol response to a 
cognitive stress challenge in posttraumatic stress disorder (PTSD) related to childhood abuse. 
Psychoneuroendocrinology. 2003; 28:733–750. [PubMed: 12812861] 

60. Elzinga BM, Schmahl CG, Vermetten E, van Dyck R, Bremner JD. Higher cortisol levels 
following exposure to traumatic reminders in abuse-related PTSD. Neuropsychopharmacology. 
2003; 28:1656–1665. [PubMed: 12838270] 

61. Geracioti TD, Baker DG, Kasckow JW, Strawn JR, Mulchahey JJ, Dashevsky BA, et al. Effects of 
trauma-related audiovisual stimulation on cerebrospinal fluid norepinephrine and corticotropin-
releasing hormone concentrations in post-traumatic stress disorder. Psychoneuroendocrinology. 
2008; 33:416–424. [PubMed: 18295412] 

62. Liberzon I, Abelson JL, Flagel SB, Raz J, Young EA. Neuroendocrine and psychophysiologic 
responses in PTSD: a symptom provocation study. Neuropsychopharmacology. 1999; 21:40–50. 
[PubMed: 10379518] 

63. Hackmann A, Ehlers A, Speckens A, Clark DM. Characteristics and content of intrusive memories 
in PTSD and their changes with treatment. J Trauma Stress. 2004; 17:213–240. [PubMed: 
15253093] 

64. Kleim B, Graham B, Bryant RA, Ehlers A. Capturing intrusive re-experiencing in trauma 
survivors’ daily lives using ecological momentary assessment. J Abnorm Psychol. 2013; 122:998–
1009. [PubMed: 24364602] 

65. Miller MW, Wolf EJ, Hein C, Prince L, Reardon A. Psychological effects of the marathon 
bombing on Boston-area veterans with posttraumatic stress disorder. J Trauma Stress. 2013 e-pub 
ahead of print 8 November 2013; doi: 10.1002/jts.21865. 

66. Morgan CA, Hill S, Fox P, Kingham P, Southwick SM. Anniversary reactions in Gulf War 
veterans: a follow-up inquiry 6 years after the war. Am J Psychiatry. 1999; 156:1075–1079. 
[PubMed: 10401455] 

67. Andrews B, Brewin CR, Stewart L, Philpott R, Hejdenberg J. Comparison of immediate-onset and 
delayed-onset posttraumatic stress disorder in military veterans. J Abnorm Psychol. 2009; 
118:767–777. [PubMed: 19899846] 

68. Breslau N, Davis GC, Peterson EL, Schultz LR. A second look at comorbidity in victims of 
trauma: the posttraumatic stress disorder-major depression connection. Biol Psychiatry. 2000; 
48:902–909. [PubMed: 11074228] 

69. Brown TA, Campbell LA, Lehman CL, Grisham JR, Mancill RB. Current and lifetime comorbidity 
of the DSM-IV anxiety and mood disorders in a large clinical sample. J Abnorm Psychol. 2001; 
110:585–599. [PubMed: 11727948] 

70. O’Donnell ML, Creamer M, Pattison P. Posttraumatic stress disorder and depression following 
trauma: understanding comorbidity. Am J Psychiatry. 2004; 161:1390–1396. [PubMed: 15285964] 

Miller and Sadeh Page 12

Mol Psychiatry. Author manuscript; available in PMC 2015 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



71. Weissmann G. Post-traumatic stress disorder: Obama, Palin and Marie-Antoinette. FASEB J. 
2009; 23:3253–3256. [PubMed: 19797298] 

72. Arck PC, Overall R, Spatz K, Liezman C, Handjiski B, Klapp BF, et al. Towards a “free radical 
theory of graying”: melanocyte apoptosis in the aging human hair follicle is an indicator of 
oxidative stress induced tissue damage. FASEB J. 2006; 23:2065–2075.

73. Jelinek JE. Sudden whitening of the hair. Bull N Y Acad Med. 1972; 48:1003–1013. [PubMed: 
4560480] 

74. Rasmusson AM, Vythilingam M, Morgan CA 3rd. The neuroendocrinology of posttraumatic stress 
disorder: new directions. CNS Spectr. 2003; 8:651–656. [PubMed: 15079139] 

75. Sapolsky RM. Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch Gen 
Psychiatry. 2000; 57:925–935. [PubMed: 11015810] 

76. Costantini D, Marasco V, Møller AP. A meta-analysis of glucocorticoids as modulators of 
oxidative stress in vertebrates. J Comp Physiol [B]. 2011; 181:447–456.

77. Sato H, Takahashi T, Sumitani K, Takatsu H, Urano S. Glucocorticoid generates ROS to induce 
oxidative injury in the hippocampus, leading to impairment of cognitive function of rats. J Clin 
Biochem Nutr. 2010; 47:224–232. [PubMed: 21103031] 

78. Zafir A, Banu N. Modulation of in vivo oxidative status by exogenous corticosterone and restraint 
stress in rats. Stress. 2008; 12:167–177. [PubMed: 18850490] 

79. Joergensen A, Broedbaek K, Weimann A, Semba RD, Ferrucci L, Joergensen MB, et al. 
Association between urinary excretion of cortisol and markers of oxidatively damaged DNA and 
RNA in humans. PloS One. 2011; 6:e20795. [PubMed: 21687734] 

80. McIntosh LJ, Sapolsky RM. Glucocorticoids may enhance oxygen radical-mediated neurotoxicity. 
Neurotoxicology. 1996; 17:873–82. [PubMed: 9086511] 

81. Calhoun PS, Wiley M, Dennis MF, Means MK, Edinger JD, Beckham JC. Objective evidence of 
sleep disturbance in women with posttraumatic stress disorder. J Trauma Stress. 2007; 20:1009–
1018. [PubMed: 18157880] 

82. Kobayashi I, Boarts JM, Delahanty DL. Polysomnographically measured sleep abnormalities in 
PTSD: a meta-analytic review. Psychophysiology. 2007; 44:660–669. [PubMed: 17521374] 

83. Alzoubi KH, Khabour OF, Rashid BA, Damaj IM, Salah HA. The neuroprotective effect of 
vitamin E on chronic sleep deprivation-induced memory impairment: the role of oxidative stress. 
Behav Brain Res. 2012; 226:205–210. [PubMed: 21944940] 

84. Gulec M, Ozkol H, Selvi Y, Tuluce Y, Aydin A, Besiroglu L, et al. Oxidative stress in patients 
with primary insomnia. Prog Neuropsychopharmacol Biol Psychiatry. 2012; 37:247–251. 
[PubMed: 22401887] 

85. McEwen BS. Sleep deprivation as a neurobiologic and physiologic stressor: allostasis and 
allostatic load. Metabolism. 2006; 55:S20–S23. [PubMed: 16979422] 

86. Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, et al. Sleep drives metabolite clearance 
from the adult brain. Science. 2013; 342:373–377. [PubMed: 24136970] 

87. Reimund E. The free radical flux theory of sleep. Med Hypotheses. 1994; 43:231–233. [PubMed: 
7838006] 

88. Silva RH, Abilio VC, Takatsu AL, Kameda SR, Grassl C, Chehin AB, et al. Role of hippocampal 
oxidative stress in memory deficits induced by sleep deprivation in mice. Neuropharmacology. 
2004; 46:895–903. [PubMed: 15033349] 

89. Kühn S, Gallinat J. Gray matter correlates of posttraumatic stress disorder: a quantitative meta-
analysis. Biol Psychiatry. 2013; 73:70–74. [PubMed: 22840760] 

90. Pitman RK, Rasmusson AM, Koenen KC, Shin LM, Orr SP, Gilbertson MW, et al. Biological 
studies of post-traumatic stress disorder. Nat Rev Neurosci. 2012; 13:769–87. [PubMed: 
23047775] 

91. Lindemer ER, Salat DH, Leritz EC, McGlinchy RE, Millberg WP. Reduced cortical thickness with 
increased lifetime burden of PTSD in OEF-OIF veterans and the impact of comorbid TBI. 
Neuroimage. 2013; 2:601–611. [PubMed: 24179811] 

92. Nardo D, Högberg G, Looi JCL, Larsson S, Hällström T, Pagani M. Gray mater density in limbic 
and paralimbic cortices is associated with trauma load and EMDR outcome in PTSD patients. J 
Psychiatr Res. 2010; 44:477–485. [PubMed: 19942229] 

Miller and Sadeh Page 13

Mol Psychiatry. Author manuscript; available in PMC 2015 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



93. Herringa R, Phillips M, Almeida J, Insana S, Germain A. Post-traumatic stress symptoms 
correlated with smaller subgenual congulate, caudate, and insula volumes in unmedicated combat 
veterans. Psychiatr Research. 2012; 203:139–145.

94. Su YA, Wu J, Zhang L, Zhang Q, Su DM, He P, et al. Dysregulated mitochondrial genes and 
networks with drug targets in postmortem brain of patients with posttraumatic stress disorder 
(PTSD) revealed by human mitochondria-focused cDNA microarrays. Int J Biol Sci. 2008; 4:223–
235. [PubMed: 18690294] 

95. Weber AL, Khan GF, Magwire MM, Tabor CL, Mackey TF, Anholt RR. Genome-wide 
association analysis of oxidative stress resistance in Drosophila melanogaster. PLOS One. 2012; 
7:e34745. [PubMed: 22496853] 

96. Leslie RD, Beyan H, Sawtell P, Boehm BO, Spector TD, Snieder H. Level of an advanced glycated 
end product is genetically determined: a study of normal twins. Diabetes. 2003; 52:2441–2444. 
[PubMed: 12941787] 

97. Hovatta I, Tennant RS, Helton R, Marr RA, Singer O, Redwine JM, et al. Glycoxalase 1 and 
glutathione reductase 1 regulate anxiety in mice. Nature. 2005; 438:662–666. [PubMed: 
16244648] 

98. Distler MG, Plant LD, Sokoloff G, Hawk AJ, Aneas I, Wuenschell GE, et al. Glyoxalase 1 
increases anxiety by reducing GABAA receptor agonist methylglyoxal. J Clin Invest. 2012; 
122:2306–2315. [PubMed: 22585572] 

99. Logue MW, Baldwin C, Guffanti G, Melista E, Wolf EJ, Reardon AF, et al. A genome-wide 
association study of post-traumatic stress disorder identifies the retinoid-related orphan receptor 
alpha (RORA) gene as a significant risk locus. Mol Psychiatry. 2012; 18:937–942. [PubMed: 
22869035] 

100. Amstadter AB, Sumner JA, Acierno R, Ruggiero KJ, Koenen KC, Kilpatrick DG, et al. Support 
for association of RORA variant and post traumatic stress symptoms in a population-based study 
of hurricane exposed adults. Mol Psychiatry. 2013; 18:1148–1149. [PubMed: 23319003] 

101. Miller MW, Wolf EJ, Logue M, Baldwin C. The retinoid-related orphan receptor alpha (RORA) 
gene and fear-related psychopathology. J Affect Disord. 2013; 151:702–708. [PubMed: 
24007783] 

102. Neale BM, Lasky-Su J, Anney R, Franke B, Zhou K, Maller JB, et al. Genome-wide association 
scan of attention deficit hyperactivity disorder. Am J Med Genet. 2008; 147B:1337–1344. 
[PubMed: 18980221] 

103. Le-Niculescu H, Patel SD, Bhat M, Kuczenski R, Faraone SV, Tsuang MT, et al. Convergent 
functional genomics of genome-wide association data for bipolar disorder: comprehensive 
identification of candidate genes, pathways and mechanisms. Am J Med Genet. 2009; 150B:155–
181. [PubMed: 19025758] 

104. Garriock HA, Kraft JB, Shyn SI, Peters EJ, Yokoyama JS, Jenkins GD, et al. A genome-wide 
association study of citalopram response in major depressive disorder. Biol Psychiatry. 2010; 
67:133–138. [PubMed: 19846067] 

105. Nguyen A, Rauch TA, Pfeifer GP, Hu VW. Global methylation profiling of lymphoblastoid cell 
lines reveals epigenetic contributions to autism spectrum disorders and a novel autism candidate 
gene, RORA, whose protein product is reduced in autistic brain. FASEB J. 2010; 24:3036–3051. 
[PubMed: 20375269] 

106. Sarachana T, Xu M, Wu RC, Hu VW. Sex hormones in autism: androgens and estrogens 
differentially and reciprocally regulate RORA, a novel candidate gene for autism. PloS One. 
2011; 6:e17116. [PubMed: 21359227] 

107. Ino H. Immunohistochemical characterization of the orphan receptor ROR alpha in the mouse 
nervous system. J Histochem Cytochem. 2004; 52:311–323. [PubMed: 14966198] 

108. Zhu Y, McAvoy S, Kuhn R, Smith DI. RORA, a large common fragile site gene, is involved in 
cellular stress response. Oncogene. 2006; 25:2901–2908. [PubMed: 16462772] 

109. Boukhtouche F, Vodjdani G, Jarvis CI, Bakouche J, Staels B, Mallet J, et al. Human retinoic acid 
receptor-related orphan receptor alpha1 overexpression protects neurons against oxidative stress-
induced apoptosis. J Neurochem. 2006; 96:1778–1789. [PubMed: 16539693] 

Miller and Sadeh Page 14

Mol Psychiatry. Author manuscript; available in PMC 2015 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



110. Kochunov P, Glahn DC, Nichols TE, Winkler AM, Hong EL, Holcomb HH, et al. Genetic 
analysis of cortical thickness and fractional anisotropy of water diffusion in the brain. Front 
Neurosci. 2011; 5:120. [PubMed: 22028680] 

111. Furney SJ, Simmons A, Breen G, Pedroso I, Lunnon K, Proitsi P, et al. Genome-wide association 
with MRI atrophy measures as a quantitative trait locus for Alzheimer’s disease. Mol Psychiatry. 
2011; 16:1130–1138. [PubMed: 21116278] 

112. von Zglinicki T. Oxidative stress shortens telomeres. Trends Biochem Sci. 2002; 27:339–344. 
[PubMed: 12114022] 

113. Epel ES, Blackburn EH, Lin J, Dhabhar FS, Adler NE, Morrow JD, et al. Accelerated telomere 
shortening in response to life stress. Proc Natl Acad Sci U S A. 2004; 101:17312–17315. 
[PubMed: 15574496] 

114. Shalev I, Moffitt TE, Sugden K, Williams B, Houts RM, Danese A, et al. Exposure to violence 
during childhood is associated with telomere erosion from 5 to 10 years of age: a longitudinal 
study. Mol Psychiatry. 2013; 18:576. [PubMed: 22525489] 

115. Ladwig K-H, Brockhaus AC, Baumert J, Lukaschek K, Emeny RT, Kruse J, et al. Posttraumatic 
stress disorder and not depression is associated with shorter leukocyte telomere length: findings 
from 3,000 participants in the population-based KORA F2 study. PLoS One. 2013; 8

116. O’Donovan A, Pantell MS, Puterman E, Dhabhar FS, Blackburn EH, Yaffe K, et al. Cumulative 
inflammatory load is associated with short leukocyte telomere length in the Health, Aging and 
Body Composition Study. PloS One. 2011; 6:e19687. [PubMed: 21602933] 

117. Shalev I, Moffitt TE, Braithwaite AW, Danese A, Fleming NI, Goldman-Mellor S, et al. 
Internalizing disorders and leukocyte telomere erosion: a prospective study of depression, 
generalized anxiety disorder and post-traumatic stress disorder. Mol Psychiatry. 2014 e-pub 
ahead of print 14 Jan 2014; doi: 10.1038/mp.2013.183. 

118. Zhang L, Hu XZ, Benedek DM, Fullerton CS, Forsten RD, Naifeh JA, et al. The interaction 
between stressful life events and leukocyte telomere length is associated with PTSD. Mol 
Psychiatry. 2013 e-pub ahead of print 5 Nov 2013; doi: 10.1038/mp.2013.141. 

119. Bellizzi D, D’Aquila P, Montesanto A, Corsonello A, Mari V, Mazzei B, et al. Global DNA 
methylation in old subjects is correlated with frailty. Age. 2012; 34:169–179. [PubMed: 
21336567] 

120. Cencioni C, Spallotta F, Martelli F, Valente S, Mai A, Zeiher AM, et al. Oxidative stress and 
epigenetic regulation in ageing and age-related diseases. Int J Mol Sci. 2013; 14:17643–17663. 
[PubMed: 23989608] 

121. Johnson AA, Akman K, Calimport SR, Wuttke D, Stolzing A, de Magalhães JP. The role of DNA 
methylation in aging, rejuvenation, and age-related disease. Rejuvenation Res. 2012; 15:483–
494. [PubMed: 23098078] 

122. Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013 e-pub 
ahead of print 21 October 2013; doi:10.1186/gb-2013-14-10-r115. 

123. Engelhart MJ, Geerlings MI, Ruitenberg A, can Swieten JC, Hofman A, Witteman JC, et al. 
Dietary intake of antioxidants and risk of Alzheimer disease. JAMA. 2002; 287:3223–3229. 
[PubMed: 12076218] 

124. Dumont M, Lin MT, Beal MF. Mitochondria and antioxidant targeted therapeutic strategies for 
Alzheimer’s disease. J Alzheimers Dis. 2010; 20:633–643.

125. Dysken MW, Sano M, Asthana S, Vertrees JE, Pallaki M, Llorente M, et al. Effect of vitamin E 
and memantine on functional decline in Alzheimer disease: the TEAM-AD VA Cooperative 
Randomized Trial. JAMA. 2014; 311:33–44. [PubMed: 24381967] 

126. Firuzi O, Miri R, Tavakkoli M, Saso L. Antioxidant therapy: current status and future prospects. 
Curr Med Chem. 2011; 2001; 18:3871–3888. [PubMed: 21824100] 

127. Reddy TP, Manczak M, Calkins MJ, Mao P, Reddy AP, Shirendeb U, et al. Toxicity of neurons 
treated with herbicides and neuroprotection by mitochondria-targeted antioxidant SS31. Int J 
Environ Res Public Health. 2011; 8:203–221. [PubMed: 21318024] 

128. Nałęcz KA, Miecz D, Berezowski V, Cecchelli R. Carnitine: transport and physiological 
functions in the brain. Mol Aspects Med. 2004; 25:551–567. [PubMed: 15363641] 

Miller and Sadeh Page 15

Mol Psychiatry. Author manuscript; available in PMC 2015 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



129. Pettegrew JW, Levine J, McClure RJ. Acetyl-L-carnitine physical-chemical, metabolic, and 
therapeutic properties: relevance for its mode of action in Alzheimer’s disease and geriatric 
depression. Mol Psychiatry. 2000; 5:616–632. [PubMed: 11126392] 

130. Ribas GS, Vargas CR, Wajner M. l-carnitine supplementation as a potential antioxidant therapy 
for inherited neurometabolic disorders. Gene. 2014; 533:469–476. [PubMed: 24148561] 

131. Sitta A, Vanzin CS, Biancini GB, Manfredini V, De Oliveira AB, Wayhs CAY, et al. Evidence 
that L-carnitine and selenium supplementation reduces oxidative stress in phenylketonuric 
patients. Cell Mol Neurobiol. 2011; 31:429–436. [PubMed: 21191647] 

Miller and Sadeh Page 16

Mol Psychiatry. Author manuscript; available in PMC 2015 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


