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Phage has high specificity for its host recognition. As a natural enemy of bacteria, it

has been used to treat super bacteria many times. Identifying phage proteins from

the original sequence is very important for understanding the relationship between

phage and host bacteria and developing new antimicrobial agents. However, traditional

experimental methods are both expensive and time-consuming. In this study, an

ensemble learning-based feature selection method is proposed to find important features

for phage protein identification. The method uses four types of protein sequence-derived

features, quantifies the importance of each feature by adding perturbations to the features

to influence the results, and finally splices the important features among the four types of

features. In addition, we analyzed the selected features and their biological significance.
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INTRODUCTION

Phages, which are the most abundant and widespread organisms on the Earth, can replicate within
and destroy the host cell. Phages play an important role in microbial physiology, population
dynamics, evolution, and therapy (Clokie et al., 2011), affecting biochemical systems worldwide
(Jahn et al., 2019).

Phages also influence the development of anti-cancer drugs. The use of phages to target cancer
cells for a specific binding for therapeutic purposes has been applied in clinical trials for cancer
treatment due to differences in surface markers of tumor cells from normal cells (Yu et al., 2021).
The identification of phage proteins is important for understanding the relationship between
phages and host bacteria and for developing novel drugs or antibiotics (Lekunberri et al., 2017),
and therefore, thorough investigations must be performed to identify the specific components
recognized by phages.

Traditional physical experimental methods such as mass spectrometry (MS), sodium dodecyl
sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and protein arrays (Lavigne et al., 2009;
Yuan and Gao, 2016; Jara-Acevedo et al., 2018), which have been used to identify phage viral
proteins, are expensive and often time-consuming. Traditional biological methods such as cell
separation, electron microscopy, and fluorescence microscopy are less feasible for analyzing large-
scale biological data (Mei, 2012; Li et al., 2015). Computational models can not only analyze large
amounts of biological data but also make preliminary predictions of unknown protein sequences,
which is an excellent complement to traditional experimental methods.
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In recent years, protein function prediction has been a
hot topic in the field of computational biology (Ding et al.,
2020; Fu et al., 2020; Guo et al., 2020). With the increasing
amount of protein data, the techniques of applying machine
learning and data mining to protein function prediction have
gradually matured (Liu et al., 2019; Zhao et al., 2021). Several
researchers have used machine learning to predict the function
of protein sequences through sequence analysis (Chou, 2009;
Cui et al., 2019; Jin et al., 2021), position-specific scoring
matrix (PSSM) (Jones, 1999), various physicochemical and
biochemical properties of amino acids, sequence conservation,
amino acid composition, domain interactions, and geometrical
and biophysical properties (Kawashima and Kanehisa, 2000; Cai
et al., 2003; Zulfiqar et al., 2021). Feng et al. (2013) developed
a Naive Bayes-based model for protein classification, which
used amino acid composition (AAC) and dipeptide combination
(DPC) as input features. Ding et al. (2014) developed a support
vectormachine (SVM) predictionmodel. In this method, analysis
of variance was applied to select significant features from the
g-gap DPC. Recently, Zhang et al. (2015) developed a random
forest classification method to distinguish phage virus protein
(PVP) from non-PVP. A novel feature extraction method with a
two-layered structure is proposed (Xiong et al., 2018; Jiang et al.,
2021). First, the features irrelevant to the results are removed by
the filter or wrapper method, and then, the results of the previous
step are used in the model for classification and prediction.

Since each feature extraction method extracts only part of the
protein sequence information, themethod of combiningmultiple
protein information for classification is proposed in the absence
of a clear sequence or structural information. Jiao and Du (2017)
proposed the functional domain enrichment score with position-
specific physicochemical properties (PSPCP). Li et al. (2015)
proposed to fuse the position-specific scoring matrix (PSSM) and
gene ontology to extract feature sequences.

Protein sequences often have high feature dimensionality
and contain a large amount of redundant information, which
reduces the prediction performance of a model. Dimensionality
reduction of feature vectors with high-dimensional data is
performed to eliminate unnecessary features. The cmmonly
used methods are principal component analysis (PCA) (Ahmad
et al., 2016), information gain (Wen et al., 2016), maximum
correlation and minimum redundancy (MRMR) (Khan et al.,
2017), maximum correlation maximum distance (MRMD) (Zou
et al., 2016), singular value decomposition (SVD) (Silvério-
Machado et al., 2015), local linear discriminant analysis (Yu
et al., 2018), and dipeptide composition (DPC) (Ahmad et al.,
2016). Xie et al. (2021) proposed a method for k-size optimal
parsimony features based on the rough set theory, which found
the effective features by fixing the parsimony size and dynamic
weighting strategy. NMFBFS reduced the dimensionality of the
data by decomposing the non-negative matrix of the data (Ji
et al., 2015). Despite the specific advantages of existing methods
for PVP prediction, there is a need to improve the accuracy and
transferability of predictive models.

In the present study, we propose an ensemble learning-based
feature selection method for phage virus protein classification
that uses a four-step pipeline for protein prediction, (I) extracting

the amino acid composition content (AAC), physicochemical
properties CTD, dipeptide composition CKSAAP, and reduced
position specificity scoring matrix (RPSSM) of the protein; (II)
using ensemble learning to measure the importance of each
feature component from each type of feature; (III) using an
incremental strategy to select the most important feature subset;
and (IV) combining the optimal feature subset derived from
each type of feature to retrain the data to be filtered again and
finally applying the obtained optimal feature subset to predict
the protein type. Instead of the PCA-like feature dimension
reduction method, our method can directly obtain important
features for further biological analysis. Experimental results
demonstrate the effectiveness of our method.

MATERIALS AND METHODS

Data
In this study, we used the dataset constructed by Ding et al.
(2014). This dataset was processed by UniProt in the following
ways. First of all, the phage proteins whose subcellular location
is a virion were considered positive sample and vice versa. The
sequences containing unknown amino acids such as “B,” “J,” “O,”
“U,” “X,” or “Z” were removed. To eliminate the influence of
homologous sequences, more than 40% homologous sequences
were removed by CD-HIT. Eventually, 99 phage proteins and 208
non-phage proteins were obtained.

The data from various literature studies (Feng et al., 2013;
Ding et al., 2014; Zhang et al., 2015) were processed in the same
way to build an independent test set. Besides, more than 40%
homologous sequences with the training set were removed.

Feature Extraction
The functions of a protein consists of the amino acid type,
quantity, arrangement order of the peptide chain, and the spatial
structure of the protein. Therefore, themain descriptionmethods
of a protein can be divided into the global description of the
protein and the description of the amino acid level (Xu et al.,
2020). The global description of the protein includes the first-
class features and spatial features of the protein. However,
the acquisition of spatial features is expensive. Under certain
conditions, the primary structure of the protein can determine
the secondary, tertiary, and quaternary structures. Therefore, in
this study, we only extracted the primary features of the protein
and also extracted simple spatial structural features from the
primary structure.

For the convenience of discussion, we define a protein
sequence P as follows:

P = p1p2p3. . .pL, pi ∈ {A, C, D, . . .Y} (1)

where pi is an amino acid, i is the position of the amino acid in
the sequence, and L is the length of the amino acid sequence.

AAC

The Amino Acid Composition (AAC) is to calculate the content
of each amino acid in a protein sequence. The AAC feature of an
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amino acid sequence is as follows:

AACi =
N

(

pi
)

L
, 0 < i ≤ 20 (2)

whereAACi represents the proportion of pi in a protein sequence,
N

(

pi
)

is the number of the amino acid pi in a protein sequence,
and L is the number of amino acids in a sample.

CTD

Protein-related chemical reactions commonly occur in the
cell and tissue fluids, so the physicochemical properties of
a protein are closely related to the function of the protein.
There are eight types commonly used with the following
physicochemical properties: hydrophobicity, polarity, surface
tension, polarizability, charge, van der Waals force, secondary
structure, and solubility (Cai et al., 2003).

For each physicochemical property, the amino acids are
divided into three groups (positive, neural, and negative), and
then, the three values of Composition (C), Transition (T),
and Distribution (D) of each property are calculated. C is the
percentage of the composition of a certain physicochemical
property. T describes the following three types of residue pairs:
a negative residue followed by a neural residue; a positive residue
followed by a negative residue; and a positive followed by a
neural residue. The percentage of the amino acids of a particular
property located at the first, 25, 50, 75, and 100% is measured as
the distribution of the protein (D). Finally, 168 physicochemical
features are obtained.

CKSAAP

The composition of k-space amino acid pairs (CKSAAP) is
encoded by the proportion of amino acid pairs separated by any
k residues.

CKSAAP =
Npipj

L
, pi, pj ∈ {A, C, D, . . . , Y} (3)

j = i+ k+ 1, i, j ≤ L,

whereNpipj is the proportion of residue pairs pi and pj. According
to Ding et al. (2014), the best results of extracting phage protein
features for classification are obtained when k = 1.

RPSSM

In the process of biological evolution, amino acid sequences
mutate corresponding to common changes, including deletion,
substitution, and insertion of amino acid residues. However,
these changed protein sequences still have similar structures and
functions (Ding et al., 2014). The position-specific scoring matrix
(PSSM) can describe this change.

For the convenience of description, we defined the sequence
PA as follows:

PA = (P1A, P2A, . . . , PLA)T (4)

where PiA indicates the score of amino acid mutation to amino
acid A at the ith position of the protein sequence.

According to the similarity of amino acids, Li et al. (2003)
found that 10 residues can construct a set with the smallest

reasonable folding model, i.e., {F, Y, W}, {M, L}, {I, V}, {A, T, S},
{N, H}, {Q, E, D}, {R, K}, {P}, {C}, and {G}. We combined the
same categories based on the similarity of amino acids as follows:















P1 =
(PF + PY + PW )

3 ,

P2 =
(PM + PL)

2 ,
. . . ,

P10 = PG.

(5)

The reduced position-specific scoring matrix (RPSSM) is
represented as follows:

PSSMS =





















P1,1 P1,2
P2,1 P2,2

· · ·

· · ·

P1,j · · · P1,10
P2,j · · · P2,10

...
...

...
Pi,1 Pi,2
...

...
PL,1 PL,2

· · ·

...
· · ·

Pi,j · · · Pi,10
...

...
...

PL,j · · · PL,10





















. (6)

The variance of each column is calculated to get the feature Ds,

DS =
1

L

L
∑

i=1

(

pis −p̄s
)2
, s ≤ 10, i ≤ L (7)

However, DS does not contain the amino acid order information.
To get the information on the local sequence order effect, the
dipeptide composition of the protein sequence is extended to
PSSM. Assuming that pi is mutated into ps and that pi+1 is
mutated into pt in the sequence, then

Di,i+1 =

(

pi,s −
pi,s + pi+1,t

2

)2

+

(

pi+1,t −
pi,s + pi+1,t

2

)2

=

(

pi,s − pi+1,t

)

2

2

(8)

where s, t = 1, 2, . . . 10, i = 1, 2, . . . L 1, and Di,i+1 represents
the difference between the average values of pi,s and pi+1,t , while
Di,i+1 in the protein sequence is expressed as follows:

Ds,t =
1

L

L−1
∑

i−1

(

pi,s − pi+1,t

)2

2
, s, t = 1, 2, . . . , 10 (9)

Finally, 110 features were obtained by splicing Ds,t and Ds.

Feature Selection
The goal of the feature-selection module is to select as few
features as possible with guaranteed classification accuracy so
that the model does not degrade significantly when the model is
learned using only the subset of features and the learning results
are close to or higher than the learning results using the full set
of features.

The relationship between the sequence structure and the
function of protein is not entirely clear. Therefore, the features
based on knowledge extraction are not necessarily related to the
function of the protein or are even some irrelevant features.
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Redundancy will also affect the fitting of the classifier to protein
data and will interfere with the prediction. Therefore, we cannot
select features only in a knowledge-driven way. It is necessary to
further screen the extracted features in a data-driven way so as
to screen out effective feature subsets beneficial to the learning
algorithm. This can not only reduce the difficulty of learning tasks
but also improve the efficiency of themodel.We assume that only
some of all the features play a decisive role in model fitting. If this
feature is modified, it will have a greater impact on the results. To
quantify this effect, we proposed a feature selection model. The
specific steps we followed were as follows.

Importance Accumulation

First, the features from four types of protein sequences were
extracted by a feature extraction module in Figure 1A. Then,
the importance score of each feature component was calculated.
According to the feature selection module shown in Figure 1B,
we assumed that all the features extracted are valid for
classification. Then, 70% of the training samples were randomly
selected to train the classifier, and the classification accuracy rate
was obtained by testing the data out-of-bag, which is recorded
as score1. If a feature component was very relevant to the protein
function, just changing it would have a great impact on the result.
According to this idea, we only shuffled the values of a feature
component randomly by a permutation way on the testing
dataset in order to maintain the data distribution unchanged
before and after this modification, then used the model trained
on the training set to predict the shuffled data, and obtained
the classification accuracy, which is recorded as score2. The
importance of this feature component is defined as:

impi = score1−score2 (10)

Each feature component is shuffled to get its important score. To
reduce the error, it repeats n rounds to get the average importance
scores of each feature.

Incremental Feature Selection

To find the optimal feature subset, we added each feature
component incrementally according to its score in descending
order, trained the classification model, and calculated the
classification accuracy and finally showed the result in Figure 1C.
In this way, a feature subset that maintains a comparative
classification result equivalent to the feature is selected and
considered an important feature. Then, the classifier was used
in a feature subset to train all the training samples, and the
independent test set was used to predict the phage protein. The
final processed was shown in Figure 1D.

Ensemble Classifier

Due to the unclear sample distribution and various classification
boundaries, only using a single classifier may not fit the data
well and may not get a good classification result. Therefore,
we used seven common classifiers with default parameters as
the base classifier in scikit-learn (Pedregosa et al., 2011), linear
discriminant analysis (LDA), decision tree classifier (DTC), k-
neighbors classifier (KNN), support vector machine (SVM),
logistic regression (LR), Gaussian Naive Bayes classifier (GNB),
and multilayer perceptron (MLP) using 1,000 iterations. At the
same time, seven classifiers were trained in each sampling, and
the classifier with the highest accuracy was selected. We believed
that this classifier can best fit the distribution of the data. This
classifier was used as the best classifier in this round to classify
or calculate feature importance. Although the ensemble learning
method can be insensitive to the distribution of data, the time

FIGURE 1 | Flowchart of the proposed method. (A) Feature extraction method includes extracting AAC, CTD, CKSAAP-1GAP, and RPSSM from the original protein

sequences. (B) Resampling all samples and then calculating the importance of each feature component using the ensemble classification. (C) Selecting a subset of

important features using the incremental method. (D) Predicting phage proteins on the testing set using the important feature components.
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cost will increase due to the use of multiple classifiers. The time
complexity of the proposed method O(rounds∗

∑

i classifieri)
was mainly to calculate the importance score of features, where
rounds refer to the number of iterations. Therefore, if the time
complexity needs to be reduced, the preferred method is to
choose a classifier with smaller time complexity.

Evaluation Criteria
To evaluate our model comprehensively, we used the common
measures, i.e., ACC, SN, and SP. These methods are defined
as follows:

ACC =
TN + TP

TP + FN + FN + FP
(11)

SN =
TP

TP + FN
(12)

SP =
TN

TN + FP
(13)

where TP, FP, TN, and FN denote true positive, false positive, true
negative, and false negative, respectively.

RESULTS

The function of the protein consists of amino acid composition,
arrangement order, and spatial structure. In this study, we
selected amino acid content (AAC), physicochemical properties
(CTD), dipeptide (CKSAAP-1GAP), and PSSMmatrix of protein
(RPSSM) as the features of protein data. The classification
accuracy of each feature was calculated using the ensemble
classifier to get the importance of each feature component.
According to the importance of feature components, the effective
feature subset of each feature of different species was selected
in an incremental way. Finally, all feature subsets were spliced
and predicted on the independent test set and compared with
other methods.

Performance Comparison of Individual
Types of Features on Training Dataset
Results Using Independent Features
For features of different types, each classification model in the
ensemble classifier was trained using the training dataset, and

FIGURE 2 | The scatterplots of feature importance using different feature extraction methods.
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the model with the best fitting effect was selected by ACC in the
ensemble classifier. The feature importance score was calculated
using a feature selection module shown in Figure 1B. Figure 2
shows the scatterplots of the accumulated scores according to
feature components. It can be found that AAC can affect the
results by 6% at the highest and the physicochemical properties
(CTD) by 2%, but dipeptide can only affect the results by 1% at
the highest. RPSSM has an impact of 3.5%. Some features have no
effect on the results after modification.

To get rid of the ineffective feature components, we used the
incremental method according to the rank of feature importance
scores. After stacking feature components according to their
importance, we trained the ensemble classifier and obtained the
classification accuracies. The ACC curve was obtained using a
10-fold cross-validation method, as seen in Figure 3.

It can be found that the classification accuracy of the model
in AAC has shown an increasing trend with the superposition
of feature components, but it is around 82%. The accuracy
of physicochemical properties (CTD) is more stable when

features are superimposed. It can be found that the classification
accuracy is the highest using only the first 50 important features,
and the classification accuracy does not increase when feature
components are superimposing. The classification accuracy of
the first 103 feature components in CKSAAP-1GAP is also good
with the highest classification accuracy, and the classification
accuracy even decreases when new feature components are
added. RPSSM is always more stable, and the first 50 feature
components with the highest classification accuracy are selected
as the optimal feature subset of the features.

Performance Comparison of Concatenated
Features on Training Data Set Results
Using Integrated Features
We selected the subset of features with the best classification
result and the least number of features among different kinds of
features and spliced the obtained subset of features to form an
important feature with multiple types of superpositions.

FIGURE 3 | Accuracies derived from the incremental strategy using different feature extraction methods (The colored line shows the accuracy results of the 10-fold

data).
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FIGURE 4 | Accuracies derived from the incremental strategy using integrated features.

TABLE 1 | Average accuracy of a 10-fold cross-validation on the training set using

different features.

Classifier Features SN (%) SP (%) ACC (%)

DTC, GNB, LR, MLP AAC (20D) 71.89 85.02 80.81

MLP, KNN, DTC, LR CTD (168D) 69.00 86.12 80.41

KNN, MLP, LR, GNB CKSAAP_1gap (400D) 70.78 80.71 77.51

GNB, LDA, LR, MLP RPSSM (110D) 82.78 79.81 80.81

MLP, GNB, LR, DTC, KNN Concatenation (698D) 56.67 90.63 79.79

GNB, MLP, KNN, LR CTD (50D) 73.88 89.40 84.29

GNB, KNN CKSAAP_1gap (103D) 82.06 88.07 86.04

LR, MLP, DTC, GNB, LDA RPSSM (50D) 81.78 87.05 85.37

DTC, LR, MLP, LDA, KNN Concatenation (38D) 83.00 85.05 86.00

GNB, LDA, LR Concatenation (87D) 89.00 86.55 89.28

Bold indicates the result of the processing of the features.

According to the important feature subset selected from the
AAC sequence feature, the physicochemical feature, dipeptide
1-gap content, which has been indicated to be the best (Ding
et al., 2014), and RPSSM feature, we obtained 223 feature
components totally. Accordingly, the average classification
accuracy was calculated in turn on the training set using a 10-fold
cross-validation. The qualitative results are shown in Figure 4.

TABLE 2 | Accuracy on independent test sets using different kinds of features.

Classifier Features SN (%) SP (%) ACC (%)

MLP AAC (20D) 66.67 85.94 79.79

MLP CTD (168D) 70.00 79.69 76.60

GNB CKSAAP_1gap (400D) 63.33 85.94 78.72

GNB RPSSM (110D) 73.33 76.56 75.53

GNB Concatenation (698D) 56.67 90.63 79.79

LDA CTD (50D) 70.00 82.81 78.72

SVM CKSAAP_1gap (103D) 46.67 92.19 77.66

MLP RPSSM (50D) 60.00 92.19 81.92

MLP Concatenation (38D) 73.33 90.63 85.11

MLP Concatenation (87D) 73.33 93.75 87.23

Bold indicates the result of the processing of the features.

The quantitative results compared with other methods are listed
in Tables 1, 2.

It can be seen from the 10-fold results that the classification
accuracy of only the first 20 feature components of AAC is
better than that of the others. On the independent test set, the
classification accuracy rate is 79.79%. It shows that the amino
acid content of phage protein is quite different from that of the
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FIGURE 5 | ROC curves of 87 features on independent test data.

non-bacterial protein in these data, especially lysine and valine
are the most important residues. The classification accuracy of
CKSAAP-1GAP is not as good as that of AAC. Because the
number of the feature subsets is 30% more than the total number
of training samples, the classification accuracy rate is increased
to 86.04% when 103 important feature components are selected,
but the classification accuracy rate is only 77.66% when only
CKSAAP-1GAP is used in the independent test set. However,
the classification results of other individual feature subsets also
show that the classification accuracy of only using any individual
feature subsets is always low, so we decided to splice different
types of feature subsets. To prevent the dimension from being
too high, we only selected important features to combine.

For the training set of 223 dimensional features after splicing,
we calculated the feature importance again using the feature
selection modules shown in Figure 1B to calculate the influence
of each feature on the results when different feature components
were spliced. The features were then further filtered in the
training data set using the incremental approach and cross-
validation at 10-fold.

The result of Figure 4 shows that 85% classification accuracy,
which is the same classification accuracy as stated in the original
article (Ding et al., 2014), can be achieved on the independent
test set with 55 feature components selected, and 89.28% on
the training set and 86.17% on the independent test with 87

TABLE 3 | Performance comparison of the different features in independent

test sets.

Classifier Features SN (%) SP (%) ACC (%)

Naïve Bayes Ding et al., 2014 (38D) 75.76 80.77 79.15

SVM Ding et al., 2014 (160D) 75.76 89.42 85.02

Bin et al., 2020 Nine feature groups (8D) 50.00 92.19 78.72

MLP Concatenation (38D) 73.33 90.63 85.11

MLP Concatenation (87D) 73.33 93.75 87.23

Bold indicates the result of the processing of the features.

feature components selected. Although the accuracy is 0.65%
higher than 87 at the 113-dimension level, the number of feature
components is greatly increased. Therefore, we chose 87 features
for prediction on the independent test set, and the ROC curve is
shown in Figure 5.

From Table 1, it can be seen that the classification accuracy
is low using only one type of all features and that using feature
selection is significantly higher. As can be seen from Table 3,
we can achieve the same results with fewer feature components
compared to the original article (Ding et al., 2014).

For the 17 selected 1-gap dipeptides (A∗G, A∗T, A∗P, S∗T, S∗A,
V∗A, T∗S, V∗T, G∗A, G∗G, S∗G, V∗G, V∗I, E∗L, K∗L, K∗E, and
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E∗E) in the original article (Ding et al., 2014), the order of feature
importance is (1, 4, 5, 17, 15, 14, 7, 61, 18, 25, 8, 161, 16, 23, 3, 87,
and 54) when determined individually. It can be found that there
is a significant overlap between the feature we selected and the
original article (Ding et al., 2014). Lin et al. analyzed the amino
acid composition of filamentous bacterial virus xf (Xanthomonas
oryzae) coat protein, which showed that His, Cys, and Phe were
absent from the xf protein. This indicates that these three amino
acids are not important in phage classification. In AAC features,
the rankings of these three amino acids are 7, 9, and 17. It also
occupies 1, 0, and 1 amino acids in the top 20 CKSAAPs.

DISCUSSION AND CONCLUSION

By analyzing the selected feature, it can be found that
physicochemical properties are important for phage
protein identification. In fact, 40 components representing
physicochemical properties appear in the 87 features spliced. Of
the first 15 features, 12 refer to the physicochemical properties.
The most important feature comes from the physicochemical
properties. The charge property is the most important,
followed by polarity and polarization rate. Besides, the effective
physicochemical properties are derived from different feature
extraction methods. The contribution of CKSAAP-1GAP to the
87-dimensional feature is limited. Only 9 of CKSAAP-1GAP
features are selected, while the secondary structure composed of
the physicochemical properties derived from CTD occupies 20.
Thus, it can be concluded that CTDmakes a greater contribution
than CKSAAP-1GAP on the selected feature for the classification
of phage protein. As to AAC, its most important components are
proline and leucine, which are highly ranked in the 87 features
spliced. For RPSSM, its selected features are not top ranked in
the 87-dimensional feature, but 30 features appear in the 87
features spliced. The extracted secondary structures using CTD
and RPSSM after classifying amino acids in advance according to
their properties are highly ranked in the 87 feature components,
while the ones derived from CKSAAP-1GAP are not.

In this study, a feature selection framework is proposed
for the protein classification of phages. The model improves
the classification accuracy of the data by overlaying different
types of features. To prevent overfitting caused by high feature
dimensionality, the feature importance was quantified and the
important features with high scores were selected as the final
feature for classification. We performed ensemble learning using
different classifiers, which are insensitive to the distribution of
the original data, quantified the importance of each feature,
and then performed feature selection on it. Finally, only an 87-
dimensional feature was used to achieve a high classification
accuracy. Compared with the original article (Ding et al., 2014)
and PredNeuroP (Bin et al., 2020), a new method for recognizing
phage protein, the model can achieve the same classification
accuracy using only 38 feature components. The classification
accuracy reaches 87.23% when the optimal 87-dimensional
feature is used. It also shows that, when the relationship
between the structure and function of phage proteins is not fully
understood, the knowledge-driven approach to feature extraction
alone does not necessarily lead to better prediction results. In
contrast, the prediction of phage proteins by a combination
of knowledge-driven and data-driven is more accurate, and
the functions of phage proteins can be further investigated by
analyzing the selected feature.
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