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Summary. Background: Iron deficiency is associated with

reactive thrombocytosis; however, the mechanisms driving

this phenomenon remain unclear. We previously demon-

strated that this occurs alongside enhanced megakaryo-

poiesis in iron-deficient rats, without alterations in the

megakaryopoietic growth factors thrombopoietin, inter-

leukin-6, or interleukin-11. Objectives: The aim of this

study was to evaluate megakaryocyte differentiation

under iron deficiency in an in vitro model and to investi-

gate potential genes involved in this process. Methods:

Human erythroleukemia and megakaryoblastic leukemia

cell lines, as well as cord-blood derived hematopoietic

stem cells were cultured under iron deficiency. Cell mor-

phology, ploidy, expression of CD41, CD61, and CD42b,

and proplatelet formation were assessed in iron-deficient

cultures. Polymerase chain reaction arrays were used to

identify candidate genes that were verified using real-time

polymerase chain reaction. Hypoxia-inducible factor 1, a
subunit (HIF2a) protein expression was assessed in bone

marrow sections from iron-deficient rats and vascular

endothelial growth factor (VEGF)-A in culture superna-

tants. Results and Conclusions: Iron deficiency enhanced

megakaryoid features in cell lines, increasing ploidy and

initiating formation of proplatelet-like structures. In cord

blood cell cultures, iron deficiency increased the percent-

age of cells expressing megakaryopoietic markers and

enhanced proplatelet formation. HIF2a and VEGF were

identified as potential pathways involved in this process.

HIF2a protein expression was increased in megakaryo-

cytes from iron-deficient rats, and VEGF-A concentration

was higher in iron-deficient culture supernatants. Addi-

tion of VEGF-A to cell cultures increased percentage

expression of megakaryocyte CD41. In conclusion, the

data demonstrate that iron deficiency augments megak-

aryocytic differentiation and proplatelet formation and a

potential role of HIF2a in megakaryopoiesis.

Keywords: endothelial PAS domain-containing protein 1;

iron deficiency anemia; megakaryocytes; thrombocytosis;

thrombopoiesis.

Introduction

Platelets play a fundamental role in hemostasis and

thrombosis and an emerging role in inflammation and

cancer biology. Platelet production occurs at a rate of

1011 platelets daily and may increase up to 20-fold in

response to high demand [1]. Reactive thrombocytosis

occurs in response to infection, tissue damage as occurs

during surgery, chronic inflammation, malignancy, and

post splenectomy [2] and is by far more common than

primary thrombocytosis. Another well-known cause of

reactive thrombocytosis is iron deficiency (ID) [3–6].
While the elevation of platelet count is usually mild to

moderate in ID (~ 500 9 109 L�1), platelet counts reach-

ing 1000 9 109 L�1 have been reported [3,4].

The mechanism behind this phenomenon is not fully

elucidated; however, animal models of ID―including a

diet-induced ID model established by our group―show

that ID alone leads to increased platelet count [7–9]. This
is accompanied by changes in megakaryopoiesis, such as

enhanced progenitor expansion, increased megakaryocyte

(MEG) ploidy, and overall augmented MEG differentia-

tion. Furthermore, platelets produced in ID had higher

aggregability [9], suggesting that elevated platelet count in
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ID may not be entirely risk free. There are numerous case

reports linking ID-related thrombocytosis and thrombosis

[10] and several case–control studies showing that ID is

more common in patients with a cerebrovascular insult in

comparison to controls [11–13].
Anemia is a common complication in inflammatory

bowel disease (IBD) (6.5–73.7%) [14] and in cancer (30–
90%) [15]; in both cases, ID appears to be the predominant

cause [14–17]. Thrombocytosis is not uncommon in either

condition [18,19], and both cancer and IBD patients have

increased risk for venous thromboembolism (VTE) [20–23],
for which, in the case of cancer, high platelet count is an

independent risk factor [20,21]. Iron replacement therapy in

patients with IBD and ID anemia normalizes platelet count

and reduces platelet activity [24,25]. While it is unclear if

this affects risk for thromboembolic events in the long term,

anemic cancer patients have a diminished incidence of VTE

if erythropoiesis-stimulating agents are administered with

intravenous iron [26] as opposed to no-iron therapy. This

suggests that ID-related thrombocytosis may be of rele-

vance in the clinical setting as well.

Megakaryocytes arise from hematopoietic stem cells, and

share a common progenitor with erythrocytes [27]. Megak-

aryocyte differentiation is marked by augmented expression

of CD41, CD61, and CD42b, while erythroid markers such

as glycophorin A are downregulated [27]. Megakaryocytes

undergo endomitosis, initiating multiple cycles of DNA rep-

lication without completing cytokinesis [28], allowing ploidy

to increase geometrically from 2n to 64n. This functional

gene amplification facilitates the ensuing increase in protein

and lipid synthesis and substantial cell enlargement required

for platelet biogenesis and function [29]. An MEG may pro-

duce platelets at any ploidy level, although higher ploidy

level may correlate with higher platelet production [30].

Megakaryocyte terminal differentiation involves migration

from the hypoxic osteoblastic niche toward bone marrow

sinusoids [31], where cytoplasmic projections termed

proplatelets are extended into the bloodstream and then

fragment into platelets (reviewed in [32]).

Iron is critical for cell survival, growth, and differentia-

tion and is a functional component of heme- and iron-

sulfur-cluster proteins involved in mitochondrial function,

catalysis, redox reactions, DNA replication, and transcrip-

tion (reviewed in [33]). There is not much known about iron

homeostasis in MEGs and how ID affects megakaryopoie-

sis. Cytokines more commonly associated with mediating

megakaryopoiesis such as thrombopoietin, interleukin (IL)-

6, and IL-11 are not altered in patients with ID anemia and

thrombocytosis [24,34] or in our animal model of ID [9].

In this study, we investigated potential targets that

may be involved in ID megakaryopoiesis in an in vitro

model of ID. ID enhanced MEG features in cell lines

and in cord blood–derived hematopoietic stem cells

(CBHSCs) and modulated the genes involved in the

hypoxia-inducible factor (HIF) and vascular endothelial

growth factor (VEGF) pathways.

Methods

Culture of cell lines

Human erythroleukemia (HEL) and megakaryoblastic

leukemia (CMK) human cell lines (DSMZ, Braunschweig,

Germany) were maintained in RPMI (Gibco/Life Tech-

nologies, Lofer, Austria) and adapted to serum-free and

iron-replete (IR) medium (Panserin 401; PanBiotech,

Aidenbach, Germany) before experiments. For concentra-

tion gradients, IR medium was mixed with serum-, iron-,

and transferrin-free media (Panserin 401S; PanBiotech) to

produce 100%, 10%, 5%, 2.5%, 1.25%, and 0% v/v

concentrations. Subsequent experiments were performed

with 100% (IR) and 1.25% (ID). Medium was not

changed during experiments, so as not to reintroduce iron

into ID cultures. Megakaryocytic differentiation was

induced using 50 nmol L–1 phorbol-12-myristate-13-ace-

tate (PMA; Sigma-Aldrich, Munich, Germany) in IR

medium. Cells were kept at 37°C, with 5% CO2 and a

fully humidified atmosphere.

Cell proliferation was assessed through flow cytometric

measurement of propidium iodide (PI; Sigma-Aldrich)

excluding cells and ploidy via Hoechst 33342 (Invitrogen/

Life Technologies, Lofer, Austria) on a Cell Lab Quanta

SC flow cytometer (Beckman Coulter, Vienna, Austria).

Histograms were divided into 2n, 4n, and greater than 4n

(> 4n) ploidy. Morphological images (940) were taken

with use of an Olympus IX81 inverted microscope, and

DAPI (Vectashield; Vector Laboratories, Peterborough,

UK)-stained nuclei (940) were photographed by using an

Olympus BX51 microscope.

CBHSC isolation and culture

Cord blood was obtained from the Department of Obstet-

rics and Feto-Maternal Medicine after approval by the

Ethics Commission of the Medical University of Vienna.

CD34+ CBHSCs were isolated by using MACS (Miltenyi

Biotec, Bergisch Gladbach, Germany), cultured for

6–7 days in serum-free medium (X-vivo 15; Lonza, Szabo,

Vienna, Austria) with 50 ng mL�1 thrombopoietin (TPO;

Kyowa Hakko Kirin Co., Ltd., Tokyo, Japan), and trans-

ferred to IR (100%) or ID (1.25%) serum-free medium

with 100 ng mL�1 TPO for 5 days.

Megakaryocyte differentiation was assessed by flow

cytometric measurement of CD41, CD61, and CD42b

surface expression (see Data S1). The percentage of posi-

tive staining cells was determined using flow cytometry,

and the median fluorescence intensity (MFI) was based

on the gated positive cell population of each MEG mar-

ker. Ploidy was measured as in cell lines, with anti-CD41

to gate for MEGs. VEGF-A in cell supernatants was

assessed via immunoassay (ProcartaPlex, eBioscience,

Vienna, Austria) measured on a BioPlex 200 (BioRad;

Hercules, CA, USA). Cell counts after culture in IR and
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ID media supplemented with 25 ng mL�1 VEGF (eBio-

science), 1 ng mL�1 erythropoietin (EPO; eBioscience), or

100 ng mL�1 TPO were performed after staining with

anti–CD41-FITC (MEG) and anti–glycophorin A-PE-Cy5

(erythrocyte) conjugated antibodies (eBioscience). At least

100 cells per condition were counted under 940 magnifi-

cation. To calculate percentages, the number of green

(CD41) or red (glycophorin A) cells were divided by the

total number of visible nuclei (see Data S1).

Proplatelet formation

Proplatelet formation and assessment at day 5 were based

on previously described methods [35,36] (see Data S1).

Fixed samples were incubated with mouse anti–a-tubulin
(Sigma-Aldrich) followed by anti–mouse-IgG conjugated

to Alexa488 (Invitrogen/Life Technologies), and DAPI

for nuclear counterstaining. Images (910) were taken

with an Axioimager M2 and analyzed using Zen lite soft-

ware (Zeiss, Munich, Germany; Fig. S1).

Real-time polymerase chain reaction analysis of gene

expression

Real-time polymerase chain reaction (RT-PCR) was per-

formed using a TaqMan array with customized targets

and a catalogued array for transcription factors (Applied

Biosystems/Life Technologies, Lofer, Austria). RNA was

pooled from two independent experiments after 1 day

(HEL) or 2 days (CMK) of culture in ID (slower growth

of CMK compared with HEL). Three independent 5-day

experiments of CD61+ MACS sorted MEGs were pooled.

HPRT1 and 18S were used as endogenous controls, and

cut-offs were set at 2.0 for upregulation and 0.5 for down-

regulation. Individual genes such as TfR1, HIF2a, HIF1a,
VEGFA (Qiagen, Hilden, Germany), VEGFR1, and VEG-

FR2 (VBC Biotech, Vienna, Austria) were verified using

SYBR green (Applied Biosystems/Life Technologies).

Analysis was performed using Applied Biosystems

software and LinRegPCR [37]. Relative expression was

calculated using 2�ðCTTarget� ;CTHousekeepingÞ and relative quantity

using 2�ðDCTID�DCTIRÞ.

Immunohistochemical staining

DAB-HRP staining was performed on paraffin-embedded

sections of rat sterna from the rat model of ID [9] after

incubation with anti-HIF2a (Novus Biologicals, Abingdon,

UK). Images of slides with covered labels were random-

ized and evaluated in ImageJ. Individual MEGs were

evaluated based on staining intensity from 0 (no staining)

to 3+ (intense staining). Immunohistochemical score was

calculated by summing the product of percentage total

MEGs and score number. Blood was drawn from the

sublingual vein and analyzed on a Cell-Dyn 3500 analyzer

(Abbott Diagnostics, Abbot Park, IL, USA).

Statistical testing

Statistical testing was performed using t-test for indepen-

dent samples, one-sample t-test with a test value of 1 for

fold changes, ANOVA with Tukey post-hoc testing, and the

Mann–Whitney U Test in SPSS 21.

Results

Iron deficiency induces megakaryocytic differentiation in

HEL and CMK

HEL and CMK cell lines were selected because both are

capable of megakaryocytic differentiation on induction by

PMA [38–40]. HEL is derived from a patient with ery-

throleukemia [41] and is less mature in comparison to

CMK, which is derived from a patient with megakaryob-

lastic leukemia [42], thus allowing insight into different

stages of megakaryopoiesis.

Culture in media without iron led to diminished prolif-

eration in both HEL and CMK in comparison to fully

IR media (Fig. 1A), and area under the curve (AUC)

analysis confirmed this difference (Fig. S2A). Proliferation

was arrested at day 11 and thus excluded from analysis.

The 1.25% condition was selected for ID as it allows for

cell proliferation, while still rendering cultures iron

deficient. TfR1, which is stabilized when iron is low [43],

is upregulated in ID in both cell lines on RT-PCR

(Fig. 1B), beginning after 1 day of culture and reaching a

maximum after 2 days in HEL and 7 in CMK. Flow

cytometric measurement showed an increased surface

TfR1 expression in HEL and CMK; however, the differ-

ences were not as distinct as on RT-PCR (Fig. S2B).

Culture in ID resulted in distinct morphological

changes similar to those observed on megakaryocytic dif-

ferentiation by PMA (Fig. 1D). Cell volume was

increased in HEL after 4 days of culture in ID (Fig. 1D,

arrowheads; Fig. 2C, P = 0.008) and IR plus 50 nmol L–1

PMA (P < 0.001) compared with IR alone (Fig. 1D,

arrowheads). In CMK, volume was increased in PMA

treatment (P = 0.001) but not in ID (P = 0.95).

The percentage of HEL cells with a ploidy greater

than 4n increased almost 4-fold on flow cytometry

(Fig. 2B, D). This matches the larger nuclei seen in fluo-

rescence microscopy (Fig. 2A). Similar changes occurred

in HEL treated with 50 nmol L–1 PMA. CMK, in con-

trast, did not increase in ploidy under ID and showed

only a trend to increased ploidy on PMA treatment and

no apparent differences in nuclear size. These changes

in ploidy in ID corroborate previous data [9]. In addi-

tion, proplatelet-like cytoplasmic extensions formed in

CMK under ID (P = 0.01, Fig. 1C, D, arrows), which

were similar to the changes observed on treatment with

50 nmol L–1 PMA (P < 0.001). Addition of 50 nmol L–1

PMA to ID media did not show additive effects in

ploidy or cell volume in HEL (Fig. S3C) and was lethal
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in CMK, preventing analysis (Fig. S3A). Thus, ID may

influence different aspects of megakaryopoiesis, aug-

menting endomitosis and later events such as proplatelet

formation.

Iron deficiency potentiates MEG differentiation in CBHSCs

To investigate megakaryopoiesis under ID in primary

cells, CBHSCs were cultured in IR or ID medium. Induc-

tion of ID was confirmed by increased TfR1 expression

on RT-PCR for TfR1 (Fig. 3A).

The percentage of CD41-expressing cells increased

1.31 � 0.04-fold (P = 0.001) in ID compared with IR.

Similarly, the percentage of CD61 (1.12 � 0.07-fold,

P = 0.017) and CD42b (1.58 � 0.23-fold, P = 0.49) were

increased in ID (Fig. 3B, S4A). Median fluorescence inten-

sity for CD41 within the CD41-positive population also

increased. These results show a shift toward the MEG line-

age, which progressively upregulates CD41 and later

expresses CD61 and CD42b. Furthermore, the concentra-

tion of cells expressing CD41 increased by 1.24 � 0.08-fold

(P = 0.009, Fig. 3B), unlike the cells that were CD41 nega-

tive (Fig. S4B). Unlike in cell lines, ploidy and cell volume

did not increase (Fig. 3C, Fig. S4C, E).

ID increased the total number of proplatelets formed,

the total number of cells that adhered to the fibrinogen-

coated slide, and the number of cells actively forming

proplatelets (Fig. 3D). The ratio of proplatelet-forming

MEGs to total MEGs had a trend toward increase under

ID (Fig. S4D). ID did not appear to increase the number

of proplatelets formed per MEG (Fig. S4D).

Iron deficiency differentially regulates gene expression in

HEL, CMK, and MEGs

Custom array targets were selected to include genes

involved in iron homeostasis as well as hematopoiesis,

megakaryopoiesis, and erythropoiesis. Cell cycle regula-

tors were also included, because ID may influence endo-

mitosis. We included genes involved in apoptosis, because

ID influences apoptosis and platelet production is influ-

enced by apoptotic pathways. Inclusion of genes involved

in the generation of reactive species and antioxidant

enzymes was based on the role of iron in oxidative stress

(reviewed in [44]). We were interested in the HIF pathway

regulating response to hypoxic stress, which occurs during

ID anemia and is potentially regulated by iron. HIF2a, in

particular, is involved in the regulation of erythropoiesis

under hypoxia and regulates targets involved in iron

homeostasis (reviewed in [45]). We also used a second

preassembled array for transcription factors (Table S1).

Of 187 genes from the RT-PCR arrays, only 23 were

found to be regulated in HEL, none in CMK, and three

in MEGs (Fig. 4, Table S1). TfR1 was increased in all

three cell types in ID; however, only HEL reached the set

cut-off, which indicates this cut-off is stringent (Fig. 4B).

Of the regulated targets, only HIF2a was commonly up-

regulated in HEL and MEGs above 2-fold. VEGF-R1

was increased in both HEL and MEGs; however, the lat-

ter only had a 1.75-fold change. VEGF-R2 was upregulat-

ed in MEGs but downregulated in HEL.

Apart from TfR1, several genes involved in iron

homeostasis were regulated by ID. Heme oxygenase 1,

which is inducible and previously identified as strongly

responsive to ID and oxidative stress [46], was downregu-

lated in HEL but upregulated in MEG (Fig. 4B). Heavy

chain ferritin (FTH) and SMAD1, a regulator of hepci-

din, a key player in iron homeostasis [33], were also up-

regulated in HEL.

In HEL, transcription factors involved in hematopoietic

and megakaryocytic differentiation such as TGIF1 [47],

ELF-1 [48,49], and GATA-6 [48], were upregulated, while

FOS was downregulated. Treatment of HEL cells with

testosterone increases the expression of thromboxane A2

receptor [50], suggesting that the ID-induced increase in

androgen receptor may have consequences for platelet

function (Fig. 4B). Antiapoptotic gene BCL2 may influ-

ence cell survival and transition from endomitosis to

platelet production. The specific roles of ATF3, FOXO1,

FOXA2, and SMAD9 in the context of ID-megakaryopoi-

esis are unclear.

In CMK, the expression of CD61 (1.51-fold change)

and von Willebrand factor (1.80-fold change) increased

but did reach the 2.0 cut-off. In HEL, cyclin D (CCND1)

was highly upregulated, and genes involved both in ery-

throid (HBB) and megakaryoid differentiation (VWF,

CD61, PF4, PPBP) were downregulated (Fig. 4B).

We were interested in the regulation of HIF2a, VEG-
FR1, and VEGFR2 by ID because HIF2a coordinates

oxygen and iron status with erythropoiesis and the VEGF

pathway has been shown to influence various aspects of

megakaryopoiesis [51–53]. Of the identified targets, only

these were similarly regulated in HEL and MEGs. Addi-

tionally, VEGF is under HIF regulation.

Fig. 1. Iron deficiency (ID) leads to megakaryocytic morphological changes in HEL and in CMK. (A) Proliferation of HEL and CMK cells on

culture in 100% (iron replete [IR]), 10%, 5%, 2.5%, 1.25% (ID), and 0% v/v Panserin 401 in Panserin 401S after 4, 7, and 11 days of culture.

Graphs depict the fold change in cell count of propidium iodide–excluding cells measured by flow cytometry at each condition and time point

as compared with day 0. (B) Relative TfR1 mRNA concentration of HEL and CMK cultured in IR or ID medium for 1, 2, 4, and 7 days (nor-

malized to GAPDH). TfR1 is stabilized under low iron conditions. (C) Mean count of proplatelet extensions per 940 field of view in CMK

after culture for 4 days in IR, ID, and IR medium with 50 nmol L–1 PMA. (D) Representative pictures of live cell imaging (940) of HEL and

CMK cultured in IR, ID, and IR medium plus 50 nmol L–1 PMA for 4 days. Arrowheads depict large cells, which increase in ID and PMA-

treated HEL, while arrows depict formation of proplatelet-like structures in CMK. The results from two or three independent experiments are

shown. *P ≤ 0.05, ***P ≤ 0.001.
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To verify the expression of genes in HIF/VEGF path-

way in ID, HEL and CMK were cultured under ID for

3 days and CBHSCs for 5 days prior to RT-PCR

(Fig. 5). TfR1 was upregulated in ID in all cell types.

HIF2a was also upregulated in all cell types. VEGFR1

was upregulated in HEL, and CMK but not in MEGs

and CD61-negative cells. VEGFR2 was upregulated in

HEL, CMK, and MEGs but not in CD61-negative cells.

VEGFA, a known downstream target of the HIF pathway

and ligand to these receptors [54,55], was increased in all

cell types, despite not being identified in the previous

screen. HIF1a was upregulated in HEL, CMK, and

CD61-negative cells but not in MEGs. Overall, the data

suggest a role for HIF2a and VEGFA in megakaryocytic

differentiation in ID.

Because previous studies have shown that VEGF-A

influences megakaryopoiesis [51–53] and because VEGF-

A is a known target of HIF2a [54,55], we evaluated the

concentration of VEGF-A in the cell media of MEGs.

The concentration of VEGF-A in media from ID cultures

increased almost 2-fold (Fig. 6A). When cells were cul-

tured (48 hours) in IR and ID media supplemented with

VEGF-A (25 ng mL�1), the percentage of CD41+ cells

per field of view increased in VEGF-treated cultures in

comparison to TPO-treated cultures, but not the percent-

age of GPA+ cells (Fig. 6B, C). EPO (1 ng mL�1)-supple-

mented cultures had a higher concentration of GPA+
cells in IR compared with ID (P = 0.004); conversely,

CD41+ cell concentration was higher in ID (P < 0.001).

While we did not see changes between TPO-treated ID

and IR cultures at this early timepoint, CD41+ cell con-

centration was increased after 5 days of culture

(P = 0.029, Fig. 6B, Fig. S5). EPO and VEGF-A cultures

did not survive up to day 5, preventing analysis at this

timepoint. These results support ID-driven megakaryopoi-

esis, where EPO exacerbates ID leading to a higher per-

centage of CD41+ cells. Furthermore, the increase in

percentage CD41+ with VEGF in comparison to TPO

and the lack of difference between ID and IR suggest that

VEGF may have a role in this process.

HIF2a expression is increased in iron deficiency and

correlates with platelet count

To determine if protein levels of HIF2a were increased

in vivo as well, we used sternal sections of ID and control

rats from our previous experiments [9] for IHC analysis.

In this animal model, maintenance on a diet low in iron

over the course of 3 weeks resulted in increased platelet

counts (P < 0.001), as well as diminished hemoglobin

(Hb, P < 0.001) and mean corpuscular volume (MCV,

P < 0.001) (Fig. 7A), which corresponds with the micro-

cytic hypochromic anemia induced by ID in humans.

Erythrocyte count and hematocrit were likewise dimin-

ished in ID (Fig. S6A), and leukocyte count was

unchanged (Fig. S6A). HIF2a was present in MEGs

(Fig. 7B, red arrows) and non-MEGs in control rats,

while staining intensity was diminished in non-MEGs in

most sections and increased in MEGs in ID rats (Fig. 7B,

green arrows, see Fig. S6B for isotype control). IHC scor-

ing confirmed increase in staining intensity upon ID

(P = 0.008) as compared with control rats (Fig. 7B, C).

Plots of platelet counts against IHC score show two sepa-

rate clusters corresponding to control and ID animals

(Fig. 7C) and indicate increased HIF2a with higher plate-

let counts in ID.

Discussion

In this study, we utilized various in vitro models to exam-

ine the effect of ID on megakaryopoiesis and to identify

potential targets involved in this process. We show that

ID induces megakaryocytic differentiation and proplatelet

formation. The novel finding of this study is identification

of the HIF/VEGF pathways as potential regulators of

megakaryocytic differentiation under ID. Apart from

TfR1, the expression of genes from the HIF and VEGF

pathways were identified by RT-PCR arrays to be

induced upon ID. The induction of HIF2a was verified in

bone marrow of ID animals as was the secretion of

VEGF-A in supernatants of CBHSC. VEGF-A supple-

mentation increased MEG percentages regardless of iron

concentration, suggesting involvement in iron deficient

megakaryopoiesis.

Our lab has previously demonstrated increased ploidy

in iron deficient megakaryocytic cell lines [9]. Here, we

confirmed ploidy increase in HEL, corroborated by

increased expression of cyclin D, a cell cycle regulator

whose overexpression increases MEG ploidy [56]. Early

stages of megakaryopoiesis are associated with an

increase in cell cycle regulators, and initial low expression

of genes involved in MEG terminal differentiation [57,58].

This pattern of expression correlates with the pattern seen

in HEL, where ID induces ploidy, while genes involved in

terminal differentiation are diminished. There was also

upregulation of ELF-1, a transcription factor progres-

sively upregulated in megakaryopoiesis and downregulat-

ed in erythroid terminal differentiation [48,49], and

Fig. 2. Iron deficiency (ID) increases ploidy in HEL. HEL and CMK cultured for 4 days in iron-replete conditions (IR), ID, and IR plus

50 nmol L–1 PMA. (A) Representative images (940) of nuclear staining (DAPI) of HEL and CMK after culture for 4 days in IR, ID, and IR

media with 50 nmol L–1 PMA. Arrowheads depict large nuclei. (B) Flow cytometric measurement of Hoechst 33342 nuclear staining of HEL

and CMK. Graphs depict the percentage of cells with ploidy greater than 4n as a fold change to IR. (C) Flow cytometric assessment of mean

HEL and CMK cell volume depicted as fold change to IR. (D) Representative histograms of ploidy in HEL and CMK after 4 days’ culture in

IR, ID, and IR + 50 nmol L–1 PMA. The results from two or three independent experiments are shown. **P ≤ 0.01, ***P ≤ 0.001.
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downregulation in beta hemoglobin, supporting the shift

away from erythropoiesis. Further transcription factors

involved in differentiation were also regulated, however

only in HEL.

Rats on ID-diet develop thrombocytosis, with bone

marrow alterations suggesting not only increased MEG

ploidy, but also MEG progenitor expansion, and

enhanced differentiation [9]. This matches our observed

expansion of the MEG population expressing early and

late markers of megakaryopoiesis, and enhanced proplat-

elet formation in both CBHSC and CMK. Furthermore,

the proportion of MEGs readily producing proplatelets is

increased in ID. Ploidy was not increased in CBHSCs,

but it is known that cord blood–derived MEGs do not

become highly polyploid [30] and ID-enhanced endomito-

sis may still occur in bone marrow. CMK is a more

mature cell line than HEL [41,42] and, hence, exhibited

induction of later features of megakaryopoiesis instead of

ploidy. These changes are accompanied by the expression

of CD61 and vWF, which increase in terminal differentia-

tion [58]. While we did not see regulation of these genes

in MEGs in these genes, this is likely a limitation of prior

sorting for CD61 expression.

Previous studies suggest that TPO, IL-6, and IL-11

may not be the primary mediators of ID-augmented

megakaryopoiesis [9,24]. We identified VEGF as a poten-

tial pathway involved, as VEGFR2 and VEGFA were

modulated by ID and immunoassay of cell media showed

increased VEGFA concentrations in ID. Addition of

VEGF to culture media also increases the percentage of

cells expressing CD41, with no additive effect of ID.

Stimulation of VEGFR2 induces the expression of megak-

aryocytic markers [53], while VEGFR1 increases MEG

ploidy [51,52]. Megakaryoid and erythroid precursors

both secrete VEGF, which may then stimulate MEG dif-

ferentiation in an autocrine and paracrine fashion [51,53].

Thus, ID could increase both receptor and ligand expres-

sion, leading to augmented MEG polyploidization and

differentiation. Furthermore, stimulation of this pathway

has been shown to increase the number of circulating

platelets in vivo, by way of increased MEG migration

toward sinusoids in the bone marrow [52].

HIFs are central regulators of the response to hypoxic

stress. These transcription factors are regulated by the

availability of iron and oxygen, two factors diminished in

ID anemia. Furthermore, HIFs are known regulators of

the VEGF pathway [54,55], and HIF2a is also known to

regulate cyclin D [59]. Another important HIF2a target is

EPO, allowing regulation of erythropoiesis and iron
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absorption in response to changes in oxygen and iron

[60]. We hypothesize that alterations in this pathway pro-

mote megakaryopoiesis. As MEGs retain HIF2a expres-

sion in ID, this could allow sustained expression of

VEGFA, which facilitates megakaryopoiesis and MEG

migration toward sinusoids, while erythropoiesis is stalled

due to lack of iron for hemoglobin.

This study warrants further investigations into the

HIF/VEGF pathways under ID. Our in vitro model does

not take into account the bone microenvironment, which

is involved in the regulation of megakaryopoiesis.

Furthermore, ID in vivo progressively influences oxygena-

tion and, while it is striking that ID alone can invoke such

changes, the situation in vivo is likely more complex. In
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fact, hypoxia alone modulates megakaryopoiesis in rats,

leading to increases in MEG volume, number, platelet

count, and platelet aggregability [61]. Thus, ID and hypoxia

may work in concert to augment megakaryopoiesis. ID

may also influence intracellular redox balance, and megak-

aryopoiesis as well as hematopoiesis in general are greatly

influenced by reactive oxygen species production (see

[62,63] for reviews).

In conclusion, ID has a direct effect on megakaryopoie-

sis, augmenting MEG ploidy, as well as overall differenti-

ation and subsequent proplatelet production. ID

modulates gene expression, leading to increased HIF2a
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and increased expression of VEGFA. This would, in the-

ory, lead to increased platelet production that would

facilitate coagulation in the context of chronic bleeding.

However, this could also increase the risk of thromboem-

bolic events in patients suffering from chronic ID, partic-

ularly in IBD or cancer. Further investigation into

megakaryopoiesis in ID is necessary.
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