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The accurate establishment and maintenance of DNA methylation patterns
is vital for mammalian development and disruption to these processes
causes human disease. Our understanding of DNAmethylation mechanisms
has been facilitated by mathematical modelling, particularly stochastic simu-
lations. Megabase-scale variation in DNA methylation patterns is observed
in development, cancer and ageing and the mechanisms generating these
patterns are little understood. However, the computational cost of stochastic
simulations prevents them from modelling such large genomic regions.
Here, we test the utility of three different mean-field models to predict sum-
mary statistics associated with large-scale DNA methylation patterns. By
comparison to stochastic simulations, we show that a cluster mean-field
model accurately predicts the statistical properties of steady-state DNA
methylation patterns, including the mean and variance of methylation
levels calculated across a system of CpG sites, as well as the covariance
and correlation of methylation levels between neighbouring sites. We also
demonstrate that a cluster mean-field model can be used within an approxi-
mate Bayesian computation framework to accurately infer model parameters
from data. As mean-field models can be solved numerically in a few
seconds, our work demonstrates their utility for understanding the processes
underpinning large-scale DNA methylation patterns.
1. Introduction
DNA methylation is a repressive epigenetic mark [1] which is primarily found
on the cytosines of CpG dinucleotides in mammals. Double-stranded CpG
dyads can be unmethylated or methylated on both strands (u and m, respect-
ively) or methylated on only one strand (hemimethylated, h). DNA
methylation is largely erased from the genome during early mammalian devel-
opment [2]. It is then re-established by the de novo DNA methyltransferases
DNMT3A and DNMT3B [3] resulting in a landscape where 70–80% of CpGs
are methylated in most human cells [4]. Regulatory elements such as promoters
and enhancers often remain methylation free [1]. During DNA replication, the
nascent strand is synthesized with unmethylated cytosines and methylation
patterns are copied by the maintenance methyltransferase, DNMT1 [5]. Failure
to maintain DNA methylation at a locus results in passive DNA demethylation.
Methylation can also be removed actively through transient modification by ten
eleven translocation (TET) enzymes and subsequent DNA repair [6].

Waves of demethylation and remethylation take place during early develop-
ment and the generation of germline cells [2]. Changes in DNA methylation
patterns also occur during development and cellular differentiation, resulting
in cell type-specific methylation patterns [7]. The correct establishment of
DNA methylation patterns is vital for normal development. Mutations in
DNMTs cause Mendelian disorders in humans [8–10] and mice knockouts
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die before or shortly after birth [3,5]. Widespread alterations
in DNA methylation patterns occur in cancer and ageing
[11,12], but the significance of these changes is unclear. It
has been observed that globally hypomethylated mice
expressing a single hypomorphic DNMT1 allele develop
cancer, suggesting that altered DNA methylation can cause
cancer [13]. However, the mechanisms underpinning DNA
methylation changes remain unclear preventing the robust
delineation of their role in development and disease.

Mathematical models are powerful tools for understanding
complex biological processes, including DNA methylation.
The importance of interactions between CpGs in maintaining
DNA methylation patterns was first postulated through
modelling [14]. Specifically, the authors modelled collaborative
interactions where CpGs within a region of the genome can
influence the state of other CpGs, e.g. through enzyme
recruitment. Models including such collaborativity were sub-
sequently found to explain experimental measurements of
methylation maintenance in vitro and in vivo more closely
than those that did not include it [15,16]. A recent study also
suggests that collaborativity mediated by neighbour-guided
error correction through DNMT1 is important for maintaining
DNA methylation [17]. Deterministic models, non-spatial sto-
chastic models and spatial stochastic models have all been
used to describe DNA methylation [18]. Deterministic
models are based on rate equations while stochastic models
are based on Fokker–Planck equations or chemical master
equations (CMEs). CMEs are ideal because they take into
account the inherent discreteness of molecular fluctuations
[19] which is well known to play an important role in cellular
dynamics [20]. The CME of simple non-spatial stochastic
models can be solved exactly in closed-form [21], but this
is often not possible for spatial stochastic models. Rather
in this case, stochastic simulations are used to model the
individual reaction processes described by the CME. Var-
ious types of stochastic models have been used to describe
collaborative methylation systems (e.g. [22–26]). To date,
such mathematical models have been applied to understand
methylation patterns on a kilobase scale. However, mega-
base-scale alterations to DNA methylation patterns occur
in development, cancer and ageing [27]. These include the
formation of megabase-sized partially methylated domains
in cancer which have been linked to genome instability
[27,28]. Existing models rely on simulations that are too
computationally expensive to run for such large genomic
regions.

Here, we test the idea that large-scale steady-state methyl-
ation patterns can be modelled in a tractable manner using
mean-field (MF) models. By comparison to synthetic data
generated from stochastic simulations, we demonstrate that
a type of cluster MF model can predict the statistical proper-
ties of large-scale methylation patterns. In §2, we introduce a
nearest-neighbour collaborative model for DNA methylation
and describe the process used to simulate data from this
model. We describe the three MF models we test in §3. In
§4, we compare the ability of each MF model to predict stat-
istics associated with methylation patterns resulting from the
simulations. We find that a type of cluster MF model provides
excellent predictions and demonstrate that this model can be
used within an approximate Bayesian computation (ABC)
framework to infer parameters underpinning large-scale
methylation systems. Finally, in §5, we discuss the impli-
cations of our findings.
2. Nearest-neighbour collaborative model
2.1. Model set-up
We consider the reaction system in figure 1, where some reac-
tions are non-collaborative (involving only the ‘target’ CpG,
whose methylation state changes during the reaction), while
others are collaborative (involving both a target CpG and a
‘mediator’ CpG). The role of the mediator is to encourage
the reaction to occur, e.g. via the recruitment of methylase
or demethylase enzymes. This system, and reduced versions,
have previously been used to examine small-scale methyl-
ation patterns [14,29,30]. Previously, collaborative and
non-collaborative reactions have been referred to as posi-
tive-feedback and noisy reactions in a study modelling
histone modifications [31].

We make the following assumptions:

(i) CpGs can only influence the methylation state of their near-
est neighbours (see figure 2). While both experimental
and modelling studies have demonstrated the impor-
tance of CpGs being influenced by surrounding
CpGs [14,15], the extent and range of such influence
are unknown. We therefore consider only interactions
between nearest neighbours.

(ii) There are no direct transitions between the unmethylated
and methylated states. We justify this with the obser-
vation that methylase and demethylase enzymes act
on single DNA strands [6,32]. This implies that hemi-
methylation is a necessary transition state between
unmethylated and fully methylated CpGs.

(iii) The system has reached a steady state. Here, we assume
that there are no long-term effects of DNA replication
on methylation patterns. This assumption is sup-
ported by the observation that the DNA methylation
patterns of cycling and arrested cells are similar [33].

We do not impose an upper bound on the system size,
N [ N, allowing large-scale methylation patterns to be con-
sidered. We also assume that the rates ki, i = {1, 2, …, 12}
are of the form given in table 1, where x measures the
strength of collaborativity between CpGs (x < 1 indicates
that non-collaborative reactions dominate, while x > 1 indi-
cates that collaborative reactions dominate). The parameter
y measures the strength of methylation versus demethylation
(y < 1 corresponds to demethylation dominating and y > 1
corresponds to methylation dominating). The parameter a >
0 scales the reaction rates. While the values of x≥ 0, y≥ 0
determine which reactions are most probable (see table 1
legend), all reactions in figure 1 are possible for any {x, y}.

2.2. Simulations of nearest-neighbour collaborative
system

In the simple case of two CpGs, the system can be in six poss-
ible states: mm, uu, hh, um, hm and uh. For such a small
system, all possible transitions between states (via reactions
in figure 1) can be identified and the evolution of the
system can be described exactly by six mathematical
equations, one for each state. However, for large systems, it
is infeasible to identify all possible states and transitions
between states meaning that equations describing the exact
evolution of the system cannot be formulated. While



non-collaborative reactions:

methylation demethylation

u
k 1−→ h, h

k 2−→ m , m
k 3−→ h, h

k 4−→ u.

collaborative reactions:

methylation

u + h
k 5−→ h + h, u + m

k 6−→ h+ m , h + h
k 7−→ m + h, h + m

k 8−→ m + m ,

demethylation

m + h
k 9−→ h + h, m + u

k 10−−→ h + u, h + h
k 11−−→ u + h, h + u

k 12−−→ u + u.

Figure 1. System of reactions under consideration. Here u, h and m represent unmethylated, hemimethylated and methylated CpGs, respectively. Non-collaborative
reactions involve only one CpG, while collaborative reactions involve two CpGs. For each collaborative reaction, the second reactant (the mediator, see text) recruits an
enzyme that changes the methylation state of the first reactant (the target). For example, the reaction uþ h ! hþ h involves a hemimethylated CpG at one
site recruiting a methylase enzyme which changes the state of a CpG at another site from unmethylated to hemimethylated. Reaction rates are ki, i = {1, …, 12}.
Note that only one CpG site changes methylation state during each reaction.

unmethylated; hemimethylated; methylated

system of N CpGs

. . .
X

Figure 2. Collaborative interactions that can influence a target X under the nearest-neighbour collaborative model. Individual CpGs are represented by ‘lollipops’,
with their colour indicating their methylation status (white: unmethylated; grey: hemimethylated; black: methylated). Collaborative methylation and demethylation
reactions can only occur between neighbouring CpGs (potential influences on CpG X are indicated by arrows).

Table 1. Reaction rates for the model in figure 1. Here, a > 0, x≥ 0, y≥
0 so that all reaction rates are non-negative. The values of x and y
determine the probability associated with each type of reaction. For
example, consider the case x < 1, y < 1. Then k3 = k4 = a is the largest
reaction rate and so non-collaborative demethylation reactions are most
probable, while k5 = k6 = k7 = k8 = axy is the smallest reaction rate and so
collaborative methylation reactions are least probable.

demethylation methylation

non-collaborative k3 = k4 = a k1 = k2 = ay

collaborative k9 = k10 = k11 =

k12 = ax

k5 = k6 = k7 =

k8 = axy

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

19:20210707

3

stochastic simulations are computationally expensive, they
are the ground truth of the nearest-neighbour collaborative
system to which we compare our MF models and so here
we describe the process underlying these simulations.

We focus on the steady-state case so that u, h and m levels
fluctuate around some fixed steady-state values. For a system
of N CpGs, we simulate the nearest-neighbour collaborative
system using Gillespie’s algorithm [34]—see figure 3 for an
illustration of how this algorithm simulates a 4-CpG
system. Essentially, in each step of Gillespie’s algorithm, a
timepoint is chosen and a single reaction selected to occur.
This reaction changes the methylation state of a single CpG,
i.e. all other CpGs remain unchanged. Throughout the simu-
lations, we monitor the proportions of u, h and m sites,
declaring steady state to be attained when these fluctuate
around fixed values, after which we sample the methylation
pattern, containing N methylation states, at constant time
intervals. For each parameter set, we sample at T = 106/N
timepoints to obtain a dataset of 106 steady-state methylation
states.
2.3. Analysis of simulated data
To facilitate our analysis, we define a sequence ut, t∈ {1, …,
T}, where

uti ¼
1, if CpG i is in the u state at timepoint t,
0, otherwise:

�

We define ht and mt similarly; see figure 4. We also define zt

via

zt ¼ ut þ 2ht þ 3mt: ð2:1Þ



unmethylated; hemimethylated; methylated

timepoint 1 timepoint 2 timepoint 3

t̂1

i = 1 2 3 4

position: reaction:
1 m

k 3−→ h
1 m + h

k 9−→ h + h
2 m

k 3−→ h
2 m + u

k 10−−→ h + u
3 u

k 1−→ h
3 u + m

k 6−→ h + m
3 u + h

k 5−→ h + h

4 h
k 2−→ m

4 h
k 4−→ u

4 h + u
k 12−−→ u + u

4 h + m
k 8−→ m + m

reaction 1

t̂2 m̂

i = 1 2 3 4

position: reaction:
1 m

k 3−→ h
1 m + u

k 10−−→ h + u
2 m

k 3−→ h
2 m + u

k 10−−→ h + u
3 u

k 1−→ h
3 u + m

k 6−→ h + m
4 u

k 1−→ h
4 u + m

k 6−→ h + m

reaction 2

i = 1 2 3 4

position: reaction:
1 m

k3−→ h
1 m + u

k10−−→ h + u
1 m + h

k9−→ h + h

2 h
k2−→ m

2 h
k4−→ u

2 h + m
k8−→ m + m

2 h + u
k12−−→ u + u

3 u
k1−→ h

3 u + h
k5−→ h + h

4 u
k1−→ h

4 u + m
k6−→ h + m

Figure 3. Stochastic simulations of the nearest-neighbour collaborative system. For simplicity, a 4-CpG system at 3 timepoints is considered here. We fix a, x and y
and impose periodic boundary conditions so that the first and final CpG can interact. After all potential non-collaborative and collaborative reactions are identified,
Gillespie’s algorithm chooses a timepoint and a single reaction to occur at this timepoint. This reaction changes the methylation state of a single CpG and the list of
potential reactions is updated to account for this change. This process is repeated to generate dynamical behaviour. In the example shown, we start with the system
on the left. All possible reactions are listed and at the first timepoint (chosen by Gillespie’s algorithm) a h�!k4u reaction is chosen to occur at target position t̂1. The
methylation state at the target position is changed accordingly (all other CpGs remain unchanged) and the list of potential reactions is updated to account for this
change (middle). At the next timepoint (chosen by Gillespie’s algorithm), a mþ u�!k10 hþ u reaction is chosen to occur at target position, t̂2, with CpG m̂ acting
as mediator. Again, the methylation state at the target position is changed accordingly (all other CpGs remain unchanged) and the list of potential reactions is
updated (right). This process is repeated until the system reaches steady state.

unmethylated; hemimethylated; methylated

ut : { 0 0 1 0 0 1 1 0 0 0 }
ht : { 0 0 0 0 1 0 0 0 1 0 }
m t : { 1 1 0 1 0 0 0 1 0 1 }
z t : { 3 3 1 3 2 1 1 3 2 3 }

Figure 4. Construction of the sequences ut, ht, mt and zt. For simplicity, only 10 CpGs are shown for a single timepoint, t. A vector ut is created, where uti ¼ 1 if
CpG i is unmethylated at time t and uti ¼ 0 otherwise. Vectors ht and mt are constructed similarly. Finally, a vector zt is created via zt = ut + 2ht + 3mt.
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The steady-state mean u, h and m levels, μus, μhs, μms, are
obtained via

mus ¼
1
NT

XT
t¼1

XN
i¼1

uti , mhs ¼
1
NT

XT
t¼1

XN
i¼1

hti and

mms ¼
1
NT

XT
t¼1

XN
i¼1

mt
i : ð2:2Þ

Throughout, the subscript ‘s’ denotes steady-state statistics.
For each t, we also calculate the mean and variance over

zt (mt
z, s

2ðztÞ, respectively) and average over all t ∈ {1, …, T}
to obtain an overall steady-state mean and variance, μzs and
σ2(zs), which are given by

mzs ¼
1
T

XT
t¼1

mt
z ¼

1
NT

XT
t¼1

XN
i¼1

zti ð2:3Þ

and

s2ðzsÞ ¼ 1
T

XT
t¼1

s2ðztÞ ¼ 1
T

XT
t¼1

XN
i¼1

ðzti � mt
zÞ2

N � 1
: ð2:4Þ
We then define sequences vt and wt by

vt ¼ fzt1, zt2, . . . , ztN�1, z
t
Ng and

wt ¼ fzt2, zt3, . . . , ztN , zt1g, t [ f1, . . . , Tg: ð2:5Þ

For each t ∈ {1, …, T}, the sequence vt is identical to zt, while
wt is a shifted version of zt (i.e. wt

i ¼ ztiþ1 for i = {1, ..., N − 1}
and wt

N ¼ zt1). For each i = {1, …, N}, comparing vti and wt
i

provides information regarding the methylation state of
two neighbouring CpGs at time t ∈ {1, …, T}. We calculate
the covariance between vt and wt for each t, Covar(vt, wt),
averaging over t ∈ {1, …, T} to obtain an overall steady-
state covariance between neighbouring sites:

CovarðzsÞ :¼ Covarðvs, wsÞ ¼ 1
T

XT
t¼1

Covarðvt, wtÞ

¼ 1
NT

XT
t¼1

XN
i¼1

ðvti � mt
vÞðwt

i � mt
wÞ, ð2:6Þ

where mt
v ¼ mt

w ¼ mt
z. Finally, the steady-state correlation

between neighbouring sites, ρ(zs) : = ρ(vs, ws), is calculated
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via

rðzsÞ :¼ rðvs, wsÞ ¼ Covarðvs, wsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2ðvsÞs2ðwsÞ

p ¼ Covarðvs, wsÞ
s2ðzsÞ : ð2:7Þ
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3. Mean-field models for DNA methylation
maintenance

For large CpG systems, the CME describing the nearest-
neighbour collaborative model cannot be easily solved and
stochastic simulations are computationally expensive. In con-
trast, it is often the case that models simplified using the MF
approximation can be computationally solved in a time-
efficient manner and we aim to test whether they accurately
approximate the nearest-neighbour collaborative model for
DNA methylation. To this end, we construct three MF
models (see §§3.1–3.3). These models consider an infinite
system of CpGs and so, by design, their ability to accurately
describe a genomic region increases with the size of the
region. In these models, nearest-neighbour interactions are
approximated by considering the mean state of the system.
In the first model, nearest-neighbour interactions are entirely
approximated by considering the probability that two states
are adjacent (one-site MF model). The second model
describes distinct pairs of CpGs (distinct pairs MF model).
Interactions occurring within a pair are directly accounted
for and other nearest-neighbour interactions are approxi-
mated by considering the probability that two paired states
are adjacent. In the third model, we consider overlapping
pairs of CpGs (overlapping pairs MF model). Interactions
occurring within a pair are again directly accounted for, but
now other nearest-neighbour interactions are approximated
by considering the probability that two paired states overlap.
The remainder of this section is devoted to mathematical
descriptions of these models.

Note that while the computational cost of simulations
increases with sequence length, numerical solutions of the
MF models discussed in §§3.1–3.3 are independent of
sequence length. Hence these models describe arbitrarily
large genomic regions.

3.1. One-site mean-field model
We define the proportion of sites in the u, h, m states to be the
mean u, h, m levels, μu, μh, μm, respectively. Here we construct
a one-site MF model, where changes in the system are influ-
enced by μu, μh, μm, rather than nearest-neighbour
interactions; see figure 5.

Consider the reaction uþ h�!k5 hþ h in figure 1. Since the
h mediator is unchanged by the reaction, we can write this as

an effective first-order reaction u �!2k5mh h, where the h mediator
is absorbed into the effective reaction rate by making it pro-
portional to μh. The factor of two accounts for the h
mediator being on either side of the u target. Similarly,

uþm�!k6 hþm can be written as u �!2k6mm h. Thus the

u�!k1 h, uþ h�!k5 hþ h, uþm�!k6 hþm reactions in figure 1
can be written as a single effective first-order reaction
u�!r h, with r = k1 + 2k5μh + 2k6μm. We thus write the system
in figure 1 as the effective first-order system

m�!a1 h, h�!a2 m, u�!a3 h, h�!a4 u, ð3:1Þ
where

a1 :¼ a1ðmu, mhÞ ¼ k3 þ 2k9mh þ 2k10mu,

a2 :¼ a2ðmh, mmÞ ¼ k2 þ 4k7mh þ 2k8mm,

a3 :¼ a3ðmh, mmÞ ¼ k1 þ 2k5mh þ 2k6mm

and a4 :¼ a4ðmu, mhÞ ¼ k4 þ 4k11mh þ 2k12mu,

and μu + μh + μm = 1. The k7 and k11 terms have an additional
factor of two since their associated reactions involve two h
reactants, and either of these can change state during the
reaction.

Let Lu, Lh, Lm be the ‘level’ (proportion) of u, h, m at a
single CpG, respectively. A CpG can only be in one state at
any time and so the state of a CpG at position j can be
described by a state vector of the form

ðLu, Lh, LmÞ j ¼ ð1, 0, 0Þ or ðLu, Lh, LmÞ j ¼ ð0, 1, 0Þ
or ðLu, Lh, LmÞ j ¼ ð0, 0, 1Þ : ð3:2Þ

The probabilities associated with these three states sum to
one and so we only need to consider the probabilities associ-
ated with (Lu, Lh, Lm)j = (1, 0, 0), and (Lu, Lh, Lm)j = (0, 1, 0).
Using (3.1) we construct the CME describing the probability
that a site is in the (1, 0, 0) or (0, 1, 0) state:

dPð1, 0, 0Þ
dt ¼ �a3Pð1, 0, 0Þ þ a4Pð0, 1, 0Þ

and dPð0, 1, 0Þ
dt ¼ a1

�
1� Pð1, 0, 0Þ � Pð0, 1, 0Þ�� a2Pð0, 1, 0Þ

þ a3Pð1, 0, 0Þ � a4Pð0, 1, 0Þ:

9>=
>;

ð3:3Þ

We can also obtain moment equations (see appendix C of [35])
for the statistics of Lu, Lh, Lm. The mean values are μu = 〈Lu〉,
μh = 〈Lh〉, μm = 〈Lm〉, where the angled brackets denote the
expected value. Due to the conservation law Lm = 1− Lu− Lh,
we again need only consider equations for u and h. From
equation (C 1) in [35] with

R ¼ 4, n ¼ fLu, Lhg, S ¼ 0 0 �1 1

1 �1 1 �1

� �
,

f̂ ¼ fa1Lm, a2Lh, a3Lu, a4Lhg; ð3:4Þ

the means are described by the equations

dmu

dt
¼ �a3mu þ a4mh and

dmh

dt
¼ a1ð1� mu � mhÞ � a2mh þ a3mu � a4mh: ð3:5Þ

Note that these equations are identical to (3.3) with P(1, 0, 0) =
μu and P(0, 1, 0) = μh. Setting

dmu

dt
¼ dmh

dt
¼ 0,

leads to implicit equations for the steady-state means,

mus ¼
a1sa4s

a1sa3s þ a2sa3s þ a1sa4s
and

mhs ¼
a1sa3s

a1sa3s þ a2sa3s þ a1sa4s
,

ð3:6Þ

where a1s = a1(μus, μhs), a2s = a2(μhs, 1− μus− μhs), a3s = a3(μhs, 1−
μus− μhs), a4s = a4(μus, μhs). Since equation (3.6) is independent
of a, the means depend only on x and y. For fixed parameters,
we can solve equation (3.6) numerically using the Mathematica
function NSolve to obtain values for μus and μhs.
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unmethylated; hemimethylated; methylated

Figure 5. Schematic of the one-site MF model. CpGs are influenced by the mean of the system rather than nearest-neighbour interactions.
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Using equation (C2) in [35] with (3.4) the second-moment
equations are given by

dhLuLui
dt ¼ �2a3hLuLui þ 2a4hLuLhi þ a4mh þ a3mu,

dhLuLhi
dt ¼ � a1

�
hLuLui þ hLuLhi

	
� a2hLuLhi

þ a3
�
hLuLui � hLuLhi

	

� a4
�
hLuLhi � hLhLhi

	
þ a1mu � a3mu � a4mh

and dhLhLhi
dt ¼ �2a1

�
hLuLhi þ hLhLhi

	
�2a2hLhLhi þ 2a3hLuLhi � 2a4hLhLhi
þ a1

�
1� mu þ mh

�þ a2mh þ a3mu þ a4mh:

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

ð3:7Þ

Fromequation (3.2),we expectLuLu= Lu,LhLh= Lh andLuLh=
0 at any CpG. Solving equation (3.7) in steady state leads to

hLuLuis ¼ hLuis ¼ mus, hLuLhis ¼ 0,

hLhLhis ¼ hLhis ¼ mhs:
ð3:8Þ

Variances, σ2(Lus) and σ2(Lhs), can then be obtained via

s2ðLusÞ ¼ hLuLuis � m2
us ¼ mus � m2

us
and s2ðLhsÞ ¼ hLhLhis � m2

hs ¼ mhs � m2
hs,



ð3:9Þ

along with the covariance Covar(Lus, Lhs), which is given by

CovarðLus, LhsÞ ¼ hLuLhis � musmhs ¼ �musmhs: ð3:10Þ

The mean, variance and covariances associated with the
m state can now be obtained using

mms ¼ 1� mus � mhs,
s2ðLmsÞ ¼ s2ð1� Lus � LhsÞ ¼ s2ðLusÞ þ s2ðLhsÞ

þ 2CovarðLus, LhsÞ,
CovarðLus, LmsÞ ¼ �s2ðLusÞ � CovarðLus, LhsÞ

and CovarðLhs, LmsÞ ¼ �CovarðLus, LhsÞ � s2ðLhsÞ:

9>>>>=
>>>>;
ð3:11Þ

We calculate the steady-state mean and variance, μzs and
σ2(zs), associated with the variable z = Lu + 2Lh + 3Lm via

mzs ¼ mus þ 2mhs þ 3mms

and

s2ðzsÞ ¼ s2ðLusÞ þ 4s2ðLhsÞ þ 9s2ðLmsÞ þ 2
�
2CovarðLus, LhsÞ

þ 3CovarðLus, LmsÞ þ 6CovarðLhs, LmsÞ
	
:

Note that the superscript t was only used in §2.2 to differen-
tiate between samples at different timepoints. Here, we
simply have a single z. Since no spatial information is
obtained from the one-site MF model, the covariance and cor-
relation between neighbouring sites cannot be extracted.
3.2. Distinct pairs mean-field model
We next construct a two-site MF model, where we consider
‘clusters’ of two adjacent CpGs. Such cluster MF models
have been successfully used to study vehicular traffic and
driven-diffusive gas models [36,37]. We define the mean
level (proportion) of pairs in the six possible states,
mm, uu, hh, um ð:¼muÞ, hm ð:¼mhÞ, uh ð:¼ huÞ,

ð3:12Þ
to be μ1, μ2, μ3, μ4, μ5, μ6, respectively. Here, μ4 is the pro-
portion of pairs containing u and m, irrespective of order.
Similarly, μ5 is the proportion of pairs containing h and m,
and μ6 is the proportion of pairs containing u and h, irre-
spective of order.

In the distinct pairs MF model (DPMF model), CpGs
within a pair are allowed to interact directly, preserving
some nearest-neighbour interactions. The influence of the
nearest-neighbour CpGs flanking the pair is then approxi-
mated by considering the probabilities that an adjacent pair
is in each of the six possible states; see figure 6. Here, each
CpG belongs to only one pair and each pair of sites is a
single reactant. As with the one-site model, we consider an
effective first-order reaction system, given by

mm�!â1 hm, uu�!â2 uh,

hh�!â3 uh, hh�!â4 hm, um�!â5 hm, um�!â6 uh,

hm�!â7 um, hm�!â8 mm, hm�!â9 hh,

uh�!â10 hh, uh�!â11 uu, uh�!â12 um,

9>>>>>=
>>>>>;
ð3:13Þ

where the effective rates are given by

â1 ¼ 2k3 þ k9ð2m3 þ m5 þ m6Þ þ k10ð2m2 þ m4 þ m6Þ,
â2 ¼ 2k1 þ k5ð2m3 þ m5 þ m6Þ þ k6ð2m1 þ m4 þ m5Þ,
â3 ¼ 2k4 þ 2k11 þ k11ð4m3 þ m5 þ m6Þ

þ k12ð2m2 þ m4 þ m6Þ,
â4¼ 2k2 þ 2k7 þ k7ð4m3 þ m5 þ m6Þ þ k8ð2m1 þ m4 þ m5Þ,
â5 ¼ k1 þ k6 þ k5

�
m3 þ m5

2 þ m6
2

	
þ k6

�
m1 þ m4

2 þ m5
2

	
,

â6 ¼ k3 þ k10 þ k9
�
m3 þ m5

2 þ m6
2 Þ þ k10ðm2 þ m4

2 þ m6
2

	
,

â7 ¼ k4 þ k11
�
m3 þ 2 m5

2 þ m6
2

	
þ k12

�
m2 þ m4

2 þ m6
2

	
,

â8 ¼ k2 þ k8 þ k7
�
m3 þ 2 m5

2 þ m6
2

	
þ k8

�
m1 þ m4

2 þ m5
2

	
,

â9 ¼ k3 þ k9 þ k9
�
m3 þ m5

2 þ m6
2

	
þ k10

�
m2 þ m4

2 þ m6
2

	
,

â10 ¼ k1 þ k5 þ k5
�
m3 þ m5

2 þ m6
2

	
þ k6

�
m1 þ m4

2 þ m5
2

	
,

â11 ¼ k4 þ k12 þ k11
�
m3 þ m5

2 þ 2 m6
2

	
þ k12

�
m2 þ m4

2 þ m6
2

	

d â12 ¼ k2 þ k7
�
m3 þ m5

2 þ 2 m6
2

	
þ k8

�
m1 þ m4

2 þ m5
2

	
,

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð3:14Þ
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and
P6

i¼1 mi ¼ 1. We describe the construction of â1 in appen-
dix A. Essentially, â1–â12 are constructed by considering all
possible ways that each reaction in (3.13) can occur via a reac-
tion from figure 1 taking place. Such reactions can occur
within the reactant pair or can take place between a site
within the pair and a site from an adjacent pair. Terms
that are associated with the k7 and k11 reaction rates and
involve interactions between two hh, two hm or two uh
pairs have an additional factor of two since either pair
can change state during these reactions. While we can, in
principle, calculate the distribution of pairs in (3.13) [38],
we restrict our attention to obtaining moments of the
system.

Let L1, L2, L3, L4, L5, L6 be the level (proportion) of each of
the paired states at a single pair of CpGs. Since a pair of CpGs
can only be in one state at any time, the state of a single pair
of CpGs can be described by one of six vectors Sj, j = 1, …, 6,
where

S j ¼ ðL1, L2, L3, L4, L5, L6Þ
such that Li ¼ 1, for i ¼ j and Li ¼ 0 for i = j: ð3:15Þ

The u, h, m levels within a pair of CpGs, L̂u, L̂h, L̂m, are then
given by

L̂u ¼ L2 þ L4
2
þ L6

2
, L̂h ¼ L3 þ L5

2
þ L6

2
and

L̂m ¼ L1 þ L4
2
þ L5

2
: ð3:16Þ

Using (3.13), we construct the CME for the system along with
the first and second moment equations for Li, i = {1, …, 6}; see
appendix C. The first moment equations describe μi = 〈Li〉, the
mean values of Li for i = {1, …, 6}. For fixed parameters, sol-
ving these equations numerically in steady state gives the
steady-state means, μis, i = {1, …, 6}. Note that these means
are independent of a.

From the second moment equations, we obtain the
steady-state expected values of LiLj, 〈LiLj〉s, for i, j∈ {1, 2,
…, 6}. As expected from equation (3.15), 〈LiLi〉s = 〈Li〉s = μis,
〈LiLj〉s = 0 for all i≠ j, i, j∈ {1, 2, …, 6}. Variances and covari-
ances are then obtained using

s2ðLisÞ ¼ hLiLiis � m2
is ¼ mis � m2

is, i ¼ 1, 2, . . . , 6

and

CovarðLis, L jsÞ ¼ hLiL jis � mism js ¼ �mism js,

i = j, i, j ¼ 1, 2, . . . , 6:

Once again, these are independent of the parameter a.
We now have statistics for the paired states in (3.12). The

steady-state means for the u, h, m levels in a pair are then
given by

mus ¼ m2s þ
m4s

2
þ m6s

2
, mhs ¼ m3s þ

m5s

2
þ m6s

2
and

mms ¼ m1s þ
m4s

2
þ m5s

2
:

ð3:17Þ

The pair-to-pair variance in u level is given by

s2ðL̂usÞ ¼ s2ðL2sÞ þ 1
4
s2ðL4sÞ þ 1

4
s2ðL6sÞ þ 2

1
2
CovarðL2s, L4sÞ

�

þ 1
2
CovarðL2s, L6sÞ þ 1

4
CovarðL4s, L6sÞ

�
,

and similarly for the variances associated with h and m,
s2ðL̂hsÞ and s2ðL̂msÞ. Covariances are given by

CovarðL̂us, L̂msÞ ¼ CovarðL1s, L2sÞ þ 1
2
CovarðL2s, L4sÞ

þ 1
2
CovarðL2s, L5sÞ þ 1

2
CovarðL1s, L4sÞ

þ 1
4
s2ðL4sÞ þ 1

4
CovarðL4s, L5sÞ

þ 1
2
CovarðL1s, L6sÞ þ 1

4
CovarðL4s, L6sÞ

þ 1
4
CovarðL5s, L6sÞ

and analogously for CovarðL̂hs, L̂msÞ, CovarðL̂us, L̂hsÞ.
Note that the statistics obtained so far relate to u, h, m

levels within a pair of CpGs. The mean level of a state
within a pair is the same as the mean level of the state at
each site. However, this is not the case for higher moments.
For example, s2ðL̂usÞ, s2ðL̂hsÞ, s2ðL̂msÞ are pair-to-pair var-
iances, rather than site-to-site variances.

We aim to obtain statistics relating to z = Lu + 2Lh + 3Lm,
where Lu, Lh, Lm are the single-site u, h, m levels. We define
ẑ ¼ L̂u þ 2L̂h þ 3L̂m, noting that ẑ contains information
regarding pairs of CpGs. Essentially,

ẑ ¼ vþ w
2

, ð3:18Þ

where v and w are as in equation (2.5) and we again do not
require the superscript t.

The steady-state means of z, v, w and ẑ coincide and

mzs ¼ mẑs ¼ mvs ¼ mws ¼ mus þ 2mhs þ 3mms:

Also, vw = L2 + 2L6 + 3L4 + 4L3 + 6L5 + 9L1 and so the
steady-state expected value of vw is

hvwis ¼ m2s þ 2m6s þ 3m4s þ 4m3s þ 6m5s þ 9m1s:

From this, we calculate the steady-state covariance
between neighbouring sites as

CovarðzsÞ ¼ Covarðvs, wsÞ ¼ hvwis � hvishwis ¼ hvwis � m2
zs:

The steady-state variance associated with ẑ can be calcu-
lated via,

s2ðẑsÞ ¼ s2ðL̂us þ 2L̂hs þ 3L̂msÞ
¼ s2ðL̂usÞ þ 4s2ðL̂hsÞ þ 9s2ðL̂msÞ

þ 2
�
2CovarðL̂us, L̂hsÞ þ 3CovarðL̂us, L̂msÞ

þ 6CovarðL̂hs, L̂msÞ
	
:

However, s2ðẑsÞ is the pair-to-pair variance. Using
σ2(zs) = σ2(vs) = σ2(ws), we obtain

s2ðẑsÞ ¼ s2 vs þ ws

2

� 	
¼ 1

4

�
s2ðvsÞ þ s2ðwsÞ þ 2Covarðvs, wsÞ

�

¼ 1
2
�
s2ðzsÞ þ Covarðvs, wsÞ

�
,

leading to the steady-state site-to-site variance

s2ðzsÞ ¼ 2s2ðẑsÞ � Covarðvs, wsÞ:
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The steady-state correlation between neighbouring pairs
is obtained via

rðzsÞ ¼ rðvs, wsÞ ¼ Covarðvs, wsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2ðvsÞ s2ðwsÞ

p ¼ Covarðvs, wsÞ
s2ðzsÞ :

To summarize, the statistics of primary interest from our
calculations are: the means μus, μhs, μms, μzs, the variance
σ2(zs), the covariance Covar(zs) and the correlation ρ(zs).
 /journal/rsif

J.R.Soc.Interface
19:20210707
3.3. Overlapping pairs mean-field model
Similarly to the DPMF model, there are also six possible
states for a pair of CpGs in the overlappling pairs MF
model (OPMF model); see (3.12). The OPMF model also
incorporates direct interactions within a pair. However,
each CpG now belongs to two pairs, one with its left-hand
neighbour and one with its right-hand neighbour, leading
to a system of overlapping pairs. The influence of CpGs
flanking a pair is now approximated by considering the con-
ditional probability that the pair overlaps with another pair
of a certain state; see figure 7.

As before, we consider an effective first-order reaction
system, given by

mm�!~a1 hm, uu�!~a2 uh, hh�!~a3 uh, hh�!~a4 hm,

um�!~a5 hm, um�!~a6 uh,

hm�!~a7 um, hm�!~a8 mm,

hm�!~a9 hh, uh�!~a10 hh, uh�!~a11 uu, uh�!~a12 um,

9>>>>>=
>>>>>;

ð3:19Þ

where the effective rates are given by

~a1¼ 2k3 þ 2k9
m5=2

m1þm4=2þm5=2

� 	
þ 2k10

m4=2
m1þm4=2þm5=2

� 	
,

~a2 ¼ 2k1 þ 2k5
m6=2

m2þm4=2þm6=2

� 	
þ 2k6

m4=2
m2þm4=2þm6=2

� 	
,

~a3¼ 2k4 þ 2k11 þ 2k11
m3

m3þm5=2þm6=2

� 	
þ 2k12

m6=2
m3þm5=2þm6=2

� 	
,

~a4¼ 2k2 þ 2k7 þ 2k7
m3

m3þm5=2þm6=2

� 	
þ 2k8

m5=2
m3þm5=2þm6=2

� 	
,

~a5¼ k1 þ k6 þ k5
m6=2

m2þm4=2þm6=2

� 	
þ k6

m4=2
m2þm4=2þm6=2

� 	
,

~a6¼ k3 þ k10 þ k9
m5=2

m1þm4=2þm5=2

� 	
þ k10

m4=2
m1þm4=2þm5=2

� 	
,

~a7¼ k4 þ k11
m3

m3þm5=2þm6=2

� 	
þ k12

m6=2
m3þm5=2þm6=2

� 	
,

~a8¼ k2 þ k8 þ k7
m3

m3þm5=2þm6=2

� 	
þ k8

m5=2
m3þm5=2þm6=2

� 	
,

~a9¼ k3 þ k9 þ k9
m5=2

m1þm4=2þm5=2

� 	
þ k10

m4=2
m1þm4=2þm5=2

� 	
,

~a10¼ k1 þ k5 þ k5
m6=2

m2þm4=2þm6=2

� 	
þ k6

m4=2
m2þm4=2þm6=2

� 	
,

~a11¼ k4 þ k12 þ k11
m3

m3þm5=2þm6=2

� 	
þ k12

m6=2
m3þm5=2þm6=2

� 	

and ~a12¼ k2 þ k7
m3

m3þm5=2þm6=2

� 	
þ k8

m5=2
m3þm5=2þm6=2

� 	
:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð3:20Þ

We detail the construction of â1 in appendix B.
An identical approach to that in §3.2 leads to the CME

and first and second moment equations for the system, see
appendix C, and from these we obtain means, variances
and covariances associated with the paired states and with
the pair-to-pair u, h, m levels. Again, these depend only on
x and y. The statistics associated with z are obtained as for
the DPMF model; see §3.2.
4. Model comparison and parameter inference
To test whether MF models are capable of modelling large-
scale methylation patterns, we now compare model predic-
tions to synthetic data generated using nearest-neighbour
collaborative simulations. The statistical properties obtained
from our models are independent of a and so we fix a = 0.2.
Since demethylation dominates when y < 1 and methylation
dominates when y > 1, we hypothesize that a sharp change
in the behaviour of the system may occur at y = 1. To capture
this potential transition for different collaborativity strengths,
we consider x = {0.1, 1, 5, 50}, y = {0.1, 0.2, …, 2}. Since we
approximate the nearest-neighbour collaborative system by
MF models, which consider an infinite system of CpGs,
finite-size effects cause discrepancies between simulations
and MF model predictions as x increases. We counteract
this by increasing the number of simulated sites and so simu-
late N = 200 CpGs when x = {0.1, 1, 5} and N = 500 CpGs
when x = 50.

For each parameter set, we simulate n = 10 replicate data-
sets using the Gillespie algorithm (see §2.2). In particular, in
each simulation, we take steady-state samples at T = 106/
200 = 5000 timepoints when x = {0.1, 1, 5} and at T = 106/
500 = 2000 timepoints when x = 50. Each of the replicate data-
sets therefore contains 106 states, from which we calculate the
statistics of interest (see §2.3). We then calculate the means
and standard errors over the 10 datasets to obtain overall
summary statistics.

4.1. Mean-field models capture steady-state
methylation levels

We first compare the mean u, h, m levels (μus, μhs, μms) from
the MF models to those from the simulations (figure 8). Con-
sidering the simulated data first, we observe that u and m
dominate when y < 1 or y > 1, respectively. h is an intermedi-
ate state between u and m and peaks at y = 1, where there is
also a sharp transition between u- and m-dominant states.

While all models capture the qualitative behaviour of the
means as x and y are varied, we observe that predictions of
methylation levels from the OPMF model are closest to
those observed in the simulated data (figure 8). All three
models predict the mean u and m levels reasonably well;
however only the OPMF model accurately predicts the
mean h level for large x and for y close to one. All predictions
from the OPMF model are within the error of the simulated
data and it successfully captures the transition observed at
y = 1 for all x considered. Conversely, the predictions of the
other models deviate from the simulations at the transition
point when x is large. The one-site MF model deviates to
the greatest extent for 87% of the parameter sets and, for
each mean, the average percentage error across y is higher
for the one-site MF model compared to the other models
for all x except μhs when x = 5 (see appendix D, table 3).
This suggests that the one-site model has the worst predictive
power and we exclude it from further analysis.

4.2. The overlapping pairs mean-field model accurately
predicts associations between neighbouring sites

To test whether MF models can predict associations between
neighbouring CpGs, we consider z = {z1, z2, …, zN}, where
zi = {1, 2, 3} if CpG i is in the u, h, m state, respectively.



unmethylated; hemimethylated; methylated

Figure 6. Schematic of the distinct pairs MF model. The two CpGs within a pair can interact directly with each other and the pair is also influenced by the mean
state of pairs in the system. In the figure, the uh pair can change state due to interactions between the u and h within the pair, and due to the mean state of pairs
in the system.

unmethylated; hemimethylated; methylated

Figure 7. Schematic of the overlapping pairs MF model. A pair of CpGs interact directly with each other and the effect of CpGs flanking the pair is approximated by
considering the conditional probabilities that a flanking site is in the u, h or m state, given the state of its neighbour within the pair.
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From z, we calculate the mean and variance associated
with the methylation state, and the covariance and corre-
lation in methylation state between neighbouring sites. In
the simulated data (figure 9), we again observe a transition
in these statistics when the methylation and demethylation
strengths are equal (y = 1). Our results counterintuitively
suggest that neighbouring sites are most correlated here
(the peak ρ(zs) occurs when y = 1).

To gain insight into this observation, we examine the pat-
terns that evolve in the stochastic simulations for x = 50
(figure 10). When y is small, large u clusters form and we
intuitively expect neighbouring sites to be highly correlated.
However, these large clusters are interspersed with infre-
quent, isolated occurrences of h and m which have low
correlations with their neighbours. Moreover, ten m (or h)
sites appearing in isolation will result in smaller u clusters
than the ten sites appearing as a single cluster. The overall
effect is to reduce the correlation when y is small. A similar
rationale explains the low correlation when y is large. u and
m cluster sizes are most similar when methylation and
demethylation are equally strong, resulting in u and m sites
correlating equally with their neighbours and the overall
correlation peaking.

We next consider predictions of these statistics from the
MF models. Predictions from the OPMF model lie within
the error observed in the simulated data for all parameters
considered (figure 9). Conversely, predicted statistics from
the DPMF model show large deviations from the correspond-
ing simulated statistics when x is large and y is close to one
demonstrating that it has lower predictive power. The
OPMF model again shows superior performance over the
DPMF model when the percentage errors are considered.
For each z statistic in figure 9, the average percentage error
across y is higher for the DPMF model compared to the
OPMF model for all x except μzs when x = 0.1, where the per-
centage errors for the two models are the same to 2 decimal
places (see appendix D, table 3).
4.3. Overlapping pairs mean-field model can infer the
parameters underpinning large-scale methylation
patterns

While thorough inference exploration is not the objective of
the current work, we carry out a short proof-of-concept
study to demonstrate that the OPMF model could, in prin-
ciple, be used to infer collaborativity and methylation
strengths from data. We generate synthetic data for selected
model parameters, see §2.2, and then infer these parameters
back using the OPMF model.

Methylomes are typically assayed by whole-genome
bisulfite sequencing [39]. A variant of this, hairpin-bisulfite
sequencing, can be used to assay both strands of each DNA
molecule [40]. In both cases, the resulting data are composed
of short reads. Each read assays few CpGs and we do not
know if reads originate from the same cell or DNA molecule.
Simulated datasets from previous sections do not provide a
good reflection of bisulfite sequencing since all of the CpGs
in the simulated system were sampled at the same time-
points, the equivalent of the CpGs originating from the
same molecule. To obtain short-read data, we instead simu-
late data for N = 1000 CpGs. After steady state is reached,
we sample the system at 10 000 different timepoints. This is
equivalent to sampling 10 000 molecules in steady state at a
single timepoint. For each CpG, we take the methylation
state at 30 timepoints, randomly chosen from the original
10 000. The timepoints chosen for each CpG site are indepen-
dent of those chosen for other CpGs. This emulates hairpin-
bisulfite sequencing data with coverage of 30 reads per CpG.
We combine the sample states for all CpGs into a single
dataset, X, and consider z = {z1, z2, …, z1000}, where zi = {1, 2,
3} if Xi corresponds to a u, h, m state, respectively. The mean
and variance of z are calculated and used for inference.

There are numerous well-established methods for con-
ducting inference. For example, in cases where a likelihood
function is available, inference can be conducted using



one-site MF model overlapping pairs MF modeldistinct pairs MF model
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Figure 8. The OPMF model accurately predicts the average behaviour of large-scale methylation patterns. The mean u, h and m levels are plotted against the
methylation strength y for the different models and collaboration strengths, x (left: one-site MF model; middle: DPMF model; right: OPMF model). For each model,
the predictions of the means are shown by solid lines (with different colours denoting predictions for different values of x). The points and error bars correspond to
the ground-truth means obtained from n = 10 replicate simulations of the full nearest-neighbour model (the mean results obtained from the ten simulations are
shown by points with error bars denoting the standard error in this estimate across the ten simulations).

Table 2. Inferred parameters for the nearest-neighbour collaborative model using the OPMF model and the ABC SMC algorithm.

y = 0.3 y = 1 y = 1.7

x = 0.1 (x, y) = (0.197, 0.329) (x, y) = (0.066, 0.997) (x, y) = (0.101, 1.701)

x = 1 (x, y) = (0.676, 0.251) (x, y) = (1.011, 0.990) (x, y) = (0.923, 1.730)

x = 5 (x, y) = (6.302, 0.338) (x, y) = (5.287, 1.000) (x, y) = (6.432, 1.613)

x = 50 (x, y) = (59.571, 0.329) (x, y) = (50.963, 0.999) (x, y) = (65.347, 1.599)

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

19:20210707

10
maximum-likelihood estimation [41], which provides point
estimates for model parameters. In our case, this likelihood
is the solution of the CME for the full nearest-neighbour col-
laborative model and thus is not available to us. We therefore
use the approximate Bayesian computation sequential Monte
Carlo algorithm (ABC SMC; see [42] for a comprehensive
review) which is an alternative likelihood-free inference
approach that allows us to use the moments derived from
the OPMF model. Using a Bayesian inference approach also
has the advantage of providing us with a distribution of
the estimate value from which we can calculate confidence
intervals associated with our inferred parameter values [43–
46]. We use uniform priors, U(0, 100) and U(0, 2), for x and
y, respectively. We also define the distance, d, between the
simulations and model prediction to be the sum of the absol-
ute relative errors of the mean and variance, i.e.

d ¼ mmodel � mdata

mdata


þ s2

model � s2
data

s2
data


,
where μmodel, μdata are the means of z from the model and data,
respectively, and s2

model, s
2
data are the variances associated with

the model and data, respectively. To rapidly select appropriate
tolerances, we calculate the true distances between the simulated
data and model predictions at the parameter values of interest.

As in previous sections, we examine x = {0.1, 1, 5, 50}. For
each x, we infer for y = {0.3, 1, 1.7} using the GpABC Julia
package [47]. Accepted x, y values from the final ABC SMC
population make up the posterior distributions for x and y,
with the means taken to be the inferred parameter values.
95% confidence intervals were calculated by removing the
lowest 2.5% and highest 2.5% from the posteriors.

We find that the inferred parameter values are always of
the same order of magnitude as the true values (table 2), with
the most successfully inferred parameters being inferred
within 1% of the true values (figure 11a,b). There are only
two cases where the true parameter values lie outwith
the inferred 95% confidence intervals (e.g. figure 11c). How-
ever, we obtain wide posteriors for large x (e.g. figure 11d ),
indicating more uncertainty in the inference.
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Figure 9. The OPMF model accurately predicts associations between neighbouring CpGs. Predictions of the means (μzs), variances (σ
2(zs)), covariances (covar(zs))

and correlations (ρ(zs)) are plotted against y for the DPMF model (left) and OPMF model (right). For each model, the predictions of the statistics are shown by solid
lines (with different colours denoting predictions for different values of x). The points and error bars correspond to the ground-truth statistics obtained from n = 10
replicate simulations of the full nearest-neighbour model (the mean results obtained from the ten simulations are shown by points, with the error bars denoting the
standard error of this estimate across the ten simulations). Note that since z is determined by x and y, the statistics plotted here are implicit functions of x and y.
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The accuracy of inference is highly dependent on the
model sensitivity to parameters, with ease of inference
increasing as sensitivity to the parameters increases. To test
the sensitivity of our model to model parameters, we calcu-
late the relative sensitivity [48] of the OPMF model to the
parameters x and y, for x = {0.1, 0.2, ..., 99.9, 100} and
y = {0.1, 0.2, ..., 1.9, 2}. For all parameters considered, the x-
sensitivity divided by the y-sensitivity is strictly less than
one, indicating that the model shows more sensitivity to y
than x. This means that y will be inferred more accurately
than x.
5. Discussion
Genomic DNA methylation patterns vary between cell types,
across differentiation and in disease. The mechanisms under-
pinning this variation remain unclear but can be better
understood using mathematical models. Current approaches
are limited by their inability to feasibly model large systems
of CpGs and thus understand known large-scale features of
methylomes. Here, we show that a cluster MF model, based
around overlapping pairs of CpGs, can predict DNA methyl-
ation patterns generated under a nearest-neighbour
collaborative model. This suggests that MF models are a valu-
able tool for understanding large-scale DNA methylation
features.

Previous studies have used mathematical modelling to
gain insight into the mechanisms regulating the establish-
ment and maintenance of DNA methylation patterns. In
particular, the requirement of collaborativity between CpGs
to maintain DNA methylation patterns was postulated
through modelling [14] before being observed experimentally
[15,17]. Previous models of DNA methylation rely on sto-
chastic simulations. However, their computational expense
limits their use to the study of promoter-scale DNA methyl-
ation (regions around 1 Kb in size). The CPU-time taken to
run simulations here on 200–500 sites (corresponding to
approx. 20–50 Kb) varies and is parameter-dependent. For
example, simulations of ten replicates with 200 CpGs take
under one minute when x = 0.1, y = 0.1, but over 20min
when x = 5, y = 0.9. For x = 50, y = 1, simulations of 10
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Figure 10. Size of unmethylated (u) clusters and methylated (m) clusters are most similar when y = 1. Visualizations of stochastic simulations over time for
different values of y. For each y, the horizontal axis shows simulated methylation patterns for 100 CpGs when x = 50 from the full nearest-neighbour collaborative
system (see §2.2). The vertical axis shows patterns obtained at successive time points after steady state has been reached where timepoints are taken at constant
time intervals.
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replicates with 500 CpGs take approximately 6 h. There are an
average of 10 000 CpGs per megabase in the human genome
making these models infeasible for such large genomic regions
due to computational expense. This is particularly true in the
case of parameter inference where such simulations would
need to be rerun many times. By contrast, the OPMF model
can be applied to arbitrarily large systems of CpGs and
solved numerically in seconds for any parameters to give accu-
rate predictions for statistics of interest. Our model is based
upon the same, or similar, reaction systems used in previous
stochastic modelling studies [14,29,30], but can be used to
study larger systems of CpGs than previously considered.
This makes our MF model far better suited to understanding
the mechanisms underpinning megabase-sized variations in
DNA methylation observed in development, ageing and
cancer, which occur at a scale three orders of magnitude
larger than promoters [27].

To our knowledge, the largest system previously exam-
ined mathematically contained 105 CpGs [15]. However,
here simulations were conducted for only a single model par-
ameter set. Running large-scale simulations of this type for
many parameter sets will result in computational bottlenecks,
meaning that such simulations cannot be used for inference.
A previous study has proposed a method, based on the gen-
eralized method of moments, for rapid inference using DNA
methylation patterns [49]. However, the largest system
tackled with this approach contains 10 CpGs. Here, we
show that our OPMF model can, in principle, be used for
accurate, time-efficient inference when modelling arbitrarily
large genomic regions. ‘Divide and conquer’ strategies have
also previously been used to reduce the computational
expense of large-scale simulations [50,51]. Here, a large simu-
lation is split into smaller batches and batch results are
aggregated to give overall estimates. Such an approach
could make simulations of the full nearest-neighbour colla-
borative model applicable to larger systems of CpGs by
reducing the computational burden. However, we have
observed finite-size effects in our stochastic simulations
suggesting that splitting them into smaller batches would
result in discrepancies between estimates obtained via this
approach and those obtained via a single large-scale
simulation.

Our results show that the success of a MF model depends
on the way in which it is constructed. Of the three MF models
considered here we observe that the one-site MF model and
OPMF model provide the worst and best approximations to
the full nearest-neighbour model, respectively. In the full
nearest-neighbour collaborative system, the probability that
a CpG is in a particular state depends on the state of its near-
est neighbours on the left and right. Since the one-site MF
model contains no spatial information, it least reflects the
full model. The DPMF and OPMF models both incorporate
spatial information by allowing direct nearest-neighbour
interactions to occur within pairs of CpGs. However, in the
DPMF model, non-overlapping pairs are considered and
the probability that a pair is in a certain state depends only
on the mean state of pairs in the system, rather than on the
states of its adjacent pairs. Conversely, in the OPMF model,
overlapping pairs are considered and the state of a pair
depends on the state of pairs it overlaps. Hence the OPMF
model best reflects the full model.

When used for inference, the OPMF model has a higher
sensitivity to methylation strength (y) than collaborativity
strength (x) explaining why the former is generally better
inferred than the latter. However, some posteriors obtained
in §4.3 are very wide and/or the true parameter values lie
outside the inferred 95% CIs, indicating that there is scope
for inference to be improved. Since our model shows
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Figure 12. Potential collaborative interactions that can influence a target, X, under the models in [14] and the model considered here. (a) A cluster of 80 CpGs is
first considered in [14], where a CpG can collaborate with any other CpG in the system with equal probability. (b) A high-density cluster (of 80 CpGs) adjacent to a
highly methylated low-density region (of 240 CpGs) is then considered in [14], where there is nearest-neighbour collaborative methylation (red arrows) and the
probability of collaborative demethylation occurring due to interaction between two sites decays as the distance between them increases (blue arrows; decay in
reaction probability shown by narrowing width of arrows). Note that collaborative demethylation is restricted to the 80-CpG cluster. (c) In this paper, collaborative
reactions only occur between neighbouring CpGs and there is no upper bound on the system size, allowing large-scale patterns to be considered.
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impressive performance in forward prediction, discrepancies
between true and inferred parameters are likely due to insuf-
ficient data or the inference technique used. ABC algorithms
are sensitive to the summary statistics, distance and tolerance
used in the acceptance criteria for parameters [52]. Moreover,
regardless of the method used, inference will always be diffi-
cult for systems of CpGs that are either �100% methylated or
�100% unmethylated. This is because a very large x would
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result in �100% unmethylation for almost all y < 1 and
�100% methylation for almost all y > 1. Despite these chal-
lenges, our analysis demonstrates that the OPMF model can
in principle be used for inference. The accuracy of inference
may be improved in future studies by experimenting with
different inference techniques and sample sizes. In addition,
the summary statistics that can be reliably calculated from
real data are dependent on the technology used to generate
the data. Most DNA methylation data are currently derived
from technologies that produce short reads containing
between one and three CpGs. Statistics involving associations
between consecutive CpGs from a single molecule cannot
therefore be accurately estimated. This restricts inference
based on such data to statistics such as the mean and stan-
dard deviation. Long-read technologies which can capture
hundreds of CpGs on a single read have recently been
applied to assay DNA methylation patterns [53]. Data
obtained from such technologies could allow higher order
statistics to be accurately estimated and potentially improve
inference.

Here, we assume that the processes governing the cre-
ation of methylation patterns in vivo are described well by
our nearest-neighbour collaborative model. It is possible
that collaborativity in vivo can occur between non-nearest-
neighbours, something which is not explicitly accounted for
in our nearest-neighbour collaborative model. Collaborative
methylation interactions are likely determined by the proper-
ties of the DNA methylation machinery. DNMT1 and
DNMT3B both methylate processively along DNA strands
whereas DNMT3A methylates in a distributive manner but
can form multimers along the DNA fibre [32]. However, the
range and strengths across which these interactions occur
are currently unclear so we focus on nearest-neighbour inter-
actions. We note that our OPMF model does capture
interactions beyond nearest neighbours because the mean
state of pairs in the system influences the change in state of
CpGs. Previous modelling studies have also considered
different forms of collaborative interactions between CpGs
in a system (figure 12a,b). In [14], collaboration between
any CpGs in the system and nearest-neighbour collaborative
methylation alongside distance-dependent collaborative
demethylation were both demonstrated to produce stable
CpG clusters that were either methylated or unmethylated.
Stable clusters were also observed under a distance-dependent
collaborative model, where collaborative demethylation domi-
nates over short ranges and collaborative methylation
dominates over long ranges [29].

Here, we have also assumed that the system of CpGs we
model reaches a steady state. This means that we consider
either non-dividing cells, or dividing cells which settle
down to steady state between replication events such that
DNA replication has no long-term effects on DNA methyl-
ation patterns. Whether or not a cell satisfies the latter case
is dependent on the real magnitudes of ki, i = {1, …, 12},
and the time between replication events. Experimental
studies show that arrested cells have similar DNA methyl-
ation patterns to those that are cycling, supporting the
assumption that DNA replication has no long-term effect
on DNA methylation [33]. Furthermore, an analysis of
DNA methylation patterns on newly synthesized DNA
suggests that re-methylation occurs within 20min of replica-
tion [54]. However, another analysis of DNA methylation
following replication suggests re-methylation is often delayed
[55]. At present, it is unclear whether this delay is sufficient to
have an effect on methylation patterns during the following
cell cycle.

Our assumption that ki, i = {1,…, 12} take the form in table 1
could be violated in reality. For example, DNMT1 shows a
strong preference for h sites over u sites [32], meaning that
methylation reactions with an h target may have higher reac-
tion rates than those with a u target. Future work could relax
rate assumptions to account for such factors. Preliminary
investigations confirm that the OPMF model provides a
good approximation to the nearest-neighbour collaborative
systemwhen ki, i = {1,…, 12} are considered as twelve indepen-
dent parameters (data not shown). However, the difficulty of
parameter inference increases with the number of parameters,
meaning that relaxing parameter assumptions will likely
decrease inference quality. Nonetheless, our model suggests
that it is the parameters x and y that determine steady-state
methylation patterns, rather than individual reaction rates.
This is supported by a study where modelling of experimental
data suggested that the ratio between methylation and
demethylation rates determines steady-state methylation
levels at single CpGs [56].

Here, we demonstrate that MF models can accurately
predict the behaviour of large CpG systems subjected to
nearest-neighbour collaboration. Our study presents the
first mathematical modelling approach that can be applied
to arbitrarily large systems of CpGs. The future application
of this approach will facilitate the delineation of the
methylation dynamics that underpin the formation of
large-scale methylation patterns in developmental and
disease contexts.
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Appendix A. Derivation of effective reaction rates
for the distinct pairs mean-field model
Here, we illustrate how â1, the reaction rate associated with
mm�! hm in (3.13), is constructed. We first consider all reac-
tions in figure 1 that can occur within the mm pair, resulting in
conversion to an hm pair. Clearly,mm�! hm occurs if either m
within the mm undergoes m�!k3 h. Hence â1 must contain a 2k3
term. However, no collaborative reaction involves two m
CpGs interacting to produce an h and an m. Thus
mm�! hm cannot arise from collaboration between the two
CpGs within the mm.

https://github.com/lkerr34/kerr_mean_field_paper_2021
https://github.com/lkerr34/kerr_mean_field_paper_2021
https://github.com/lkerr34/kerr_mean_field_paper_2021
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Next, we consider all mm�! hm reactions that can occur
due to an m within the mm interacting with a site from an
adjacent pair. For example, an m could collaborate with a u
from an adjacent pair via mþ u�!k10 hþ u, i.e. we can have

mmþ uu�! hmþ uu, mmþ um�! hmþ um,

mmþ uh�! hmþ uh:
ðA 1Þ

The first reaction can be written as an effective first-order

reaction, mm �!2k10m2 hm, where the uu is absorbed into the reac-
tion rate by making it proportional to μ2, and the factor of two
allows for either m within the mm to undergo this reaction.

The second reaction in (A 1) can be written as mm �!k10m4 hm,
where the um is absorbed into the reaction rate and either
m can undergo the reaction, giving us a factor of two. How-
ever, this reaction requires the u within the um to be directly
adjacent to the mm. The probability of having um in this
particular order is 1

2, giving an effective reaction rate of
2k10 1

2m4 ¼ k10m4. Similarly, the third reaction in (A 1) can be

written as mm �!k10m6 hm.
Finally, an mwithin the mm can interact with an h from an

adjacent pair, via mþ h�!k9 hþ h, i.e. we can have

mmþ hh�! hmþ hh, mmþ hm�! hmþ hm,

mmþ uh�! hmþ uh:
ðA 2Þ

Using similar arguments as above, we can write each of these
three reactions as the effective first-order reaction mm�! hm,
with rates 2k9μ3, k9μ5 and k9μ6, respectively.

Hence,

â1 ¼ 2k3 þ k9ð2m3 þ m5 þ m6Þ þ k10ð2m2 þ m4 þ m6Þ: ðA 3Þ
Appendix B. Derivation of effective reaction rates
for the overlapping pairs mean-field model
We now construct ~a1, the reaction rate associated with
mm�! hm in (3.19). As with the DPMF model, reactions
occurring within the mm pair contribute a 2k3 term to ~a1.

Now, mm�! hm can occur due to a mþ u�!k10 hþ u reac-
tion if one of the m sites in the mm pair is also in a pair
with a u site, i.e. we can have

mmþ um�! hmþ um,

where now the um and mm reactants share a common m. This
can be written as the effective first-order reaction mm�! hm
with rate

2k10
m4=2

m1 þ m4=2þ m5=2

� �
, ðB 1Þ

where μ4/2/(μ1 + μ4/2 + μ5/2) is the probability that an m
within the mm also forms a um with its other neighbour,
i.e. it is the conditional probability that a pair is in the um
state given that we know a particular site in the pair is m.
Recall that μ4 gives the proportion of um and mu pairs,
while μ5 gives the proportion of hm and mh pairs. The factors
of 1/2 in (B 1) account for the fact that the u and h in the um
and hm must be on a particular side of the m (since an m is on
its other side). The factor of two at the front of (B 1) allows for
either m in the mm to undergo the reaction.

Similarly, mm�! hm can occur due to a mþ h�!k9 hþ h
reaction if one of the m sites in the mm is also in a pair
with a h site, i.e. we can have

mmþ hm�! hmþ hm,

where the reactant hm and mm share a common m. This reac-
tion can again be written as mm�! hm, where the rate

2k9
m5=2

m1 þ m4=2þ m5=2

� �

is derived in a similar way as above.
Hence, we have

~a1 ¼ 2k3 þ 2k9
m5=2

m1 þ m4=2þ m5=2

� �
þ 2k10

m4=2
m1 þ m4=2þ m5=2

� �

ðB 2Þ
Appendix C. Master equations and moment
equations for the cluster mean-field models
Here, we construct the CME for the DPMF and OPMFmodels,
along with the first and second moment equations for the sys-
tems. Note that, for i = 1, …, 12, ai ¼ âi in the DPMF model,
where âi is defined in (3.14), and ai ¼ ~ai in the OPMF model,
where ~ai is defined in (3.20). The CME is given by

dPðS1Þ
dt

¼ �a1PðS1Þ þ a8PðS5Þ,
dPðS2Þ

dt
¼ �a2PðS2Þ þ a11
�
1� PðS1Þ � PðS2Þ � PðS3Þ � PðS4Þ � PðS5Þ

�
,

dPðS3Þ
dt

¼ �ða3 þ a4ÞPðS3Þ þ a9PðS5Þ þ a10
�
1� PðS1Þ � PðS2Þ � PðS3Þ � PðS4Þ � PðS5Þ

�
,

dPðS4Þ
dt

¼ �ða5 þ a6ÞPðS4Þ þ a7PðS5Þ þ a12
�
1� PðS1Þ � PðS2Þ � PðS3Þ � PðS4Þ � PðS5Þ

�

and
dPðS5Þ

dt
¼ a1PðS1Þ þ a4PðS3Þ

þ a5PðS4Þ � ða7 þ a8 þ a9ÞPðS5Þ,
where for j = 1, …, 6, Sj = (L1, L2, L3, L4, L5, L6), with Lj = 1 and
Li = 0 for i≠ j, and P(Sj) is the probability associated with the
state Si. Note that interaction between pairs is incorporated
into the CME via the effective reaction rates a1–a12 (see appen-
dix A and appendix B). Following the approach in appendix C
of [35], we obtain first moment equations for the DPMF and
OPMF models, where μ1–μ6 are the mean levels of each
paired state:

dm1

dt
¼ �a1m1 þ a8m5,

dm2

dt
¼ �a2m2 þ a11ð1� m1�m2� m3 � m4 � m5Þ,

dm3

dt
¼�ða3þ a4Þm3þ a9m5þ a10ð1�m1�m2�m3�m4�m5Þ,

dm4

dt
¼�ða5þa6Þm4þa7m5þa12ð1�m1�m2�m3�m4�m5Þ

and
dm5

dt
¼ a1m1 þ a4m3 þ a5m4 � ða7 þ a8 þ a9Þm5:

Note again that we can obtain μ6 via μ6 = 1− μ1− μ2− μ3−
μ4− μ5. The second moment equations, describing the
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evolution of 〈LiLj〉 for 1≤ i, j≤ 5, are given by

dhL1L1i
dt

¼ a1m1 þ a8m5 þ 2
�
a1hL1L1i þ a8hL1L5i

	
,

dhL2L2i
dt

¼ a2m2 þ a11ð1� m1 � m2 � m3 � m4 � m5Þ þ 2
�
� a2hL

dhL3L3i
dt

¼ ða3 þ a4Þm3 þ a9m5 þ a10ð1� m1 � m2 � m3 � m4 � m5

þ 2
�
� ða3 þ a4ÞhL3L3i þ a9hL3L5i þ a10

�
m3 � hL1L3i

dhL4L4i
dt

¼ ða5 þ a6Þm4 þ a7m5 þ a12ð1� m1 � m2 � m3 � m4 � m5

þ 2
�
� ða5 þ a6ÞhL4L4i þ a7hL4L5i þ a12

�
m4 � hL1L4i

dhL5L5i
dt

¼ a1m1 þ a4m3 þ a5m4 þ ða7 þ a8 þ a9Þm5 þ 2
�
a1hL1L5i þ

dhL1L2i
dt

¼ �ða1 þ a2ÞhL1L2i þ a8hL2L5i þ a11
�
m1 � hL1L1i � hL1L

dhL1L3i
dt

¼ �ða1 þ a3 þ a4ÞhL1L3i þ a8hL3L5i þ a9hL1L5i þ a10
�
m1

dhL1L4i
dt

¼ �ða1 þ a5 þ a6ÞhL1L4i þ a7hL1L5i þ a8hL4L5i þ a12
�
m1

dhL1L5i
dt

¼ �a1m1 � a8m5 þ a1hL1L1i þ a4hL1L3i þ a5hL1L4
dhL2L3i

dt
¼ �ða2 þ a3 þ a4ÞhL2L3i þ a9hL2L5i þ a10

�
m2 � h

þ a11
�
m3 � hL1L3i � hL2L3i � hL3L3i � hL3L4i �

dhL2L4i
dt

¼ �ða2 þ a5 þ a6ÞhL2L4i þ a7hL2L5i þ a11
�
m4 � h

þ a12
�
m2 � hL1L2i � hL2L2i � hL2L3i � hL2L4

dhL2L5i
dt

¼ a1hL1L2i � ða2 þ a7 þ a8 þ a9ÞhL2L5i þ a4hL2L3
dhL3L4i

dt
¼ �ða3 þ a4 þ a5 þ a6ÞhL3L4i þ a7hL3L5i þ a9hL4L

þ a12
�
m3 � hL1L3i � hL2L3i � hL3L3i � hL3L4i �

dhL3L5i
dt

¼ �a4m3 þ a9m5 þ a1hL1L3i þ a4hL3L3i þ a5hL3L4
þ a10

�
m5 � hL1L5i � hL2L5i � hL3L5i � hL4L5i �

and
dhL4L5i

dt
¼ �a5m4 � a7m5 þ a1hL1L4i þ a4hL3L4i þ a5hL4L4
� hL2L5i � hL3L5i � hL4L5i � hL5L5i

�
:

Using L6 = 1− L1− L2− L3− L4− L5, we obtain

hL1L6i ¼ m1 � hL1L1i � hL1L2i � hL1L3i þ hL1L4i þ
hL2L6i ¼ m2 � hL1L2i � hL2L2i � hL2L3i þ hL2L4i þ
hL3L6i ¼ m3 � hL1L3i � hL2L3i � hL3L3i þ hL3L4i þ
hL4L6i ¼ m4 � hL1L4i � hL2L4i � hL3L4i þ hL4L4i þ
hL5L6i ¼ m5 � hL1L5i � hL2L5i � hL3L5i þ hL4L5i þ

and hL6L6i ¼ 1� 2ðm1 þ m2 þ m3 þ m4 þ m5Þ þ hL1L1i

þ 2
�
hL1L2i þ hL1L3i þ hL1L4i þ hL1L5i þ
a11ðm2 � hL1L2i � hL2L2i � hL2L3i � hL2L4i � hL2L5iÞ
	
,

3i � hL3L3i � hL3L4i � hL3L5i
�	

,

4i � hL3L4i � hL4L4i � hL4L5i
�	

,

3L5i þ a5hL4L5i � ða7 þ a8 þ a9ÞhL5L5i
	
,

L1L3i � hL1L4i � hL1L5i
�
,

L1i � hL1L2i � hL1L3i � hL1L4i � hL1L5i
�
,

L1i � hL1L2i � hL1L3i � hL1L4i � hL1L5i
�
,

hL5L5i � ða1 þ a7 þ a8 þ a9ÞhL1L5i,

hL2L2i � hL2L3i � hL2L4i � hL2L5i
�

5i
�
,

hL2L4i � hL3L4i � hL4L4i � hL4L5i
�

2L5i
�
,

hL2L4i þ a11
�
m5 � hL1L5i � hL2L5i � hL3L5i � hL4L5i � hL5L5i

�
,

10
�
m4 � hL1L4i � hL2L4i � hL3L4i � hL4L4i � hL4L5i

�

5i
�
,

3 þ a4 þ a7 þ a8 þ a9ÞhL3L5i þ a9hL5L5i

5i
�

5 þ a6 þ a7 þ a8 þ a9ÞhL4L5i þ a7hL5L5i þ a12
�
m5 � hL1L5i

5i,
5i,
5i,
5i,
5i
L2i þ hL3L3i þ hL4L4i þ hL5L5i

i þ hL2L4i þ hL2L5i þ hL3L4i þ hL3L5i þ hL4L5i
	
:
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Appendix D. Percentage error tables
See table 3.
Table 3. Percentage errors associated with figures 8 and 9 for the MF models and values of x considered. For each x, the relative error was calculated for the
three models at each y, where the relative error associated with a statistic γ is |γsim− γpred|/γsim, with γpred being the model prediction and γsim being the
result obtained from the simulations. Overall percentage errors were obtained for each model by averaging the relative errors across y (for each x) and
multiplying by 100. For all three models, percentage errors are shown for μus, μhs and μms. For the paired MF models, percentage errors for μzs, σ

2(zs),
covar(zs) and ρ(zs) are also displayed.

μus μhs μms μzs σ2(zs) covar(zs) ρ(zs)

x = 0.1

one-site MF 1.46% 3.16% 1.58% n.a. n.a. n.a. n.a.

DPMF 0.78% 0.77% 0.95% 0.17% 0.45% 25.70% 25.38%

OPMF 0.70% 0.38% 0.90% 0.17% 0.42% 24.32% 24.05%

x = 1

one-site MF 6.11% 6.60% 6.46% n.a. n.a. n.a. n.a.

DPMF 4.27% 1.91% 3.91% 0.73% 3.34% 7.58% 5.90%

OPMF 1.06% 0.812% 1.65% 0.23% 0.96% 5.22% 5.64%

x = 5

one-site MF 26.5% 6.03% 22.21% n.a. n.a. n.a. n.a.

DPMF 19.13% 6.99% 14.91% 1.93% 16.52% 26.54% 13.60%

OPMF 2.60% 2.05% 1.63% 0.29% 2.67% 4.37% 3.30%

x = 50

one-site MF 46.00% 21.84% 42.65% n.a. n.a. n.a. n.a.

DPMF 32.62% 19.80% 28.98% 1.78% 34.89% 44.27% 18.85%

OPMF 7.13% 6.30% 7.20% 0.71% 10.36% 12.84% 6.91%
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