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Background: Endolymphatic hydrops (EH) is considered as the pathological correlate
of Menière’s disease (MD) and cause of hearing loss. The mechanism of EH, remaining
unrevealed, poses challenges for formalized clinical trials.

Objective: This study aims to investigate the development of hearing loss, as well as
the effect of dehydration treatment on EH animal models.

Methods: In this study, different severity EH animal models were created. The laser
Doppler vibrometer (LDV) and auditory brainstem responses (ABR) were used to study
the effects of EH and the dehydration effects of mannitol. The LDV was used to measure
the vibration of the round window membrane (RWM) reflecting the changes in inner
ear impedance. ABR was used to evaluate the hearing changes. Furthermore, tissue
section and scanning electron microscopy (SEM) observations were used to analyze
the anatomical change to the cochlea and outer hair cells.

Results: The RWM vibrations decreased with the severity of EH, indicating an increase
in the cochlear impedance. The dehydration therapy lowered the impedance to restore
acoustic transduction in EH 10- and 20-day animal models. Simultaneously, the ABR
thresholds increased in EH models and were restored after dehydration. Moreover, a
difference in the hearing was found between ABR and LDV results in severe EH animal
models, and the dehydration therapy was less effective, indicating a sensorineural
hearing loss (SNHL).

Conclusion: Endolymphatic hydrops causes hearing loss by increasing the cochlear
impedance in all tested groups, and mannitol dehydration is an effective therapy to
restore hearing. However, SNHL occurs for the EH 30-day animal models, limiting the
effectiveness of dehydration. Our results suggest the use of dehydrating agents in the
early stage of EH.

Keywords: endolymphatic hydrops, dehydration therapy, Ménière’s disease, laser Doppler vibrometry, cochlear
impedance
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HIGHLIGHTS

- This study investigated the development of hearing loss on
guinea pig EH models, as well as the effect of dehydration
treatment. By combining analogical observations and objective
measurement of hearing loss (ABR and LDV measurement of
RWM vibration). The highlights of this study are:

1. EH induced hearing loss progressed with the development
of EH, it starts at low frequencies, and later involves
medium to high frequencies.

2. EH increases the cochlear impedance, causing conductive
dysfunction. This dysfunction can be cured by dehydration
treatment in early stage. But irreversible sensorineural
component becomes significant for long-time EH.

3. Early dehydration treatment is suggested for reserving
hearing.

- This study gives an overview of the development of hearing loss
in EH, and partly revealed the mechanical basis and biological
influences of EH. Moreover, the investigation of dehydration
treatment may provide a reference for clinical practice.

INTRODUCTION

Menière’s disease (MD) is an inner ear disorder named after
Prosper Menière (Atkinson, 1961), who in 1861 described
patients with episodic vertigo accompanied by fluctuating
hearing, tinnitus, and aural fullness in the affected ear. Later, the
correlation between MD and endolymphatic hydrops (EH) was
found by Hallpike and Cairns (1938) and Yamakawa (1938). As
the presence of histopathological EH was reported postmortem,
the essential relationship between EH and MD were being
questioned until Merchant’s study found that EH and MD are
associated with 100% of cases when the current definition of MD
is strictly applied (Merchant et al., 2005; Gluth, 2020). Recently,
the development of gadolinium chelate (GdC)-enhanced MRI
demonstrated EH in vivo and further confirmed EH is a common
pathological feature of inner ear diseases characterized by low-
frequency hearing loss, including MD (Naganawa et al., 2014; Zou
et al., 2020).

The physiological mechanisms of Méniere are still poorly
understood, yet causative relationships between EH and
disordered auditory physiology in MD have been supported
by much clinical and experimental evidence. It is widely
believed that the dysregulation of endolymph volume may
lead to EH and cause a chain reaction. Since morphological
changes such as the collapse of stereocilia of outer hair cells
(Albers et al., 1987) or losing synapses in inner hair cells
(Valenzuela et al., 2020) fail to explain the correlation of EH
and hearing loss, potential explanations have mainly focused
on the mechanical impact caused by high endolymphatic
pressure on endolymph components (Oberman et al., 2017)
and the function of the lymphatic sac (Swinburne et al.,
2018). Among those theories, the mechanical mechanism of
high pressure in the endolymphatic duct explains the clinical
hearing symptoms in early and mid-stage Méniere’s disease

(Ichimiya and Ichimiya, 2019), prompting the dehydration
therapy for patients with MD. The effectiveness of dehydration
therapy has not been strictly evaluated (Quaranta et al., 2019),
and a recent meta-analysis further concluded that it was unclear
whether diuretics were effective (Nevoux et al., 2018), even
though patients have stated subjective perception improvements
(Ward et al., 2019). Whether hyperosmolar agents, such as
glycerol, urea, or mannitol, can improve patient hearing and
act as a diagnostic tool are still under debate (Thomsen and
Vesterhauge, 1979; Angelborg et al., 1982; Van de Water et al.,
1986; Sterkers et al., 1987; Magliulo et al., 2001). This apparent
contradiction raises the question of why patients report relief
of symptoms while most of the available studies query the
effectiveness of dehydration.

As the hearing ability can be predicted by the mechanical
transfer of acoustic vibration and the round window is considered
as an accurate proxy for cochlear fluid displacement (Ryan et al.,
2020), we propose using peak-to-peak displacement of round
window membrane (RWM) to analyze the change in intra-
cochlear pressure under the effects of dehydration agents on
EH animal models. We chose RWM as the reflection of the
inner ear transfer function because it can estimate the cochlear
input impedance as a whole, so it is free from the influence
of the inertia of the perilymph inside the helicontrema, thus
the compliance of it can better describe the total pressure
inside the cochlea (Marquardt and Hensel, 2013). As the laser
Doppler vibrometer (LDV) is an established optical technique to
analyze the vibration of the ossicular chain, RWM, and tympanic
membranes (Zhang and Gan, 2013), we used LDV to measure
the dynamic behavior of RWM to evaluate cochlear impedance
and sound transmission. To better illustrate the effectiveness of
dehydration therapy, we created a series of different severity
EH models using guinea pigs to simulate various stages of MD,
then treated with mannitol. By measuring the auditory brainstem
response (ABR), the linear displacement of RWM, and observing
the changes in the organ of Corti, we assessed the influence
of high endolymphatic pressure and the dehydration effects of
mannitol on EH models.

MATERIALS AND METHODS

Animals and Research Program
Healthy albino guinea pigs (male, weighed 250–300 g), with a
positive Preyer reflex and free of tympanic membrane perforation
or otitis media, were used in this study. Pre-recruiting ABR
measurements (click stimuli) were conducted to exclude animals
with abnormal hearing function.

Guinea pigs were classified into 10-day EH, 20-day EH, 30-
day EH, and blank control groups equally (12 individuals in the
blank control group and 18 animals in the EH group). For the
EH group, ABR (tone burst stimuli) was conducted to evaluate
the auditory responses of one-third (6 animals) of the animals,
and LDV measurement was used for the other two-thirds (12
animals). For all EH groups (10, 20, and 30 days), the ABR
measurements were conducted both before and after dehydration
with mannitol. Bilateral ears were used in all measurements.
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FIGURE 1 | The experimental design.

For the LDV measurements, the twelve animals in each
EH group were divided into two subgroups, one for direct
LDV measurement and the other for vibrometry after mannitol
treatment. An operation is necessary for LDV measurement,
making it hard to keep the animals healthy if further mannitol
treatments are followed, which may influence the effect of
dehydration. The ABR and LDV results were also obtained as
baselines by the blank control groups. Figure 1 and Table 1 give
a flowchart and roadmap of the experimental program.

After the measurements, the animals were sacrificed using an
overdose of anesthetic. The cochleas were sectioned and stored
in 10% polymerized formaldehyde or 2.5% glutaraldehyde for
further histography.

The research program follows the principles of the guidelines
for care and use of laboratory animals and was approved
by the Ethics Committee of the Eye and ENT Hospital of
Fudan University.

Endolymphatic Hydrops Model and
Mannitol Treatment
As several studies report the importance of the endolymphatic
sac and further confirm its function of regulating endolymph
(Baluk et al., 2007; Swinburne et al., 2018), we used desmopressin
without combining surgery to create our EH models.

The EH guinea pig model was conducted by intraperitoneal
injection of desmopressin acetate (T5144, CAS: 62288-83-9,
TargetMol, United States), once a day, at a dose of 8 µg/kg weight.
The dose of desmopressin reported to induce EH models was
variable, but there was evidence supporting increasing dosage and
injection days can provide a more severe EH status in animal
models at a low dose level (Takeda et al., 2000; Katagiri et al.,
2014). The dose of 4–6 µg/kg weight has been widely used for EH
guinea pigs modeling (Degerman et al., 2019; Jiang et al., 2019).
Considering the potential for long-time medication tolerance,
we increased the dose of desmopressin for our animal models
(Takeda et al., 2000). To create an EH model with different levels
of severity, the duration of model creation was 10, 20, and 30 days
for the 10-, 20-, and 30-day EH groups, respectively.

Different kinds of hyperosmolar dehydration agents, such as
glycerol, urea, isosorbide, sodium bicarbonate, and mannitol,
were used to discuss their influence on the inner ears (Baldwin
et al., 1992; Yazawa et al., 1998). Given the report of the rebound
phenomenon of glycerol (Takeda et al., 1999) and the recent
discovery of aquaporin-3 (also termed as aquaglyceroporin) in
the labyrinthine membrane (Agre et al., 2002; Beitz et al., 2003),
we chose mannitol as the dehydration agent applied in this
study. The percentage of mannitol used in research varies from
10 to 40% (Larsen et al., 1982; Baldwin et al., 1992; Yazawa
et al., 1998; Morawski et al., 2003; Le and Blakley, 2017). A high
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TABLE 1 | A flowchart of the experimental procedure.

Groups Experimental procedure

Blank control
(12 animals)

ABR (6 animals, N = 12)

LDV (6 animals, N = 12)

EH 10-day (18
animals)

1st ABR
(6 animals,

N = 12)

Mannitol
dehydration

2nd ABR
(6 animals,

N = 12)

LDV
(6 animals,

N = 12)

– –

– Mannitol
dehydration

LDV
(6 animals,

N = 12)

EH 20-day (18
animals)

same as EH 10-day group

EH 30-day (18
animals)

same as EH 10-day group

dose of mannitol would cause a lethal effect, while a low dose
may not ensure sufficient dehydration. In our experiment, the
dehydration treatment was fulfilled by the intravenous injection
of an 18% mannitol-saline solution at a safer dose of 0.5 g/kg.
The dose and concentration were chosen by experience. During
the dehydration process, the infusion rate was set slow, and the
measurement started approximately an hour after the full dose of
mannitol was given.

Auditory Brainstem Responses
Measurement
Before the ABR measurement, the animals were anesthetized with
an intramuscular injection of ketamine hydrochloride (40 mg/kg)
and xylazine hydrochloride (10 mg/kg).

The ABR measurements were conducted in a soundproof,
electromagnetically shielded room. The measurements were
conducted using the RZ6/BioSigRZ system (Tucker-Davis
Technologies, Alachua, FL, United States). Electrodes were
inserted into the skin, one electrode at the vertex for signal
recording and two electrodes at the bilateral mastoids as reference
and ground. Repeated tone bursts (5 ms duration, 0.5 ms rise-
fall time, Blackman envelope) were presented by a closed-field
speaker at a rate of 21 stimuli/s. The test frequency points are
2, 4, 8, 16, 24, and 32 kHz. The sound-intensity level ranges from
20 to 90 dB sound pressure level (SPL) at an interval of 5 dB.
ABR responses were recorded and averaged after 1,024 stimuli.
The threshold for each frequency point was determined typically
by the ABR I, III, and V waves.

Laser Doppler Vibrometer Measurement
The vibration of the RWM was measured to evaluate the
hearing function of normal, EH-modeled, and mannitol-treated
guinea pigs. The feasibility of using RWM vibration as a
measure of auditory function has been previously proven
(Zhang et al., 2019).

The guinea pig was anesthetized using an intramuscular
injection of ketamine hydrochloride (40 mg/kg) and xylazine

hydrochloride (10 mg/kg). For the duration of the surgery, the
animal was placed on a heating blanket to maintain its body
temperature. Bilateral auricles were partially removed, and the
dorsal auditory bulla was opened to sufficiently expose the RWM
(Figure 2A). A reflective tape (0.2× 0.2 mm2, < 0.01 mg Polytec,
Germany) was carefully placed on the center of the RWM. The
tympanic membrane and the ossicular chain were kept intact.

Figure 2B illustrates the setup of the LDV system.
The experiment was conducted in a soundproof chamber
with < 30 dB SPL noise floor. The animal was placed on a
platform. An insert earphone (ER-4PT, Etymotic, United States)
was inserted into the ear canal, coupled with a tiny sound
pressure probe (ER-7C, Etymotic, United States). Pure tones at
85 dB SPL in the frequency range of 0.5–10 kHz (5 points/octave)
were produced by the earphones, driven by a power amplifier
(Type 2718, B&K, Denmark) connected with a signal generator
(NI 9263, National Instruments, United States). The tip of
the pressure probe was positioned approximately 2 mm
from the tympanic membrane to accurately monitor the
input sound pressure.

An LDV (CLV 2534-4, Polytec, Germany) was adopted to
measure the vibration of the RWM. The measuring laser beam
generated by the device was controlled so that the measuring
angle was greater than 70◦. The RWM velocity (sensitivity:
2 mm/s/V) and input sound pressure (sensitivity: 20 Pa/V) were
simultaneously recorded using a four-channel data acquisition
card (NI9234, sampling rate: 51.2 kHz, National Instruments,
United States). Two channels were used. An in-house MATLAB
code was developed for measurement control, data acquisition,
and analysis. The FFT algorithm was used to obtain the velocity
amplitude and sound pressure.

Histological Section
For histology, specimens (stored in 10% polymerized
formaldehyde at 4◦C) were decalcified in 10%
ethylenediaminetetraacetic acid (EDTA), dehydrated with
15 and 30% sucrose solution, and coated with Optimum Cutting
Temperature (OCT) compound. Then the cochlea was frozen and
sectioned in the plane parallel to the modiolus (section thickness:
8 µm), followed by hematoxylin and eosin (H&E) stain.

For scanning electron microscopy (SEM), during specimen
collection, the apical of the cochlea and RWM were opened,
poured, and fixed with 2.5% glutaraldehyde at 4◦C for 48 h. Then
the membranous labyrinth was fully exposed. All other tissues
were removed, leaving only the basement membrane, fixed in
osmium tetroxide solution, and treated with tannic acid. Finally,
the specimens were dehydrated with alcohol, dried, sprinkled
with gold, and observed by a scanning electron microscope
(SU8010, HITACHI, Toyko, Japan).

Data Processing
For sections, since the EH model is induced by desmopressin, the
SAM ratio is not suitable for our case. We provided changes in
the angle formed by Reissner’s membrane and basilar membrane
(BM) to reflect the severity of EH and response to mannitol. For
LDV measured data, the RWM velocity amplitude was converted
to peak-to-peak displacement according to the mathematical

Frontiers in Cellular Neuroscience | www.frontiersin.org 4 April 2022 | Volume 16 | Article 836093

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-16-836093 April 5, 2022 Time: 13:13 # 5

Wang et al. Endolymphatic Hydrops and Dehydration Effects

FIGURE 2 | The LDV measurement. (A) The surgical exposure was photographed via a dissecting microscope. The tympanic ring and round window membrane
(RWM), with a radius of 0.5–0.6 mm, are seen from the opened middle ear cavity (right ear of tested guinea pig). (B) A sketch of the measurement system. The RWM
velocity was measured via a compact LDV, and the signal was acquired by an AD card (NI-9234) and analyzed by an in-house MATLAB program.

relation: Upeak-to-peak = V/(π·f ) (where Upeak−to−peak is
the peak-to-peak displacement, V is the velocity amplitude, and
f is the frequency). Then the displacement is normalized by the
sound pressure near the tympanic membrane. To statistically
analyze the displacement and ABR threshold, the mean and
standard deviation (SD) were calculated for each group. Two-
tailed Student t-tests were used for data comparison, and p-values
of < 0.05 were considered as a significant difference.

RESULTS

Observation of Tissue Sections of the
Cochlea in Ears With Endolymphatic
Hydrops
Figure 3 presents the H&E stained section of the cochlea for the
EH groups and the blank controlled group (more section samples
are presented in Supplementary Appendix). Turn 2 was shown.
In the control group (Figure 3A), the Reissner’s membrane (RM)
did not deform so that the membrane and the BM formed a sharp
angle. However, the RM bulged toward the scala vestibula (SV) in
the EH groups (Figures 3B–D). The tissue of RM deformation
became more significant with the duration of EH, indicating an
increase in EH severity. These observations, consistent with the
previous reports (Katagiri et al., 2014), verified our EH models.

Figures 3E–G shows turn 2 of the cochleae after dehydration.
Compared with the non-dehydration results, a significant
volumetric change in the scala media (SM) was shown, and in the
EH 10- and 20-day groups, the RM nearly relocated to its normal
location, indicating the effectiveness of mannitol treatment.
Slight foldings and distortions of the RM were observed
(Figures 3E–G and Supplementary Figure 1). Additionally,
some cases showed the deformation of the organ of Corti
(Figures 3F,G). The mean and SD of the angle between RM

and BM were calculated and shown in Table 2 (sections were
used to calculate the mean of the angle, thus forming the
sample number of 8).

Effect of Endolymphatic Hydrops and
Dehydration Treatment on Auditory
Brainstem Responses Measurement
Auditory brainstem response thresholds of all groups are
presented in Figure 4. Figure 4A plots the ABR thresholds in
the EH groups of different severity, together with the result of
the control group as a baseline. In the EH 10-day group, the
mean thresholds increased by approximately 10 dB, mainly at
low frequencies (2, 4, and 8 kHz). In the EH 20-day group, high-
frequency thresholds also increased significantly (by 10–15 dB
at 16, 24, and 32 kHz, p < 0.05), but low-frequency thresholds
were still more prominent (with an increase of 20–30 dB at 2–
8 kHz, p < 0.05). In the EH 30-day group, the ABR thresholds
increased over a broad frequency range (by approximately 30 dB
at 2–32 kHz, p < 0.05).

The mannitol dehydration treatment effect on ABR thresholds
is shown in Figures 4B–D, with each sub-figure corresponding
to EH 10-, 20-, and 30-day groups, respectively. Compared with
non-dehydration status, the ABR thresholds at the low-frequency
range of EH 10-day had remarkable improvements (9.1 dB SPL
at 2 kHz, 5.0 dB SPL at 4 kHz, and 5.4 dB SPL at 8 kHz;
Figure 4B, p < 0.05) and almost went back to normal. In the
EH 20-day group, significant improvements of approximately
10 dB (p < 0.05) were observed in all frequencies. The improved
thresholds were still notably higher than that of the normal
baseline (refer to Figure 4C). In the EH 30-day group, the ABR
thresholds were not changed after mannitol injection (except for
a slight improvement at 2 kHz), indicating the ineffectiveness of
dehydration treatment (refer to Figure 4D).
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FIGURE 3 | Section of cochlear turn 2 of normal, EH-modeled, and dehydration-treated guinea pigs. In the control group (A), the Reissner’s membrane (RM) and the
organ of Corti are in the normal position, and the RM and BM form a sharp angle (approximately 45◦). In the EH groups (B–D), the RM are bent, and the deformation
becomes remarkable as the EH goes severe. (E–G) The dehydration effect where the RM is partly restored. Some distortion of the RM and the organ of Corti are
shown.

Effect of Endolymphatic Hydrops and
Dehydration Treatment on Round
Window Membrane Vibration
Figure 5A shows the mean peak-to-peak displacement and SD
of RWM in the control and EH 10-, 20-, and 30-day groups.
For the normal baseline, the displacements generally decrease
as frequency increases in the range of 0.5–10 kHz. The most
reduction occurred at 1–5 kHz and the plateau had been reached
at above 7 kHz, which coincide with the reported data (Zhang
et al., 2019). In the EH 10-day group, there existed a slight
reduction (approximately 10 dB) in RWM displacement at 0.5–
4 kHz (11.3 dB at 0.5 kHz). For the EH 20-day group, the RWM
displacement significantly decreased at the frequency range of
0.5–10 kHz (at approximately 15 dB). In the EH 30-day group,
a further reduction of 15–20 dB was observed.

After dehydration treatment, the RWM vibration is shown
in Figures 5B–D. In the EH 10-day group, the peak-to-peak
displacement of RWM nearly went back to its normal range
and was slightly higher than normal at 4–10 kHz (less than
4 dB, p < 0.05). In the EH 20-day group, the peak-to-peak
displacements also showed a great improvement. However, at
the range of 0.5–1 kHz, the recovery exhibited a mild reduction,
compared with the normal curve (Figure 5C). In the EH 30-day
group, the improvements were 3–8 dB, which was still 10–15 dB

worse than the normal cases, suggesting the limited effect of
dehydration therapy (Figure 5D).

Observation of Outer Hair Cells of the
Cochlea in Ears With Endolymphatic
Hydrops
Figure 6 shows the SEM observations of outer hair cells
(OHC) in the EH 10-, 20-, and 30-day groups. Turns 2 and
3 were presented. In the EH 10-day group, the stereocilia of
outer hair cells in turn 2 (Figure 6A) have already exhibited
slight swelling and lodging, and accidental loss of stereocilia
has been noticed. However, the OHC remains intact at turn

TABLE 2 | The angle between RM and BM of turn 2 in each group (N = 8).

Angle between RM and BM Mean SD

Normal 41.9◦ 3.3

EH 10-day 59.7◦ 4.9

EH 20-day 77.8◦ 7.3

EH 30-day 90.7◦ 8.1

EH 10-day Mannitol Tx 50.0◦ 5.1

EH 20-day Mannitol Tx 54.4◦ 3.5

EH 30-day Mannitol Tx 57.6◦ 4.5
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FIGURE 4 | The ABR thresholds change. (A) The ABR thresholds in the control, EH 10-, 20-, and 30-day groups, presenting with mean and SD; as the degree of
EH became more severe, the thresholds increased. (B–D) The ABR threshold differences between the EH groups and the dehydration groups of 10, 20, and 30
days, compared with the control group.

3 (Figure 6B). In the EH 20-day group, the damage of
stereocilia of OHC in turn 2 (Figure 6C) is very obvious, and
the lodging and collapse of stereocilia have started to show
up in turn 3 (Figure 6D). The changes in OHC were most
prominent in the EH 30-day groups. The injury to OHC was
more severe compared with the EH 20-day group in both
turns (Figures 6E,F), and collapse of cilia and swelling inner
hair cells (IHC) have started to appear (Figures 6E,F). Those
finding indicating sensation dysfunction in severe EH may be
the explanation of poor response to mannitol in the EH 30-
day group.

DISCUSSION

The Hearing Loss in Endolymphatic
Hydrops Animal Models
Animal models are commonly used in identifying and
characterizing the pathophysiology of EH. Current existing

animal models can resemble the dilation of SM and low-
frequency hearing loss. It is widely accepted that the EH
animal models, created through surgical operation, medication
application, or their combination, can reproduce the chronic
phase of MD (Seo and Brown, 2020).

The EH surgical model was created via ablation
of the endolymphatic duct and endolymphatic sac by
electrocauterization. It produces reliable EH models, but
the permanent surgical damage and irreversible hearing loss
limit its feasibility in studying the curative effect (Horner,
1991). The EH medication models are created with injections
of low-dose vasopressin (VP), desmopressin, or aldosterone.
In hydropic cochleae confirmed by X-ray micro-tomography
(micro-CT), desmopressin influences all frequency ranges of the
cochlea but is more prominent at low frequencies (Takeda et al.,
2000; Chihara et al., 2013; Katagiri et al., 2014).

A similar phenomenon was observed in our EH model
experiments. The ABR results showed that the hearing loss
started at low frequencies (the EH 10-day group) and progressed
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FIGURE 5 | The RWM peak-to-peak displacements in the dB scale. (A) The RWM peak-to-peak displacement in the control group and the EH 10-, 20-, and 30-day
groups, presenting with mean and SD. The displacements are normalized by sound pressure in the ear canal. (B–D) The RWM peak-to-peak displacement
differences in the 10-, 20-, and 30-day EH groups before and after dehydration treatment, compared with the normal baseline.

to higher frequencies (the EH 20- and 30-day groups, refer to
Figure 4A). Note that the large variations in our ABR results
may be caused by individual differences in response and the
vasopressin escape phenomenon (Ecelbarger et al., 1998).

The increasing hearing losses were also reflected by the
reduction of RWM vibrations (refer to Figure 5A). A positive
correlation was found between the reduction of the RWM
vibration and the severity of EH. However, the vibration
reductions were not frequency-sensitive compared with the ABR
results. The RWM vibration, different from ABR thresholds, is an
evaluation of the mechanical influence of EH. This may cause the
inconsistency between ABR and LDV results.

The Effect of Dehydration Therapy on
Endolymphatic Hydrops
In clinical trials, dehydration agents (e.g., mannitol, isosorbide,
and glycerol) are commonly used in the diagnosis and treatment

of MD (Kakigi et al., 2004), as their influences on hearing
improvement have been confirmed by clinical trials and
research (Filipo et al., 1997; Degerman et al., 2019). The
impacts of dehydration agents in animal models have usually
been analyzed by tissue section or micro-CT. Among those
studies, common morphological changes such as folding of
the distended RM and deformation of the organ of Corti
have been observed and reported (Egami et al., 2016). In
our study, those morphological changes were also noticed
(Figures 3F,G).

Hearing restoration after dehydration treatment was also
evaluated in this study. As shown in both ABR (Figures 4B–
D) and RWM vibration (Figures 5B–D) results, the hearing
loss was nearly fully recovered after dehydration in the EH
10-day group and partly recovered in the EH 20-day group.
In the EH 30-day group, the hearing loss was sustained.
Considering the remarkable OHC injury in the EH 30-day group
(Figures 6E,F), at that time, the causes of hearing loss may
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FIGURE 6 | The SEM observation of OHC in the EH 10-, 20-, and 30-day groups. (A,C,E) Turn 2 of the cochlea in the EH 10-, 20-, and 30-day groups. (B,D,F) Turn
3 of the cochlea in each group accordingly.

be transferred from conductive dysfunction to sensory impair,
restoring of conductive function by dehydration is not enough
to improve hearing.

Conductive and Sensorineural Hearing
Loss
Typically, patients with MD experience fluctuating low-
frequency hearing loss followed by medium- to high-frequency
involvement. Gluth (2020) reviewed the hypothesis for MD
development. The mechanical effect of high endolymphatic
pressure affects cochlear conductive problems and damages the
sensory hair cells, resulting in sensation dysfunction. The same
damage to hair cell stereocilia in our study was also reported in

many EH animal models (Momin et al., 2010; Jia et al., 2012;
Ding et al., 2016).

Our results support this assumption. In the EH 10-day group,
the injury stereocilia of OHC at turn 2 is minimal, and turn 3
is almost normal. The RWM vibration decreased by 7.6, 15.0,
and 7.0 dB at 2,4, and 8 kHz, respectively (referring to normal
range in Figure 5B), which were similar to ABR threshold
changes (10.8, 7.9, and 7.1 dB at 2, 4, and 8 kHz, respectively,
refer to Figure 4B). In the EH 20-day group, the hearing loss
evaluated by RWM vibration was 15.2, 15.8, and 13.5 dB at 2,
4, and 8 kHz, respectively (Figure 5C), while the ABR threshold
elevation was significantly higher (27.5, 20.8, and 17.1 dB at 2,
4, and 8 kHz, respectively, refer to Figure 4C). The gap was even
more significant in the EH 30-day group. The ABR increases were
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31.3, 27.1, and 25.0 dB, and the LDV results were 20.9, 22.4, and
16.6 dB at 2, 4, and 8 kHz, respectively (Figures 4D, 5D). For
long-time EH models, the hearing loss evaluated by ABR was
higher than that by RWM vibration, which is consistent with
OHC stereocilia injury (Figures 6C–F).

The RWM vibration is a measurement of cochlear impedance,
representing the conductive dysfunction component in acoustic
transferring, while the ABR change is a sum of the conductive
and sensation dysfunction. Therefore, the gap between ABR and
RWM vibration may represent the SNHL. In our study, there
is no gap in the EH 10-day animal models, indicating minimal
SNHL at that time. However, the gap occurs in the EH 20- and 30-
day groups, suggesting an increasing sensorineural component.
Therefore, the dehydration treatment shows a significant curative
effect in the EH 10- and 20-day groups (Figures 3B, 4B) while less
effective in the EH 30-day group (Figures 3C,D, 4C,D).

Endolymphatic Hydrops-Induced
Cochlear Damage
Besides the dislocations of RM in EH, the BM may also deform
(Xenellis et al., 2004) as shown in Figure 3, caused by the pressure
difference between SM and scale tympani. However, the BM
deformation is quite small, and sectioning observations may not
be solid evidence of BM deformation since slight deformation
may also be caused during the sectioning. The BM deformation in
EH has been numerically calculated using finite element analysis
(Lee and Koike, 2017; Areias et al., 2021). The numerical analysis
also predicts a low-frequency conductive hearing loss caused
by BM deformation.

There are also assumptions that the EH-induced BM
deformation may damage the sensory cells and cause SNHL. Lee
and Kalinec (2016) measured the deformation of the organ of
Corti in acute guinea pig EH models. They observed a significant
decrease in the average area and height of the organ of Corti
in the apical turn. They found that the lengths of OHC and
Deiters’ cells in the apical turn were significantly reduced. Lee
suggested that the compression and deformation of the organ
of Corti may decouple the tectorial membrane and stereocilia.
However, in vivo observations need further solid evidence.
Optical coherence tomography may be a promising technique
(Liu et al., 2017; Badash et al., 2021).

Limitations of This Study
The first limitation of this study is the mismatch between the
frequency range in ABR and LDV measurements. The LDV
measurement range was 0.5–10 kHz. Frequencies beyond this
interval had not been surveyed, so the paired frequencies in
ABR thresholds and RWM vibrations were restricted to 2–8 kHz.
Second, mannitol injection is used in the diagnosis of MD in
clinical practice instead of treatment due to severe side effects.
However, it does not affect the conclusion of this study.

CONCLUSION

This study investigated the development of hearing loss in guinea
pig EH models as well as the effect of dehydration treatment. By

combining analogical observations (frozen section) and objective
measurements of hearing loss (ABR and LDV measurement
of RWM vibration), we are able to obtain an overview of the
development of hearing loss in EH, both mechanically and
biologically. The main conclusions of this study are as follows:

1. EH-induced hearing loss progressed with the development
of EH; it starts at low frequencies and later involves
medium to high frequencies.

2. EH increases the cochlear impedance, causing conductive
dysfunction. This dysfunction can be cured by
dehydration treatment at an early stage. But the
irreversible sensorineural component becomes significant
for long-time EH.

3. Early dehydration treatment is suggested for
preserving hearing.
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