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In vertebrates, cytosine-guanine (CpG) dinucleotides are predominantly methylated, with
∼80% of all CpG sites containing 5-methylcytosine (5mC), a repressive mark associated
with long-term gene silencing. The exceptions to such a globally hypermethylated state
are CpG-rich DNA sequences called CpG islands (CGIs), which are mostly hypomethy-
lated relative to the bulk genome. CGIs overlap promoters from the earliest vertebrates to
humans, indicating a concerted evolutionary drive compatible with CGI retention. CGIs
are characterised by DNA sequence features that include DNA hypomethylation, elevated
CpG and GC content and the presence of transcription factor binding sites. These
sequence characteristics are congruous with the recruitment of transcription factors and
chromatin modifying enzymes, and transcriptional activation in general. CGIs colocalize
with sites of transcriptional initiation in hypermethylated vertebrate genomes, however, a
growing body of evidence indicates that CGIs might exert their gene regulatory function
in other genomic contexts. In this review, we discuss the diverse regulatory features of
CGIs, their functional readout, and the evolutionary implications associated with CGI
retention in vertebrates and possibly in invertebrates.

Introduction
CpG islands (CGIs) represent a pervasive DNA sequence class frequently associated with vertebrate
gene promoters [1,2], where their sequence features adapt them for transcriptional activity [3]. CGIs
can be identified according to DNA sequence and chromatin determinants, which include elevated
CpG and GC content, lack of DNA methylation (5-methylcytosine, 5mC), presence of trimethylation
at lysine 4 of histone H3 (H3K4me3), and enrichment in transcription factor binding sites (TFBS)
(Figure 1). Approximately 50–70% of all annotated vertebrate gene promoters are found associated
with a CGI, including the majority of housekeeping genes as well as a subset of tissue-specific genes
[2,4]. While CGIs are most commonly studied within the context of vertebrate gene promoters,
approximately half of all identified CGIs, classed ‘orphan’ CGIs (oCGIs), are located in inter- and
intragenic regions. A number of emerging studies have proposed that oCGIs, while distinct from
promoter-associated CGIs, can also contribute to transcriptional regulation [2,5–9].
CGIs constitute conserved features of gene regulatory elements in highly divergent vertebrate

species. Vertebrate genomes are heavily methylated, with ∼80% of all CpG dyads containing 5mC
[10–12]. 5mC is particularly susceptible to spontaneous deamination to thymidine, thus vertebrate
genomes are CpG poor [13–15]. A major defining feature of CGIs is that they are mostly refractory to
5mC targeting, which may partly explain the retention of CpG density at these genomic locations
[16]. Conversely, most invertebrate genomes are sparsely methylated and are characterised by CpG
density at the expected frequency [17,18]. The possibility of invertebrate genomes containing CGIs
has therefore not been greatly considered. However, a number of studies have identified CGI-like
features in invertebrates ranging from sponges to cephalochordates [19–21]. Furthermore, a family of
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proteins that specifically recognise non-methylated CpGs and that contain a zinc finger CXXC (ZF-CXXC)
domain are deeply conserved in metazoans [21–23]. The preservation of CpG-rich sequences at metazoan gene
promoters underscores the important role these features play in gene regulation.

Sequence features and chromatin signatures of CGIs
Early studies performed in mammalian cells identified correlations between diverse sequence features of CGIs
and their functional readout. The occurrence of non-methylated CGIs specifically at the 50 end of genes was
suggestive of a potential relationship between CpG-richness and DNA hypomethylation related to gene regula-
tory function. This hypothesis was verified through transfection assays in cell lines, where it was demonstrated
that artificial methylation of CGI promoters was inhibitory to transcription [24,25]. Furthermore, restriction
enzyme digests performed using HeLa cell bulk chromatin found that non-nucleosomal regions are associated
with regions of high CpG and GC density and low 5mC [26]. These assays indicated that the DNA sequence
and the chromatin state of CGIs prime them for transcriptional activity. The discovery that 5mC was a muta-
tion ‘hotspot’ in the lacl gene in E. coli led to the hypothesis that elevated CpG concentration in CGIs is main-
tained in the genome as non-methylated CpGs are refractory to rapid mutability [13]. Following extended
evolutionary periods, CpG sites become underrepresented in the genome, such as in humans where CpG

Figure 1. Sequence and chromatin features of CGIs.

CGIs are characterised by elevated CpG density and GC content [10,11,14,74], transcription factor binding sites (TFBS)

[42–46], and G quadruplex (G4) DNA sequences [47–49,52,53]. CGIs overlap key gene regulatory elements, such as promoters

[2,4,5,27,113,114] and enhancers [6,7,9] and can thus switch between active/poised and repressive chromatin states,

depending on the activity of the gene which they are regulating. These states are influenced by the complement of so called

‘reader’ proteins targeted to CGIs, which include transcriptional activators (CBP/P300, SETD1, CFP1, TET1, KDM2A, RNAP2)

and repressors (PRC1, PRC2, KDM2B) [6,9,23,28,30,38,39,81–84,110–112]. In exceptional cases, such as in imprinted control

regions (ICRs), or cancer testis antigen gene (CTA) promoters, CGIs can be stably silenced through DNA methylation (5mC)

and methyl-CpG binding proteins (MBDs), a state which is reinforced by constant targeting of DNA methyltrasferases (DNMTs)

[3,24,25,56,61,62]. It is not yet clear how continuous presence of 5mC within CGIs influences G4 sequences [52].
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dinucleotides occur at ∼20% the expected frequency [27]. However, the exact evolutionary forces that act on
CGIs and the diverse regulatory features within them (CpG density, GC content, TFBS) are far from being
completely understood.
One study developed mathematical models that aimed to describe evolutionary regimes in primate species

that drive CGI maintenance in distinct genomic contexts. This work revealed multiple major classes of
CGI-like sequences [16]. Those include: (i) canonical unmethylated CGIs, characterised by low deamination
rates and variable CpG and GC content, (ii) exonic CGIs exhibiting variable 5mC levels and low CpG diver-
gence rates, (iii) biased gene conversion islands, displaying high 5mC levels and rapid deamination rates, and
(iv) pseudo-CGIs, characterised by significant CpG loss. Importantly, in each regime described, the CpG
density was largely dependent on the interplay between 5mC levels and deamination rates, with little evidence
for purifying selection acting on CpG density itself. Nevertheless, CpG density of CGIs is an important regula-
tory feature that contributes to the formation of histone signatures associated with transcription. For example,
H3K4me3 is universally associated with CpG-rich gene promoters and is compatible with gene expression [28–31].
H3K4me3 is deposited by the deeply conserved COMPASS complex [32], which is implicated in transcriptional
activation through association with proteins such as the Spt-Ada-Gcn5 histone acetyltransferase (SAGA)
[33,34]. The presence of H3K4me3 at transcriptional start sites is conserved in eukaryotes [35]. H3K4me3 and
5mC are mutually exclusive, thus it has been suggested that H3K4me3 excludes 5mC from CGIs through an
antagonistic relationship with the ADD domain of the de novo DNA methyltransferase 3L (DNMT3L) [36,37].
It has also been demonstrated that non-methylated CGIs are enriched in H3K4me3 and CXXC finger protein 1
(CFP1) [38,39]. CFP1 is known to associate with the H3K4 methyltransferase SETD1 [40] to selectively bind
non-methylated CGIs. An exogenous CpG-rich sequence inserted at loci that typically lack H3K4me3 in mouse
embryonic stem cells (mESCs) recruited Cfp1 and gained H3K4me3, indicating that increased CpG density
facilitates recruitment of chromatin-modifying enzymes that enable a transcriptionally permissive state. Further
to this, the inserted sequence did not gain 5mC, suggestive of the contribution of CpG density to DNA hypo-
methylation at CGIs [38].
However, elegant functional experiments have demonstrated that H3K4me3 recruitment is not dependent on

CpG density alone [41]. In mESCs, some CGIs at developmental genes are maintained in a poised configur-
ation, adopting a bivalent chromatin state that includes both H3K4me3 and the repressive, Polycomb-mediated
H3K27me3 mark. Insertion of a 1000 bp GC-rich, CpG-poor DNA sequence in a human gene desert in
mESCs established that high GC content alone was insufficient to create a bivalent chromatin domain.
Similarly, AT- and CG-rich sequences inserted into gene deserts became methylated without gaining H3K4me3
or H3K27me3. Conversely, GC-rich CGIs were refractory to de novo 5mC deposition, suggestive of the import-
ance of both GC content and CpG density for the formation of permissive chromatin at CGIs. Many promoter-
associated mammalian TFBS such as general transcription factor SP1, nuclear respiratory factor 1 (NRF1), and
E2F [42–45] exhibit high CpG density and elevated GC-content. CpG-rich sequences derived from E. coli that
lack mammalian TFBS become methylated when inserted in mESCs, indicating that CpG-richness alone is
likely insufficient to retain CGIs in a hypomethylated state [45]. Mutation of TFBS in the hypomethylated
Gtf2a1l CGI promoter such as motifs for SP1, CCCTC-binding factor (CTCF) and members of the RFX
winged-helix family result in increased 5mC. Similarly, a study that aimed to model the relative contribution of
individual determinants to CGI hypomethylation performed parallel insertion and methylation profiling of
thousands of DNA fragments in mESCs [46]. Mutation of mammalian TF binding motifs in mouse DNA frag-
ments resulted in alterations to 5mC levels, while insertion of the RE1-Silencing Transcription factor (REST)
binding motif in a fully methylated E. coli fragment resulted in loss of 5mC. In line with previous results, this
study also provided further support for the overall negative correlation between CpG density and 5mC, by
assessing the 5mC state of multiple integrated fragments of varying CpG frequency. It is therefore evident that
CpG density, GC content and TFBS are each significant determinants in maintaining the chromatin state
necessary for the functional readout of CGIs.
Recent work suggests that G-quadruplex (G4) DNA sequences contribute to the maintenance of hypomethy-

lation at CGIs [47,48] (Figure 1). G4 sequences are guanine-rich four-stranded DNA secondary structures con-
taining stacked planar guanine-tetrads. In silico and experimental identification of G4 sequences performed
predominantly in human cell lines have revealed enrichment of G4 sequences at transcriptional start sites [49–51].
Whole-genome bisulfite sequencing of DNA extracted from human embryonic stem cells (hESCs) revealed that
high stability G4 sequences associated with CGIs were hypomethylated compared with those found outside
CGIs, particularly when located in open chromatin [52]. G4 ChIP-seq data performed on human K562 chronic
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myelogenous leukemia cells integrated with DNMT1 binding sites found DNMT1 to be localised to and inhib-
ited at G4 structures, suggesting that CGIs evade 5mC targeting through sequestering of DNMT1 at G4
sequences [53]. In silico G4 profiling performed in 37 eukaryotic species encompassing fungi, protozoa and a
diverse range of metazoan species found G4 sequences to be conserved at some gene promoters [54]. In this
study, the relationship between 5mC and G4 sequences was explored through comparison of G4 sequences at
promoters in the highly methylated Sus scrofa domesticus (pig) genome and the sparsely methylated Bombyx
mori (silkworm) genome. This analysis revealed in both species that G4 sequences had low 5mC levels relative
to the bulk genome, indicating an antagonistic and evolutionarily conserved relationship between 5mC and G4
sequences. However, further research is required to elucidate the potential for cross-talk between G4s, CGIs
and DNMTs as well as other chromatin remodelling factors.

Orphan CGIs (oCGIs)
CGIs are most commonly studied in the context of promoters; however, multiple reports have indicated that
CGIs can exert gene regulatory functions in a variety of genomic contexts. For example, orphan CGIs (oCGIs)
coincide with developmental enhancers in zebrafish, frog and mouse embryos that are linked to key develop-
mental pathways. These enhancers become developmentally activated during the vertebrate phylotypic period,
when they undergo active DNA demethylation mediated by Ten-eleven translocation (TET) enzymes, while
gaining classic enhancer chromatin marks such as H3K4me1 and H3K27ac [6]. oCGIs have also been described
as conserved features of broadly expressed enhancers in placental mammals, containing canonical H3K4me1
and H3K27ac chromatin marks and TFBS [7]. A recent study put forward an exciting possibility that oCGIs
might act as enhancer boosters by increasing physical and functional communication between poised enhancers
and CpG-rich gene promoters at developmental genes in mouse anterior neural progenitor cells [9]. When
poised for activation in mESCs, these enhancer oCGIs are enriched in H3K27me3, H3K4me1 and are bound
by Polycomb-group proteins and CBP/p300. Apart from transcriptional enhancers, distal CGIs are also known
to be associated with non-coding RNA promoters, and unannotated transcripts [2]. CGIs therefore exhibit a
flexible repertoire of regulatory functions in the genome, some of which appear to have been retained through
millions of years of divergent evolution.

5mC and transcriptional repression at CGIs
The presence of CpG-rich DNA sequences in vertebrate genomes was first identified through methylation-
sensitive restriction enzyme digest assays, which unravelled an inverse correlation between CpG density and
5mC [11,14]. This led to the hypothesis that the emergence and evolution of CGIs might be causally related to
5mC. The advent of massively parallel sequencing alongside the development of sodium bisulfite treatment for
5mC identification enabled base-resolution analyses of CGIs and the precise quantification of their 5mC state
[12,55]. Global 5mC assessment in mouse and human ESCs found prevalent hypomethylation at promoter-
associated CGIs, independently of gene activity [12,55]. The exception to this widespread hypomethylated
state are CGI promoters of cancer testis antigen (CTA) genes, which are targeted by 5mC during embryogen-
esis in mouse, human and zebrafish [56]. This results in organism-wide CTA silencing (Figure 1) that is
relieved only during germline development or oncogenic processes [57]. Nevertheless, such examples are
extremely limited, and it yet needs to be determined whether 5mC is a major determinant of CTA silencing.
The relationship between CGIs and 5mC has also been explored through studies of imprinted genes.

Monoallelic expression of imprinted genes occurs through parental-specific 5mC states at discrete genetic ele-
ments termed imprinting control regions (ICRs) (Figure 1). Among the best studied examples are murine
maternally expressed Igf2r, Slc22a2, and Slc22a3 genes and the paternally expressed long non-coding (lncRNA)
Airn. Each parentally-derived allele is distinguishable by the presence of differentially methylated CGIs; the
paternal allele contains a methylated CGI promoter in Igf2r while the maternal allele contains a methylated
CGI in intron 2 of Igf2r that is co-localised with the Airn promoter [58–60]. Early studies induced demethyla-
tion at the Igf2r locus with the potent demethylating agent 5-azacytidine (5-aza-C) in cultured human and
mouse astrocyte cells [61] and in newborn mice [62]. In these studies, 5-aza-C treatment induced global DNA
demethylation and biallelic gene expression of Igf2r. However, later studies revealed Airn to be the primary
cis-acting silencer of Igf2r, Slc22a2 and Slc22a3 on the paternal allele [63]. Among the three genes silenced by
Airn, only Igf2r gains methylation on the paternal allele [59]. Intriguingly, Airn expression is sufficient to
silence Igf2r in the absence of 5mC, suggesting that promoter 5mC presence is not necessary for gene silen-
cing [64]. The inefficacy of 5mC to act as a dominant repressive mechanism is further supported by in vivo
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experiments in Xenopus embryos, which demonstrated that methylated CpG-rich promoter-reporter gene con-
structs are robustly expressed at late-blastula and gastrula stages [65]. Two different studies, which employed
precise epigenome editing to target the catalytic domain of DNMT3A to CpG-rich genomic locations via a
zinc finger effector, came to different conclusions related to the repressive potential of 5mC at CGIs [66,67].
While one study observed efficient 5mC-mediated gene repression [66], the other revealed varying effects
including the compatibility of 5mC, H3K4me3 and RNA polymerase II at numerous genomic loci [67].
Notably, these two studies were not carried out in the same cell line. It is therefore evident that the repressive
role traditionally attributed to 5mC at CGIs is not as straightforward as suggested by early studies; rather, the
relationship between 5mC, CGIs and gene expression might largely depend on the biological context.

DNA methylation and the evolutionary maintenance of CGIs
Although mechanisms that describe how individual sequence and chromatin features of CGIs facilitate the
maintenance of hypomethylation have been proposed, it remains elusive how CGIs have remained refractory to
5mC targeting throughout evolution. Furthermore, it is unclear to what degree genome hypermethylation con-
tributed to the formation and maintenance of CGIs. Intriguingly, analysis of human chromosome 21 inserted
into a mouse genome found that hypomethylated regions marked by H3K4me3 present on human chromo-
some 21 were appropriately recapitulated in the transchromosomic mouse model, indicating that DNA
sequence is largely sufficient to prevent 5mC accumulation at CGIs irrespective of the host species [68]. A
similar result was observed following insertion of bacterial artificial chromosomes (BACs) containing mouse-
derived genomic sequences into zebrafish zygotes, where it was seen that promoter-associated mouse hypo-
methylated regions were again appropriately specified.
Unlike vertebrates, invertebrates contain variable genomic 5mC levels, ranging from 0% (such as in

Drosophila melanogaster and Caenorhabditis elegans) to 80% (such as in sponge Amphimedon queenslandica)
(Figure 2). In invertebrates that display mosaic 5mC patterns, targeting is mostly limited to gene bodies, where
5mC is thought to prevent spurious transcriptional initiation by RNA polymerase II [69]. In sparsely methy-
lated invertebrate genomes, the possibility of CGI presence has thus not been greatly considered, however the
presence of CGI-like sequences has already been described in several species (Figure 2). Perhaps the most

Figure 2. DNA methylation status, sequence features, and CGI presence in ten metazoan genomes.

Global DNA methylation levels obtained from whole-genome bisulfite sequencing datasets of the following species: sponge (Amphimedon

Queenslandica), lancelet (Branchiostoma lanceolatum), sea vase (Ciona intestinalis), pacific oyster (Crassotrea gigas), honeybee (Apis melifera), worm

(Caenorhabditis elegans), fruit fly (Drosophila melanogaster), frog (Xenopus tropicalis), mouse (Mus musculus), and zebrafish (Danio rerio)

[6,20,21,73,115]. Presence of CGIs in the genome has been previously described in the following studies [2,5,116], whereas elevated CpG density

at TSS was previously discussed here [2,19–21,70,72].
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striking example comes from the demosponge Amphimedon queenslandica, which displays a fully hypermethy-
lated genome as well as unmethylated regions of elevated CpG content that overlap transcription start sites
(TSS). Furthermore, such Amphimedon promoters contain DNA binding motifs for methyl-sensitive transcrip-
tion factors such as NRF1, Ying Yang 1 (YY1), early growth response protein (EGR) and GL1 [21]. Sea vase
Ciona intestinalis exhibits a mosaic DNA methylome, with sharp transitions between roughly comparable
amounts of methylated and unmethylated DNA co-localising with transcription units. Bisulfite sequencing ana-
lysis revealed the presence of unmethylated CpG-rich domains, with a CpG density similar to that of vertebrate
CGI promoters [19]. CpG-dense regions surrounding TSS have also been described in the European amphioxus
(Branchiostoma lanceolatum) [20], as well as in the pacific oyster (Crassotrea gigas) [70] and in the sea slug
Aplysia [71]. Interestingly, in Caenorhabditis elegans, enrichment of a CFP1 orthologue has been reported at
nucleosome-depleted CpG-rich gene promoters marked by H3K4me3 [72]. While CGIs are most extensively
characterised in hypermethylated vertebrate genomes, it remains elusive whether they are a vertebrate-specific
innovation, or rather a deeply conserved feature of metazoan gene regulatory elements. Understanding how
CGIs emerged and evolved to have functional significance in gene regulatory elements will require further
genomic and epigenomic studies involving diverse metazoan species [73].

Computational and biochemical methods for CGI
identification
Historically, the sequence features of CGIs have been extensively used for genome-wide prediction of CGI loca-
tions [74–77]. However, these algorithms were largely based on the sequence composition of CGIs in mouse
and human (i.e GC content >50%, CpG O/E >0.6, length >200 bp). Consequently, while successful in
mammals, such algorithms gave mixed results in non-mammalian vertebrates such as zebrafish [2]. This issue
was overcome through the development of biochemical methods to identify CGIs. CXXC affinity purification
(CAP) exploits a purified CXXC3 protein domain from mouse Mbd1 that captures unmethylated CGIs specific-
ally [78]. CAP revealed a similar number of CGIs in mouse and human (23 000 and 25 500 respectively) with
the same proportion of CGIs found at annotated TSS in both mouse and human (60% and 59%, respectively) [5].
A later study employed profiling of non-methylated CGIs in seven divergent vertebrate species through BioCAP
[2], a modified CAP protocol that captures CGIs using human KDM2B ZF-CXXC protein domain immobilised
on an avidin-based support [79]. Overall, CAP-based approaches provide an unbiased methodology for the identi-
fication of CGIs from purified genomic DNA of vertebrate and potentially invertebrate DNA.

CGI reader proteins
Concordant with the functional conservation of CGIs, protein domains that specifically recognise and interact
with CGIs are evolutionarily conserved. Many CGI reader proteins contain a ZF-CXXC protein domain that
recognises clusters of unmethylated CpG-rich sequences. This protein family is found in complexes that nucle-
ate specifically at CGIs and may play roles in protecting CGIs from 5mC deposition and inducing context-
dependent chromatin states [23]. The ZF-CXXC domain contains two conserved cysteine-rich clusters that
coordinate two zinc ions in a tetrahedral structure, intervened by a linker sequence that provides rigidity to the
domain structure. Binding is mediated by a DNA-binding loop that forms specific side-chain and backbone
interactions with the CpG site on double stranded DNA. The DNA binding loop is in such close proximity to
the cytosine that the presence of a methyl group would create a severe steric clash [80]. Examples of proteins
enriched at CGIs and containing a ZF-CXXC domain include the histone lysine-specific demethylases
KDM2A/B that contribute to the depletion of H3K36me2 at promoters [81–83], the histone lysine methyltrans-
ferase CFP1 that deposits H3K4me3 [38,84], and the histone lysine methyltransferases MLL1/2 [85–88].
A major conserved protein family associated with CGIs are the Polycomb repressive complexes 1 and 2

(PRC1/2) that are critical regulators of gene expression during development [89–92]. PRC1 is an E3 ubiquitin
ligase that targets the C-terminal tail histone H2A whereas PRC2 is a histone H3 lysine 27 methyltransferase.
Although PRC1 and PRC2 play distinct roles in H3K27me3 establishment, they ultimately function to establish
and maintain repressive chromatin states (Figure 1). PRC1 and PRC2 function almost exclusively at CGIs. A
well-studied target is the deeply conserved Hox gene cluster consisting of a conserved group of related genes
responsible for establishing animal body plans [93–97]. Hox genes closely resemble CGIs in vertebrates, being
rich in CpG and GC content and lacking 5mC. Intriguingly, the canonical protein structure of PRC1/2 does
not contain a sequence-specific DNA binding domain. Studies performed in cancer cell lines and mESCs have
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indicated a co-occupancy of a variant PRC1 complex and KDM2B, suggesting that a variant PRC1 complex
associates with KDM2B that recruits PRC1 to its genomic targets [98–101].
Ten-eleven translocation (TET) dioxygenase enzymes are a protein family involved in 5mC removal [102]

(Figure 1). TET proteins actively mediate iterative demethylation of 5mC to 5-hydroxymethylcytosine (5hmC),
5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) [103–105]. 5fC and 5caC are recognised and cleaved by
thymine-DNA glycosylase (TDG), followed by excision and replacement with unmethylated cytosine through
base excision repair pathways [106,107]. In mammals, TET1 and TET3 contain a ZF-CXXC protein domain
while the ancestral TET2 ZF-CXXC domain is present in the TET2-interacting protein IDAX/CXX4 [108].
Three TET protein copies (TET1/2/3) are found in mammals and some vertebrates such as zebrafish [109].
TET orthologues containing a conserved ZF-CXXC domain have been described in invertebrates [20,21].
Enrichment of 5hmC and TET1 at CpG-rich gene promoters has been reported in mESCs in numerous
studies, indicating a potential functional role of TET1 in maintaining CGIs in a hypomethylated state [110–112].
Altogether, CGIs are associated with highly diverse readers including components of COMPASS and Polycomb
complexes as well as the TET dioxygenase enzymes.

Perspectives
• CGIs are essential components of vertebrate gene regulatory elements such as promoters

and enhancers. CGIs and their reader protein complexes are deeply conserved in the verte-
brate lineage. Unravelling how CGIs evolved is fundamental to understanding the mechanisms
by which these key regulatory sequences exert functional readout.

• Although significant efforts have been made to elucidate the evolution of CGIs, the possibility
of CGIs being present in metazoans beyond vertebrates (where they are most extensively
characterised) remains understudied. Future research on CGI evolution should employ
CAP-based profiling of diverse vertebrate and invertebrate genomes with the aim of under-
standing better which features (i.e CpG density, GC content, TFBS, G4 sequences) are con-
served within which lineage.

• Besides canonical promoter CGIs, orphan CGIs (oCGIs), which are found in intergenic regions
and associated with enhancer activity, have recently been extensively characterised. oCGI
display remarkable functional conservation in vertebrate genomes and appear to be required
for regulation of key developmental genes. Understanding the molecular mechanisms that
allow for the establishment of developmental stage- and tissue-specific 5mC patterns and
enhancer (H3K4me1/H3K27ac) signatures at these regions will be a major focus of future
studies.
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