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Intramuscular (IM) administration of an adeno-associated viral (AAV) vector represents a
simple and safe method of gene transfer for treatment of the X-linked bleeding disor-
der hemophilia B (factor IX, F.IX, deficiency). However, the approach is hampered by an
increased risk of immune responses against F.IX. Previously, we demonstrated that the
drug cocktail of immune suppressants rapamycin, IL-10, and a specific peptide (encoding
a dominant CD4+ T cell epitope) caused an induction of regulatory T cells (Treg) with a
concomitant apoptosis of antigen-specific effectorT cells (Nayak et al., 2009).This protocol
was effective in preventing inhibitory antibody formation against human F.IX (hF.IX) in mus-
cle gene transfer to C3H/HeJ hemophilia B mice (with targeted F9 gene deletion). Here,
we show that this protocol can also be used to reverse inhibitor formation. IM injection of
AAV1–hF.IX vector resulted in inhibitors of on average 8–10 BU within 1 month. Subsequent
treatment with the tolerogenic cocktail accomplished a rapid reduction of hF.IX-specific anti-
bodies to <2 BU, which lasted for >4.5 months. Systemic hF.IX expression increased from
undetectable to >200 ng/ml, and coagulation times improved. In addition, we developed
an alternative prophylactic protocol against inhibitor formation that did not require knowl-
edge of T cell epitopes, consisting of daily oral administration of rapamycin for 1-month
combined with frequent, low-dose intravenous injection of hF.IX protein. Experiments in T
cell receptor transgenic mice showed that the route and dosing schedule of drug admin-
istration substantially affected Treg induction. When combined with intravenous antigen
administration, oral delivery of rapamycin had to be performed daily in order to induceTreg,
which were suppressive and phenotypically comparable to natural Treg.
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INTRODUCTION
Gene therapy offers many advantages for treatment of the X-linked
bleeding disorder hemophilia B, which is caused by mutations in
coagulation factor IX (F.IX). In particular, adeno-associated viral
(AAV) in vivo gene transfer to skeletal muscle or liver has been
shown to direct long-term expression of functional F.IX in animal
models, thereby reducing the incidence of spontaneous bleed-
ing (Mingozzi and High, 2011b). A series of pioneering clinical
trials on muscle- and liver-directed AAV gene transfer recently
culminated in successful treatment patients with severe hemo-
philia B (Kay et al., 2000; Manno et al., 2003, 2006; Ponder, 2011).
However, despite the low immunogenicity profile of AAV vectors,
several concerns about immune responses to gene transfer remain.
For example, prior natural infection with the parent or related
virus may cause pre-existing immunity in humans, including neu-
tralizing antibodies to viral particles (preventing gene transfer).
Memory CD8+ T cell responses to capsid are also known to occur
and may target transduced cells (Manno et al., 2006; Mingozzi
et al., 2007b; Li et al., 2011; Mingozzi and High, 2011a). Immune
responses to the transgene product are an additional concern.
Large F9 gene deletions or other “null” mutations substantially

increase the risk of immune responses, likely due to a lack of cen-
tral tolerance (Cao et al., 2009a). A particular concern for gene
therapy for inherited protein deficiencies such as hemophilia is
the potential for antibody formation, which could then also negate
conventional protein replacement therapy.

Muscle-directed gene transfer is an attractive treatment modal-
ity because of the safety and simplicity of vector administration,
as demonstrated in clinical trials, but is hampered by an increased
risk of immune responses against the transgene product (Her-
zog et al., 2001; Manno et al., 2003). For example, animals with
null mutations are at high risk of formation of inhibitory anti-
bodies (inhibitors) against F.IX (Herzog et al., 2001; Cao et al.,
2009a). Previously, we demonstrated that the drug cocktail of
immune suppressants rapamycin, IL-10, and a specific peptide
(encoding a dominant CD4+ T cell epitope) caused an induction
of CD4+CD25+FoxP3+ Treg with a concomitant antigen-specific
apoptosis of effector T cells (Teff; Nayak et al., 2009). This proto-
col was effective in preventing inhibitor formation against human
F.IX (hF.IX) upon subsequent IM administration of an AAV–hF.IX
vector in hemophilia B mice with targeted F.IX gene deletion.
Here, we used this model to test whether an inhibitor response to
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gene therapy can be reversed and whether a similar protocol can
be developed that prevents inhibitor formation in a prophylactic
manner without prior knowledge of T cell epitopes. Such epitopes
may differ from one patient to another and may be difficult to map
in a person who does not already have an immune response.

MATERIALS AND METHODS
ANIMALS
All mice were 6- to 12-week-old males at the onset of the exper-
iments and housed in specific pathogen free conditions. Hemo-
philia B mice (F9 gene deletion) on C3H/HeJ background were
as previously described (Cao et al., 2006, 2009a; Verma et al.,
2010). DO11.10-tg Rag-2−/− BALB/c mice were obtained from
Taconic (Germantown, NY, USA). This strain is transgenic for
ovalbumin-specific DO11.10 CD4+ TCR and knock out for Rag-
2 (DO11.10-tg Rag-2−/−; Cao et al., 2007a). Drug cocktails were
administered via different routes in 200 μl of sterile PBS, three-
times per week at the following doses: ovalbumin (ova) peptide
(amino acid residues 323–339) or hF.IX-specific peptide (2A-54)
were given at 100 μg/dose, rapamycin at 4 mg/kg/dose, and IL-10
at 50 ng/kg/dose (Nayak et al., 2009). In an alternative regimen,
rapamycin was given by oral gavage at the same dose (but in
a volume of only 100 μl) daily for 1 month. During that time,
recombinant human F.IX (Benefix, Wyeth, Madison, NJ, USA) was
given intravenous (IV) into the tail vein at 0.1 IU/mouse twice per
week. Viral vector was administered at 1 × 1011 vector genomes
(vg)/mouse by intramuscular (IM) injection into quadriceps and
tibialis anterior muscles. Blood samples from hemophilia B mice
were collected by tail-bleed into 3.8% sodium citrate buffer.

REAGENTS AND VIRAL VECTOR
Ova and hF.IX peptides were synthesized by AnaSpec (San Jose,
CA, USA). Murine IL-10 (Sigma Aldrich, St. Louis, MO, USA) and
rapamycin (LC Laboratories, Woburn, MA, USA) stock solution
were made in 0.02% carboxymethylcellulose and 0.25% Tween80.
The previously published AAV-CMV-hF.IX vector contains the
hF.IX cDNA (plus a 1.4-kb portion of the F9 gene) expressed
from the cytomegalovirus immediate-early enhancer/promoter
(Arruda et al., 2004). Vector genomes were packaged into serotype
1 capsid following triple transfection of HEK-293 cells, puri-
fied by PEG-precipitation and gradient centrifugation, and titers
determined by quantitative slot–blot hybridization as published
previously (Liu et al., 2003; Ayuso et al., 2010).

ASSAYS ON PLASMA SAMPLES
Levels of hF.IX were determined by ELISA as previously described
(Cao et al., 2009a). Activated partial thromboplastin time (aPTT)
was measured using a fibrometer (Fibrosystem; BBL, Cockeysville,
MD, USA) and previously published protocols (Cao et al., 2009a).
Bethesda assay to determine inhibitor titers was also performed
as previously described. By definition, 1 Bethesda Unit (BU)
represents a residual hF.IX activity of 50%.

FLOW CYTOMETRY
Splenocytes were isolated using standard protocols, and cell via-
bility was measured using a hemocytometer and trypan blue
staining. Antibody stains for surface and intracellular molecules
were applied according to manufacturers’ protocols. Antibodies

against mouse antigens CD4-FITC, CD25-PE, FoxP3-Alexa Fluor
647 were from eBioscience (San Diego, CA, USA). Isotype controls
included Rat IgG2a-FITC, Rat IgG2b-PE, Rat IgG2a-Alexa Fluor
647, and other controls were unstained splenocytes and anti-Rat
Ig Compensation Particles (BD Biosciences/Pharmingen). Data
acquisition was carried out using the BD LSR II. Data analy-
sis was done with FCS 3.0 software. Antibodies against mouse
antigens CD4-PB, CD25-PE-Cy7, FoxP3-Alexa Fluor 647, GITR-
PE, CD127-Alexa Flour 780 were from eBioscience (San Diego,
CA, USA), and antibodies against mouse antigens CD25-PE,
CTLA-4-PE were from BD Biosciences (San Jose, CA, USA).

IN VITRO SUPPRESSION ASSAY
Antigen presenting cells (APCs) were isolated from naïve D011.10-
tg mice using MACS CD90.2 MicroBeads (Miltenyi Biotec,
Auburn, CA, USA). CD4+CD25+ Treg were isolated from
DO11.10-tg RAG-2−/− mice using mouse CD4+CD25+ Regula-
tory T Cell Isolation Kit (Miltenyi Biotech) and the CD4+CD25−
Teff were isolated from DO11.10-tg RAG-2−/− mice using mouse
CD4+ T Cell Isolation Kit II (Miltenyi Biotec). CD4+CD25− cells
were labeled with 0.5 μM CFSE (carboxyfluorescein diacetate, suc-
cinimidyl ester, Invitrogen, Carlsbad, CA, USA) in PBS containing
2% FBS at a cell concentration of 3 × 106 cell/ml at room temper-
ature for 5 min in the dark. These cells were then washed three
times in PBS containing 2% FBS and re-suspended in DMEM
containing 10% FBS and penicillin/streptomycin. CD4+CD25+
Treg were cultured with 2 × 105 CFSE-labeled Teff at different
ratios as indicated and stimulated with 1 or 0.1 μg/ml ova pep-
tide (AnaSpec), along with 2 × 104 APCs in DMEM supplemented
with 10% FBS and penicillin/streptomycin in Thermo Scientific
Nunclon D round bottom 96-well plates (Pittsburgh, PA, USA)
and incubated at 37°C in 5% CO2 for 4 days.

STATISTICAL ANALYSIS
Results are reported as mean ± SD or ±SEM. Significant differ-
ences between an experimental group and control groups were
determined with unpaired Student’s t -test. P values of <0.05 were
considered significant. For comparison between multiple experi-
mental groups, one-way ANOVA with variance was applied using
Prism software (Irvine, CA, USA).

RESULTS
TRANSIENT IMMUNE MODULATION WITH RAPAMYCIN/IL-10/SPECIFIC
PEPTIDE CAN REVERSE GENE THERAPY-INDUCED INHIBITOR
FORMATION
Hemophilia B mice with an F9 gene deletion on a C3H/HeJ genetic
background have more robust immune responses to hF.IX than
other strain backgrounds such as C57BL/6 or BALB/c (Mingozzi
et al., 2003; Wang et al., 2005; Cao et al., 2006, 2009a; Verma
et al., 2010). As expected, IM injection of the AAV1–hF.IX vec-
tor in these mice resulted in a high-titer inhibitory antibody
response of on average 8–10 BU (up to 14 μg IgG1/ml plasma)
within 1 month (Figures 1B–E). Coagulation times were not cor-
rected (average aPTTs of ∼80 s; an aPTT of 60 s corresponds to a
coagulation activity of approximately 1%), and transduced mice
lacked systemic hFIX expression (Figures 1F–I). Previously, we
found that inhibitor formation in these mice, induced by muscle-
directed hF.IX gene transfer, could be prevented by repeated with
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intraperitoneal (IP) administration of a cocktail comprised of
rapamycin/IL-10/hFIX peptide; while cocktails lacking either IL-
10 or the peptide were less effective (Nayak et al., 2009). Therefore,
we decided to test whether the most optimal regimen could not
only prevent but also reverse inhibitor formation in muscle gene
transfer.

Therefore, 1.5 months after vector administration, animals
were randomly divided into the two groups (n = 6/group) graphed
in the left and right columns of Figure 1. Animals of one group
were not further manipulated (control group, Figures 1B,D,F,H),
while the animals of the second group (Figures 1C,E,G,I) were
treated with IP injections of rapamycin/IL-10/hFIX peptide, three-
times per week for 4 weeks (Figure 1A). These treatments resulted
in a substantial reduction of inhibitor titers to <2 BU by 1 month
after the transient immune modulatory regimen had been stopped
(Figure 1C). The difference between inhibitor titers at 1 month
(i.e., prior to immune modulation) and all times points after
immune modulation was highly significant (P < 0.001). Anti-
body titers to hF.IX were low to undetectable for the dura-
tion of the experiment (7 months after vector administration
or 4.5 months after immune modulation; Figures 1C,E). The
reduction in inhibitor/antibody titers was accompanied by an
increase in systemic hF.IX antigen from 0 ng/ml before the toler-
ance regimen to an average level of ∼250 ng/ml by 5–7 months
(Figures 1C,D). Clotting times gradually declined to an aver-
age of 58–60 s (Figure 1E), representing a coagulation activity of
approximately 1% of normal.

In contrast, transduced control mice that were not treated with
the tolerance protocol maintained inhibitors for at least 5 months
(Figure 1B). As seen in previously (Nayak et al., 2009), there was a
gradual spontaneous decline in hF.IX-specific IgG titers over time
and some improvement in the aPTT (Figures 1D,H). Nonetheless,
no systemic hF.IX was detected in these mice for the duration of
the experiment (i.e., 7 months after gene transfer, Figure 1F).

PREVENTION OF INHIBITOR FORMATION USING THE HF.IX PROTEIN AS
THE TOLERIZING ANTIGEN
A problem with the prophylactic use of this protocol against
inhibitor formation is that the specific T cell epitopes may not be
known in a patient. However, when we used hF.IX protein (1 IU)
instead of the peptide in an otherwise identical protocol, we failed
to prevent inhibitor formation after subsequent administration of
the AAV1–CMV–hF.IX vector (data not shown). Therefore, the
protocol needed to be modified to use the entire hF.IX protein as
the tolerizing antigen.

Keeping translatability in mind, subsequent experiments were
adjusted for the fact that rapamycin is typically given orally in
humans (IP administration is not a suitable route for humans) and
that the cytokine IL-10 is not readily available for clinical applica-
tion. Thus, a protocol that could realistically be used in humans
would likely be based on oral administration of rapamycin and IV
delivery of hF.IX protein in the absence of IL-10.

In a first attempt with such a modified protocol, rapamycin
was given orally three-times per week for 4 weeks to hemophilia B
mice (same C3H/HeJ strain described above). In addition, hF.IX
was given IV at a reduced dose of 0.1 IU/mouse, twice per week.
However, this protocol was only partially effective in preventing

FIGURE 1 | Elimination of a pre-existing/ongoing anti-hF.IX

immune response. C3H/HeJ F9−/− mice (n = 12) were injected
IM with AAV1-CMV-hF.IX (1 × 1011 vg/mouse) to generate an
immune response. After demonstrating the existence of an immune
response, half of the animals were given rapamycin/IL-10/specific peptide
for 4 weeks [right panels: (C,E,G,I)]. Controls [left panels: (B,D,F,H)] only
received gene transfer. (A) Experimental timeline. (B,C) Inhibitory antibody
titers (in BU/ml). (D,E) Anti-hF.IX IgG1 antibody (ng/ml). (H,G) hF.IX plasma
levels (ng/ml). (H,I) Coagulation times (aPTT in s). Data are shown as a
function of time after vector administration in control mice (treated with
vector only, left panels) or mice that received the immune
modulation/tolerance regimen (starting 1.5 months after vector
administration, indicated as “T” in right panels). Results are shown as
averages at each time point (±SEM) and for individual animals. Statistically
significant differences between the immune modulated and control groups
(n = 6 per group) at a specific time point are indicated as gray asterisk in the
panels of the immune modulated group with *P < 0.05, **P < 0.01, and
***P < 0.001.
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the immune response to hF.IX in gene therapy (Figures 2B,F).
Two of five animals still developed IgG1 and >5 BU (Figure 2F).
Next, we decided to test whether more frequent oral administra-
tion rapamycin could improve the protocol. Hence, rapamycin was
given orally on a daily schedule for 1 month to hemophilia B mice,
during which time a low-dose of hF.IX protein (0.1 IU) was also
given IV twice per week (Figure 2A). AAV1-CMV-hF.IX was again
injected IM 1 week before the end of the tolerance protocol. This
regimen was highly effective and prevented antibody/inhibitor for-
mation, resulting in systemic hF.IX (ranging from 50 to 300 ng/ml)
and more robust correction of the aPTT to on average ∼50 s
(Figures 2B–I). Three of the initial five treated animals were still
alive >8 months after gene transfer (>1 year old), at which time
they still maintained their hF.IX protein levels with no detectable
antibody (data not shown).

EFFECT OF THE ROUTE OF DRUG ADMINISTRATION ON THE
EFFECTIVENESS OF THE PROTOCOL
Experimental results presented in Figure 2 suggested that the
route of rapamycin administration and the dosing schedule had an
impact on the effectiveness of the tolerance regimen. These ques-
tions are addressed in the following. In order to directly measure
the ability to promote a shift from Teff to Treg as a function of
the route of drug administration, we used T cell receptor (TCR)
transgenic mice lacking endogenous Treg (DO11.10-tg Rag-2−/−
BALB/c mice with a CD4+ TCR specific for ovalbumin). In these
mice, IP, subcutaneous (SQ), intravenous (IV), and oral routes of
drug administration were compared using our original cocktail.
Rapamycin was either given as a cocktail with IL-10 and ova pep-
tide, as published, three-times per week for 3 weeks via IP, SQ, or
the IV route (Nayak et al., 2009). Alternatively, the IL-10/ova mix
was given IP as published, while rapamycin was fed on the same
day by oral gavage (within 30 min of administration of the other
drugs).

All routes resulted in a substantial reduction in the frequency
of ova-specific CD4+ T cells (Figure 3A). However, oral delivery
of rapamycin was significantly less effective than the other routes
(Figure 3A). Induction of ova-specific CD4+CD25+FoxP3+ Treg
with a frequency of up to 20% of CD4+ T cells was achieved with
all these routes (Figure 3B). Oral administration of rapamycin was
again less effective in this regard, albeit not significantly different,
from the other routes (Figure 3B).

Data presented in Figure 2 showed that IV administra-
tion of antigen combined with daily gavage of rapamycin
was superior in tolerance induction compared to perform-
ing gavage of rapamycin less frequently. To study this further,
rapamycin was given orally to DO11.10-tg Rag-2−/− BALB/c
mice either three-times per week or daily for 3 weeks. Dur-
ing this time, ova peptide was given IV three-times per week.
For comparison, a rapamycin/ova peptide cocktail was injected
IP three-times per week. As expected, reduction of Teff cells
and Treg induction was not as effective for the IP method
using this cocktail, which lacks IL-10 (Figures 4A,B). Both oral
rapamycin regimens were less effective compared to the IP route
(Figures 4A,B). Nonetheless, amongst the two oral rapamycin
protocols, daily administration was significantly better for Treg
induction (Figure 4B). At a frequency of three-times per week,

FIGURE 2 | Optimization of a protocol that prevents inhibitor

formation by administration of hF.IX protein and rapamycin.

(A) Experimental timeline of the optimal protocol. For immune modulation,
C3H/HeJ F9−/− mice received hF.IX IV injections (0.1 IU/dose) twice per
week for 4 weeks. During that time, rapamycin was administered orally
once per day. One week before the end of this 1-month regimen,
AAV1-CMV-hF.IX (1 × 1011 vg/mouse) was given IM. Left panels: Comparison
of IgG1 (B) and inhibitor (F) formation against hF.IX, of systemic hF.IX
expression (D), and of coagulation times [aPTT (H)] at 1 month after vector
administration in mice that had received vector only; or 2 IV doses of hF.IX
(0.1 IU) plus 3 oral doses of rapamycin per week (with the first and last
30 min prior to hF.IX administration); or the optimal protocol (2 IV doses of
F.IX plus daily rapamycin). Right panels: IgG1 (C) and inhibitor (G) formation
against hF.IX, systemic hF.IX expression (E), and coagulation times [aPTT
(I)] as a function of time after vector administration in mice that had
received the optimal protocol (2 IV doses of F.IX plus daily rapamycin).

nearly no Treg induction was observed. Reduction in total CD4+
T cell frequency was similar for both frequencies of oral delivery
(Figure 4A).
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FIGURE 3 | Comparison of Rapa/IL-10/specific peptide tolerization

protocol using different routes of drug administration. DO.11.10-tg
Rag−/− mice (n = 4/group) were treated for 3 weeks with
Rapa/IL-10/ova-specific peptide, after which the spleens were harvested,
and flow cytometry was used to determine: (A) percentage of CD4+ T cells
of total gated splenocytes and (B) percentage of CD25+FoxP3+ cells of
CD4+ T cells. Statistically significant differences between two groups are
indicated as *P < 0.05 and **P < 0.01.

ANTIGEN/RAPAMYCIN-INDUCED TREG SHOW AN IMMUNE
SUPPRESSIVE PHENOTYPE
Further characterization of oral rapamycin/IV antigen induced
Treg was carried out by extending treatment to 4 weeks. This
resulted in higher Treg frequencies in the IP and oral proto-
cols when performed in parallel for comparison (Figure 5E).
The IP regimen was again superior in deletion of the ova-
specific CD4+ T cells and in Treg induction (Figures 5D,E).
Immunophenotyping, as shown in the form of examples in
Figures 5A–C, suggested that FoxP3 expression was compara-
ble for “natural,” IP-, and oral-induced Treg (Figure 5F; “natural”
Treg refers to CD4+CD25+FoxP3+ cells isolated from spleens of
naïve immune competent DO11.10-tg Rag-2+/+ BALB/c mice as
opposed to Treg induced by exogenous antigen administration).
Orally induced Treg were most consistently CD25hi. Similarly,

FIGURE 4 | Comparison of Rapa/specific peptide tolerization protocol

using different routes and schedules of drug administration.

DO.11.10-tg Rag−/− mice (n = 4 per group) were treated for 3 weeks with
Rapa/ova-specific peptide, after which the spleens were harvested, and
flow cytometry was used to determine: (A) percentage of CD4+ T cells of
total gated splenocytes, and (B) percentage of CD25+FoxP3+ cells of CD4+

T cells. Statistically significant differences between each group and
untreated (naïve) control mice are indicated as *P < 0.05, **P < 0.01,
***P < 0.001, and ****P < 0.0001. In (B), a statistically significant
difference between mice that received rapamycin orally three-times per
week or daily is also indicated.

all three types of Treg stained positive for surface expression
of GITR (Figure 5G). Interestingly, oral-induced Treg showed
a higher frequency of CTLA-4 expression compared to natural
or IP-induced Treg (Figure 5H). Finally, ∼97% of natural Treg
and ∼93% of IP-induced Treg were CD127−/low, respectively,
while ∼99% of oral-induced Treg were CD127−/low (data not
shown).
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FIGURE 5 | Continued
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FIGURE 5 | Phenotypic analysis ofTreg induced by the rapa/specific

peptide tolerization protocol using different routes and schedules of

drug administration. DO11.10-tg Rag−/− BALB/c mice (n = 5 per group) were
treated for 4 weeks with rapamycin/ova-specific peptide, after which
splenocytes were analyzed by antibody stains and flow cytometry. (A–C)

Examples for gating scheme and flow cytometric analysis of FoxP3 (A), GITR
(B), and CTLA-4 (C) expression by induced CD4+CD25+ Treg. (D) Percentage
of CD4+ T cells of total gated splenocytes, and (E) Percentage of

CD25+FoxP3+ cells of CD4+ T cells as a function of treatment. Statistically
significant differences between each group and untreated (naïve) control mice
are indicated as **P < 0.01, and ****P < 0.0001. (F) Representative
examples of CD25 and FoxP3 staining (gated on CD4+ splenocytes) for
“natural” Treg (isolated from immune competent DO11.10-tg Rag+/+ mice),
and induced Treg from DO11.10-tg Rag−/− mice treated with the IP or the oral
protocol. (G) Percent GITR+ cells, and (H) percent CTLA-4+ cells amongst
CD4+CD25+FoxP3+ Treg. All bar graphs are average ±SD.

In order to demonstrate that orally induced Treg were func-
tional suppressors, proliferation of ova-specific CD4+ Teff was
monitored by CFSE-dilution assay upon co-culture with increas-
ing numbers of Treg isolated from spleens of DO11.10-tg Rag-
2−/− BALB/c mice that had been treated for 4 weeks with the oral
rapamycin/IV ova combination (Figure 6). Treg induced by daily
oral rapamycin/IV ova suppressed Teff proliferation in response
to stimulation with ova peptide in a Treg dose-dependent manner,
resulting in more complete suppression at lower antigen doses
(Figures 6A,B). Suppression was at least as effective for orally
induced as for IP-induced Treg (compare Figures 6A,C).

DISCUSSION
Gene therapy with viral vectors holds a great deal of promise for
the treatment of inherited protein deficiencies such as hemophilia.
As with any protein or gene replacement therapy, there are inher-
ent risks of immune responses to the therapeutic gene product.
In the treatment of hemophilia, antibody (“inhibitor”) formation
against the functional coagulation factor is of particular concern
as a major complication of therapy. Our lab and others have used

preclinical models to assess immune suppressive regimens for their
ability to prevent this immune response when a drug or combina-
tion of drugs is given in conjunction with gene therapy (Sack and
Herzog, 2009; Miao, 2010; Nayak and Herzog, 2010). However,
the ability to reverse an immune response caused by gene trans-
fer has not been studied thoroughly. Preliminary data suggested
that monoclonal antibodies (anti-CD20/cyclosporine A combina-
tion or anti-CD3) might be useful (Nathwani et al., 2006; Peng
et al., 2009; Sack and Herzog, 2009). Here, we clearly demonstrate
that transient immune modulation using rapamycin can reverse
antibody (“inhibitor”) formation.

EFFECTS OF ANTIGEN/RAPAMYCIN COMBINATION
Previously, we found that MHC II antigen presentation to CD4+
T cells in the presence of the specific mTOR inhibitor rapamycin
resulted in activation-induced cell death, primarily of Teff. In addi-
tion, CD4+CD25+FoxP3+ Tregs are induced in secondary lym-
phoid organs and expanded (Nayak et al., 2009). These Tregs are
able to utilize alternative signaling pathways such as STAT5 to pro-
liferate in response to cytokine growth factors, thereby bypassing
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FIGURE 6 | Suppression of antigen-specificTeff proliferation by induced

Treg. Treg induced by 4 weeks of oral rapamycin/IV ova peptide-treated (A,B)

or rapamycin/ova peptide IP-treated (C) DO11.10-tg Rag−/− BALB/c mice were
co-cultured in the indicated ratios with Teff cells and APCs. Teff were

CFSE-labeled ova-specific CD4+ T cell isolated from DO11.10-tg Rag−/− BALB/c
mice. Conditioned media contained ova peptide at 0.1 μg/ml (A,C) or 1 μg/ml
(B). CFSE-dilution was assayed by flow cytometry after 4 days of in vitro
stimulation.

the need for the mTOR pathway (Zeiser et al., 2008; Moghimi
et al., 2011). The shift from an effector to a Treg response is fur-
ther enhanced by the immunosuppressive cytokine IL-10, and the
induced suppressive response can be adoptively transferred using
CD4+CD25+ splenocytes (Battaglia et al., 2006a,b; Nayak et al.,
2009; Moghimi et al., 2011).

While we previously showed prophylaxis against inhibitor for-
mation in muscle-directed AAV–hF.IX gene transfer in hemophilia
B C3H/HeJ mice, this new data demonstrates the enhanced reversal

of a pre-existing response by our regimen. In this strain of hemo-
philia B mice, IM administration of AAV–hF.IX vector induces not
only an inhibitor but also a CD8+ T cell response to hF.IX (Cao
et al., 2009a). However, these infiltrating CD8+ T cells are not
fully functional and fail to eliminate hFIX-expressing muscle fibers
(Wang et al., 2005; Lin et al., 2007; Velazquez et al., 2009). There-
fore, production of hF.IX protein persists in the muscle, which is
critical for the restoration of systemic expression after antibody
elimination. Consequently, we achieved systemic hF.IX expression
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and partial correction of the coagulation defect. Although the data
demonstrate elimination of inhibitors (as measured by Bethesda
assay) and restoration of coagulation following the 1-month
immune modulatory protocol, circulating antigen levels (on aver-
age ∼5% of normal) were higher than the level of coagulation
activity (1–2% of normal). Low-titer antibodies against hF.IX were
detectable by ELISA in rapamycin/IL-10/peptide-treated mice at
late time points and may have limited coagulation activity.

USE OF PEPTIDE VS. PROTEIN ANTIGEN FOR TOLERANCE INDUCTION
We have now shown in two different models (F.VIII replacement
therapy in hemophilia A mice and F.IX muscle gene transfer in
hemophilia B mice) that IV delivery of protein combined with
daily feeding of rapamycin prevents inhibitor formation (Nayak
et al., 2009; Moghimi et al., 2011). Use of the protein antigen
for tolerance induction has the advantage that knowledge of spe-
cific epitopes is not required. Reduced protein doses appear better
suited for tolerance induction with rapamycin (Moghimi et al.,
2011). However, in the context of an ongoing immune response,
the protein antigen may further stimulate B cell responses. In some
cases (such as enzyme replacement therapy for hemophilia B or
Pompe disease), anaphylactic reactions against the protein are a
concern (Dimichele, 2007; Nayak et al., 2009; Sun et al., 2010;
Verma et al., 2010). In this case, T cell epitope mapping followed
by co-administration of rapamycin and specific peptides may rep-
resent a more effective means for targeting antigen-specific effector
CD4+ T cells and expansion of Treg. This would promote hypo-
responsiveness to the transgene product/therapeutic protein and
reversal of the T help-dependent antibody response. Treg appear
critical for tolerance to coagulation factors and other transgene
products (Cao et al., 2007a,b, 2009b; Mingozzi et al., 2007a; Miao
et al., 2009; Miao, 2010; Hoffman et al., 2011).

IMPACT OF THE ROUTE OF DRUG ADMINISTRATION ON TOLERANCE
INDUCTION
The dose of rapamycin in our experiments was chosen based
on prior published animal studies (Teachey et al., 2006; Nayak
et al., 2009; Moghimi et al., 2011). This dose has been determined
to maintain a trough level of hF.IX in the blood (10–15 ng/ml)
that is known to cause a tolerogenic effect (Teachey et al., 2009).
Using direct injections such as IP, IV, or subcutaneous (rather
than delivery via oral gavage), it is likely that maintenance of such
a trough level requires less frequent administration. In addition,
co-administration of a mixture of the antigen and rapamycin may
have induced a more effective antigen presentation to T cells with a
blocked mTOR pathway. Interestingly, there are now also IV prepa-
rations of rapamycin available for patients and could be considered
for use in this protocol.

Nonetheless, our data demonstrate that hemophilic mice can
be effectively tolerized to F.VIII (Moghimi et al., 2011) or F.IX
(this study) using a combination of oral delivery of rapamycin
and IV delivery of low-dose protein. Daily rapamycin was required
for Treg induction. Orally induced CD4+CD25+ Treg expressed
transcription factor FoxP3 and the co-stimulatory molecule GITR
at levels comparable to IP-induced or natural Treg, while the
inhibitory signaling molecule CTLA-4 was even more frequently
expressed, and CD127 expression was low. Therefore, orally

induced Treg had all the hallmark features of suppressor cells.
A suppressive phenotype was confirmed by inhibition of Teff
proliferation. Although not tested here, we previously found no
evidence of antigen/rapamycin-induced splenic Treg to express IL-
10, but provided evidence for TGF-β expression (Nayak et al., 2009;
Moghimi et al., 2011). Experiments in the DO11.10-tg model as
well as our published adoptive transfer studies (Nayak et al., 2009;
Moghimi et al., 2011) demonstrate induction of antigen-specific
Treg. However, we had also found that daily rapamycin admin-
istration for 1 month caused a general increase in frequency of
circulating Treg (to 27–38% of CD4+ cells) in immune competent
BALB/c mice, which within 6 weeks returned to the baseline level
of approximately 10% (Moghimi, unpublished observations). We
had also previously found general transient decreases in B and
T cell frequencies by repeated rapamycin administration (Nayak
et al., 2009). Therefore, the intravenously introduced antigen is
likely presented in a generally immune suppressive context, while
at the same time inducing antigen-specific deletion of Teff and
induction of Treg. The combination of these effects likely facili-
tates tolerance induction. However, results from oral rapamycin
scheduling strongly suggest that Treg induction is required for
tolerance.

ADVANTAGES AND POTENTIAL COMPLICATIONS OF RAPAMYCIN
TREATMENT
There is ample clinical experience with rapamycin, including use
in pediatric patients. Rapamycin is administered in combination
with other drugs in solid organ transplantation and has recently
been successfully tested for the treatment of autoimmune lym-
phoproliferative syndrome (ALPS; Teachey et al., 2009). It is also
a promising drug for the treatment of autoimmune diabetes and
can be combined with cytokines such as IL-2 or IL-10 for optimal
results (Wells et al., 1999; Zheng et al., 2003; Battaglia et al., 2006a;
Koulmanda et al., 2007; Nayak et al., 2009). Conceptually, the mode
of action through which Teff are deleted and Treg are induced and
expanded make rapamycin ideal for tolerance induction protocols.
Rapamycin also has anti-inflammatory properties such as inter-
fering with DC mobilization and function and increasing levels
of hemeoxygenase-1 (HO), a stress-inducible, anti-inflammatory
enzyme (Hackstein et al., 2003; Visner et al., 2003; Dimitrov et al.,
2010). Furthermore, mTOR inhibition can reduce IFN I expres-
sion in response to TLR signaling (Manicassamy and Pulendran,
2009). Thus, there are multiple effects of rapamycin that could
contribute to tolerance induction and it will be of great interest
to study the effects of rapamycin on innate immune responses to
AAV vectors, which are largely TLR9-dependent.

On the other hand, prolonged use of rapamycin may actually
increase Th1/Th17/inflammatory responses, likely because block-
age of mTOR can increase the use of the NF-κB pathway. This,
however, may be countered by addition of IL-10 (Weichhart et al.,
2008; Huber et al., 2011). In addition, rapamycin counteracts the
immunosuppressive effects of glucocorticoids (Weichhart et al.,
2011).

In general, immune suppressive regimens pose an increased
risk for opportunistic infection and other possible side effects.
Although we can achieve coagulation factor-specific tolerance
with the 1-month rapamycin-based regimens, there are also
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transient effects on total B and T cell frequencies. In our initial
rapamycin/IL-10 protocol, we found that B and T cell frequencies
returned to normal with 2.5 months after treatment (Nayak et al.,
2009). With the oral rapamycin protocol, these cell frequencies
return to normal even faster (5 weeks), and subsequently, mice
respond properly to viral immunization illustrating the highly
transient nature of the immune suppressive protocol (Moghimi
et al., 2011).

Neutropenia and dysregulation of lipid metabolism are addi-
tional side effects of rapamycin. In addition, rapamycin can also
delay wound healing, suggesting that the drug should not be used
during or early after surgery or other extensive tissue damage (Stal-
lone et al., 2009). Many other side effects, such as kidney problems
or increased cancer risk, are more linked to long-term use of the
drug than to a very transient protocol.

In summary, we propose that alternative protocols, based
on co-administration of rapamycin with the complete antigen
or a known T cell epitope (which can be mapped during the
course of an immune response), can be applied to prevent or

reverse inhibitor responses in gene therapy for hemophilia. This
approach could also be useful in gene therapy for other genetic
diseases.
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