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ABSTRACT

COVID-19 is an evolving systemic inflammatory pandemic disease, predominantly affecting the respiratory system. Associ-
ated cardiovascular comorbid conditions result in severe to critical illness with mortality up to 14.8 % in octogenarians. The
role of endothelial dysfunction in its pathogenesis has been proposed with laboratory and autopsy data, though initially it was
thought of as only acute respiratory distress syndrome (ARDS). The current study on endothelial dysfunction in SARS CoV-2
infection highlights its pathophysiology through the effects of direct viral-induced endothelial injury, uncontrolled immune &
inflammatory response, imbalanced coagulation homeostasis, and their interactions resulting in a vicious cycle aggravating
the disease process. This review may provide further light on proper laboratory tests and therapeutic implications needed for
better management of patients. The main objective of the study is to understand the pathophysiology of COVID-19 with
respect to the role of endothelium so that more additional relevant treatment may be incorporated in the management
protocol.

Key Indexing Terms: COVID-19; Endothelial dysfunction; ACE2; NO; Endotheliitis; Hypercoagulopathy. [Am J Med Sci
2022;363(4):281–287.]
INTRODUCTION
T he unchecked exponential increase in the inci-
dence of COVID-19 is of serious concern to pub-
lic health, health care systems, and the global

economy. The highly contagious SARS CoV-2 has
infected more than 179,686,071 people, involving 198
nations with mortality of 3,899,172.1 In Saudi Arabia, the
total infected cases are about 487,500 with 7,819 deaths
as of 4th July 2021.2

COVID-19 is a spectrum of asymptomatic cases
(1.2%), mild to moderate cases (80.9%), severe cases
(13.8%), critical cases (4.7%), and death (2.3% of all
cases.3 Among hospitalized patients, cardiovascular
(CV) & cerebrovascular comorbidities are associated in
up to 40% of cases and diabetes in 12% of cases.4 The
case fatality rate increases with advanced age (with
14.8% in elderly over 80 years) and severity of disease
(49% in critical illness), which in turn are associated with
comorbid conditions.3,5 In a Chinese cohort study of 138
hospitalized patients, 31% associated with hypertension
(58% requiring ICU), 15% with cardiovascular diseases
(25% requiring ICU), and 10% with diabetes (22% requir-
ing ICU).6 Also, the patients suffering from CV diseases
are more vulnerable to severe COVID-19 and increased
risk of mortality.7 The autopsy studies showed distinct
features of fibrin thrombi in small pulmonary arteries in
33 of 38 deceased cases.8 Fogarty et al, are of opinion
that the significant coagulopathy is the major pathogene-
sis in 67 Caucasian patients.9 This might reflect the cru-
cial role of endothelial cells (ECs) in critical COVID-19
hern Society for Clinical Investigation. Published by Elsev
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and its further understanding might be of therapeutic
implications.

Severe COVID-19 is more common in patients with
comorbid diseases, many of which are known to be
associated with endothelial dysfunction. The thrombotic,
myocardial, and renal complications of severe COVID-19
could imply the role of endothelial damage. SARS CoV-2
is known to infect endothelial cells. So there likely to be a
relationship between COVID-19 and endothelial dysfunc-
tion directly and indirectly. The main objective is to study
the role of endothelial dysfunction in COVID-19 which
may reflect newer and more relevant treatments to
improve the patients'management.

Several reviews have been published on this field,10-12

however, this review on endothelial dysfunction in SARS
CoV-2 infection highlights its pathophysiology through
the effects of direct viral-induced endothelial injury,
uncontrolled inflammatory response, imbalanced coagu-
lation homeostasis, and their interactions resulting in a
vicious cycle aggravating the disease process.
SARS COV-2 AND HOST CELLS
SARS CoV-2 is known to infect epithelial cells of pha-

ryngeal mucosa, alveolar cells, distal bronchial club cells,
intestinal epithelium, renal tubular epithelium, cardio-
myocytes, myocardial interstitial cells, lymphoid tissue,
pericytes, and endothelium. Viral particles are demon-
strated in all these tissues including endothelial cells of
many organs.13,14
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Viral spike(S) protein gets attached to Angiotensin-
converting enzyme-2 (ACE2) receptor on host cells, along
with coreceptors which help in viral entry by cleaving the
S protein with conformational change. Though the virus
has the highest affinity towards type 2 pneumocytes with
overexpression of ACE2R, other cells including endothe-
lial cells are also prone to infection.5 ACE2R is widely dis-
tributed in epithelial and endothelial cells of various
tissues like nasal mucosa, bronchus, lungs, heart, GIT,
kidney, bladder, brain, skin, oral mucosa, lymph nodes,
spleen, thymus, bone marrow, adipose tissue & tes-
tis.3,15-17 Thus, COVID-19 can evolve from primary respi-
ratory infection to systemic disease. Immunofluorescent
double staining confirmed that the majority of SARS
CoV-2 are observed in ACE2-overexpressed cells and
CD68 or CD169-overexpressed macrophages.18 The cell
invasion depends on both ACE2 expression and the
availability of the coreceptor, protease transmembrane
protease serine 2 (TMPRSS-2).17 TMPRSS-2 expression
may vary among microvascular and macrovascular beds
and across organs. Other host proteins like HSPA5, Sialic
acid receptors, CD147, cathepsin B & L, may play a syn-
ergistic or alternate role in viral entry into endothelial
cells.13,19 The severity of disease involving different
organs and individuals may depend on the expression of
these receptors & cofactors.

The wide distribution of ACE2R in arterial and venous
endothelial cells and its role in viral entry into host cells
might exhibit various pathophysiologic alterations involv-
ing endothelium resulting in the severity of COVID-19
with different cardiovascular complications.
FIGURE 1. Pathogenesis of endothelial dysfunction in COVID-19 with th
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ENDOTHELIAL DYSFUNCTION IN COVID-19
COVID-19 is initially considered as causing viral

pneumonia leading to acute respiratory failure, how-
ever, the evolving clinical, laboratory, and postmortem
findings suggest a crucial role of altered endothelial
function in its pathophysiology contributing to multior-
gan dysfunction. Many autopsy studies have revealed,
along with varying stages of diffuse alveolar damage in
the lungs, several platelet-fibrin microthrombi in the
venous and arterial circulation of different organs, and
angiocentric inflammation.18,20 There has been evi-
dence of unexplained organ damage like multifocal
individual cardiomyocyte injury, patchy hepatocellular
degeneration, acute renal tubular damage, foci of
depletion of lymphoid tissue in lymph nodes and
spleen, necrotic lymphoid cells in lymph nodes, fibri-
noid necrosis of small vessels, areas of perivascular
inflammation in lungs and intestine, hemorrhage in
lungs and spleen,18,21 which might explain endothelial
dysfunction. Abnormal endothelial function is involved
in organ failure during viral infection by inducing micro-
vascular leak, inflammation, pro-coagulant state, and
organ ischemia.22
Pathophysiology of endothelial dysfunction in
COVID-19

The possible pathogenesis of endothelial dysfunction
may be categorized under direct viral effect, through
cytokine release, oxidative stress, coagulation distur-
bance, and immune cells response (Figure 1).
e interaction of major mediators causing a vicious cycle of events.
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Direct viral effect
ECs represent an important target for direct infection

of SARS CoV-2 by binding to host cell receptors (ACE2)
and through viral spike protein priming by coreceptors or
proteases accessing entry into cytoplasm. Just as ACE2
is markedly expressed in type 2 pneumocytes of pulmo-
nary alveoli compared to other epithelial tissue, ACE2
expression on endothelial cells among micro and macro-
circulation in various organs may differ. The protease
TMPRSS-2 is variably expressed in ECs of different
organs.22 In postmortem lung biopsies performed in 6
patients who died from SARS-CoV-2 infection, Copin
et al. demonstrated endothelial injury (cytopathic change)
with cytoplasmic vacuolization and cell detachment in
small to medium-sized pulmonary arteries.23 In another
study, there was foamy degeneration of renal endothelial
cells with fibrin thrombi in glomeruli.24 In a study on 3
autopsy cases, Varga et al identified viral inclusion struc-
tures and lymphocytic endotheliitis in deceased with
multiorgan failure affecting lungs, heart, kidneys, liver &
mesenteric ischemia.25 These findings might indicate
endothelial cell dysregulation with loss of integrity of
endothelial barrier, giving rise to pro-coagulant state.

As the virus enters the host cells along with mem-
brane receptor ACE2, functionally ACE2 is down-regu-
lated, thereby attenuating ACE—ACE2—Ang II−Ang 1-7
—Mas receptor axis and amplifying ACE- Ang II- AT1R
axis. Normally ACE2 reduces the effect of Angiotensin II
(Ang II) by degrading it as well as counteracting its
effects by generating Ang 1-7. In COVID-19, overactivity
of angiotensin II, unopposed by Ang 1-7, leads to
increased production of pro-inflammatory cytokines like
IL-6, TNF alpha, and TGF beta; exert pro-thrombotic
effects by reducing nitric oxide (NO) and prostacyclin
release. Ang II is also a powerful vasoconstrictor and
aldosterone release action, along with exerting oxidative
stress, endothelial dysfunction, myocardial hypertrophy
& interstitial fibrosis.15 Ang II can induce matrix metallo-
proteinases-2 release and ROS generation in the endo-
thelium.21 As there is already baseline ACE2R deficiency
in the elderly (to a greater extent in men) and in patients
with diabetes, hypertension, cardiac hypertrophy and
heart failure, SARS-CoV-2 infection is likely to manifest
more severely.15
Via immune response
Severe COVID-19 with cytokine release results in

immune cells recruitment which activates ECs. ECs inter-
act with complement and humoral components of immu-
nity to produce or respond to cytokines.17 ECs also act
as antigen-presenting cells as they express both class I
and class II MHC molecules 26 and mediate Th1, Th2,
and CD8 lymphocytes. Overactivation of T cells with an
increase in tissue proinflammatory CD4 cells and cyto-
toxic CD8 cells noted in COVID-19 patients, though there
was a reduction in peripheral CD4 & CD8 lymphocytes in
severe patients.27 Lymphopenia in severe patients is
Copyright © 2022 Southern Society for Clinical Investigation. Published by Elsev
www.amjmedsci.com � www.ssciweb.org
probably related to a reduction in lymphoid tissue of
lymph nodes and white pulp of the spleen.

Gao et al in their autopsy study suggested that SARS
CoV-2 nucleocapsid protein, which was demonstrated
on alveolar cells and blood vessels, is highly pathogenic
to lung damage through MASP-2 induced overactivation
of complement.18 Complements are also activated by IL-
6 induced EC activation.28 There was evidence of com-
plement deposits in 5 COVID-19 patients in lungs with
microvascular thrombosis.17

Ang II activates macrophages with consequent pro-
duction of inflammatory cytokines.15 Activated endothe-
lial cells secrete monocyte chemoattractant protein 1;
adherent activated monocytes, in turn, express large
amounts of tissue factor (TF) at the site of infection. IL-
1alpha released by necrotic tissue activates macro-
phages, which upregulate cytokine and adhesive mole-
cules expression on adjacent endothelium. Recruitment
of monocytes activates inducible NO synthase (iNOS),
resulting in vasodilation, opening endothelial gaps, and
loss of barrier function.29 Macrophages express angio-
poietin receptors which promote endothelial repair and
angiogenesis. ECs promote macrophage viability and
differentiation to M2 phenotype, which has anti-inflam-
matory effects.30 Elevated serum levels of soluble IL-2R
observed in COVID-19, likely to be induced by pulmonary
endothelial cells and immune cell activation.31,32 Acti-
vated T & B lymphocytes, NK cells, regulatory T cells
express IL-2R on their surface, which combined with IL-
2 mediates different stimulatory & regulatory immune
functions.33 Antibody-dependent enhancement (ADE)
facilitates persistent inflammation and viral replication in
target cells among some patients.34
Through inflammatory mediators
The cytokine release syndrome is characteristic of

severe SARS CoV-2 infection with increased blood levels
of cytokines, particularly IL-1beta, IL-6, IL-2R, TNF
alpha.31 These cytokines are secreted by different cell
types including ECs. IL-6 also activates ECs inducing
increased permeability, the release of cytokines, the
expression of adhesive molecules, and activation of
complement 5a.28,35 ECs also secrete IL-8 and mono-
cyte chemoattractant protein-1 to recruit neutrophils and
monocytes, which activate iNOS resulting in vasodilata-
tion & opening of endothelial gaps.29 Houston autopsy
cases revealed frequent entrapped neutrophils in precipi-
tated fibrin inside pulmonary capillaries.14 Elevated cyto-
kines also cause platelet activation and leukocyte
recruitment to microcirculation.35 The blood level of cyto-
kines, particularly IL-6, correlate with the severity of
COVID-19. The initial rapid viral replication with epithelial
and endothelial damage triggers exaggerated proinflam-
matory cytokine release and further enhancement of
inflammation mediated by the failure of the renin-angio-
tensin system with loss of ACE2 function.3 The genetic
susceptibility related to genes of ACE2, TNF, VEGF, IL-
ier Inc. All rights reserved. 283
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10, etc. also determines the extent of the inflammatory
storm causing ARDS.36 The excessive activation of
pyroptosis through proinflammatory caspases 1 & 11
trigger cell death and release of proinflammatory cyto-
kines like IL-1 & IL-8, damage-associated molecular pat-
terns (DAMPs), and tissue factor.19
Coagulation pathway
The thrombo-embolic events are another remarkable

feature of COVID-19 involving both microcirculation and
macrovasculature. In a study of 184 critical COVID-19
patients, 31% of them showed thrombosis.37 In another
study of 150 patients, pulmonary embolism was reported
in 16.7% of critical COVID-19 patients, with only 2% of
deep vein thrombosis.17 Fibrin microthrombi were
reported in pulmonary arterioles and capillaries, glomer-
uli, skin, prostatic venous plexus, brain, peritesticular
veins.14 Intra-alveolar and interstitial fibrin deposits were
also noted in autopsy cases. Most patients of Helms
et al revealed elevated blood levels of D dimer and fibrin-
ogen. Von Willebrand factor activity, factor VIII, and vWF
antigen were significantly raised indicating the inflamma-
tion-mediated endothelial activated procoagulant
state.17 In SARS coronavirus infection, the production of
novel pro-coagulant by infected cells induced by viral
nucleocapsid protein is proposed as a mechanism for
thrombosis.38 Direct viral infection of ECs, viral-induced
endotheliitis and other coinfection with SARS CoV-2
appear to be the mechanisms of thrombotic events in dif-
ferent patients.25,39

The direct viral invasion of ECs or indirect activation
mediated by complement could be responsible for EC
dysfunction and exocytosis of unusually large vWF multi-
mers as well as platelet activation.40,41 Plasminogen acti-
vator inhibitor is elevated in cases of severe ARDS
caused by SARS-CoV infection, indicating a hypofibrino-
lytic state.17 The prophylactic anticoagulants are associ-
ated with decreased mortality in COVID-19.42
Role of ROS
The accompanied comorbid conditions and risk fac-

tors for severe COVID-19 and severe SARS CoV-2 respi-
ratory infection per se produce various reactive oxygen
species, causing endothelial dysfunction with reduced
NO bioavailability. ECs maintain vascular tone by pro-
ducing various vasoactive molecules, of which NO is the
major regulator. NO is mainly generated by endothelial
nitric oxide synthase (eNOS & iNOS) in the presence of a
cofactor like a tetra hydrobiopterin.

NOS is activated by signaling molecules like bradyki-
nin, VEGF (as in hypoxia), serotonin (as with platelet
aggregation). The eNOS normally maintain the quiescent
state of endothelium with anti-inflammatory, anti-throm-
botic, antioxidant and anti-proliferative functions; but
can switch to an uncoupling state resulting in a reduction
in NO and generating ROS. The oxidative stress could
activate endothelium from its quiescent phenotype,
284
causing dysregulation of NO and ROS. Endothelial ROS
signaling may also be initiated by inflammatory cyto-
kines, growth factors, and leukocyte interaction.43

The functions of NO are quite opposing to that of Ang
II. It is not merely a potent vasodilator but also reduces
permeability, platelet aggregation, leukocyte adhesion
molecules, tissue oxidation, inflammation, activation of
thrombogenic factors and favors fibrinolysis.44 Sustained
ROS signaling and reduced NO bioavailability reverse
these actions and induce senescence of endothelial
cells, apoptosis, impaired endothelial repair, and
decreased mobilization of endothelial progenitor cells.45

The oxidative stress directly or through HSP-60 stimu-
lates NF-kB replication that leads to the production of
proinflammatory cytokines like TNF alpha, IL-1, IL-6,
which inhibit eNOS resulting in reduced NO production
and favor Ang II synthesis. Endothelial cell apoptosis is
induced by TNF-alpha. The excess of ROS, especially
superoxide anion, oxidizes NO into peroxynitrite
(ONOO), which can oxidize tetrahydrobiopterin.44 The
lung autopsy showed a striking feature of megakaryo-
cytes with active platelets production in capillaries.14 The
circulatory endothelial progenitor cells may differentiate
into another lineage like myeloid cells by the influence of
inflammatory mediators.45 The proinflammatory cyto-
kines stimulate NF-KB replication leading to a vicious
cycle amplifying the inflammatory response.46
CV diseases & endothelial dysfunction in COVID-19
Although COVID-19 usually manifests as acute

febrile respiratory illness, an array of cardiovascular dis-
eases like myocardial infarction, arrhythmias, myocardi-
tis, epicarditis, pericarditis, stroke, acute renal tubular
necrosis, vasculitis, and Kawasaki-like disease are
reported.13,14,18,47-49 Though initial autopsies concluded
the ARDS-associated vascular changes, the later autop-
sies revealed widespread multiorgan involvement with
arterial platelet-fibrin thrombi, hemorrhage, and endothe-
liitis in different organs.8,18,49 Autopsy has also revealed
multifocal myocardial ischemic injury without much
inflammation.5,14,48 Hu et al reported a case showing evi-
dence of troponin-I level, clinical and ECG findings of
myocardial injury with non-obstructive coronary artery
disease.50 Laboratory markers revealing markedly
increased D dimer associated with high fibrinogen and
normal platelet counts, establishing hypercoagulable
state also indicate the role endothelial malfunction.9,51

The monolayered endothelium is the main regulator
of blood clotting, vascular tone, as well as immune and
inflammatory processes by generating and balancing
various active molecules. Endothelial dysfunction is the
condition in which the endothelial layer of small arteries
fails to perform its normal function effectively. Infections
are one of the several varied causes of endothelial dys-
function. Comorbid conditions like CV diseases, diabetes
mellitus, hyperlipidemia; lifestyle measures like smoking,
alcoholism, sedentary life are already compromised with
THE AMERICAN JOURNAL OF THE MEDICAL SCIENCES
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TABLE 1. Effects of potential drugs and their targets.

ACTION (DRUGS) TARGET

C3 Inhibitor (AMY-101) C3 convertase
inhibitor

C3 inhibition

Anti-C5 (Eculizumab) C5a antagonists
(Vilobelimab)C5aR inhibitor
(Avdoralimab)

C5 inhibition

C1 esterase inhibitors MASP2
antibodies (Narsoplimab)

C pathway blockers

Anti-IL6
Anti- TNF

Cytokine inhibitors

Methylprednisolone
dexamethasone

Broad-spectrum anti-
inflammatory drugs

Anticoagulants (LMW heparin)
Endothelial cell protector (Defibrotide)

Endothelial cell-related
targets

Endothelial Dysfunction in Covid-19 Infection
endothelial function. The dysregulated microcirculatory
response to infectious agents leading to pro-coagulant
state and multiorgan failure is well known in sepsis.52

Wang et al reported CV complications of acute myo-
cardial injury (21%), arrhythmia (10.4%), and cardiac
insufficiency (17.4%).53 These complications are higher
among older patients with CV risk factors like hyperten-
sion, diabetes, and severe COVID-19. Multiple pathoge-
netic pathways have been proposed like direct virus-
induced cardiac toxicity, systemic hyper inflammation,
thrombogenesis, atherosclerotic plaque rupture, and
sepsis-induced DIC.54 The possible persistence of endo-
thelial dysfunction with thrombotic microangiopathy is
also implicated in post-COVID-19 syndrome causing
myocardial infarction, Kawasaki-like syndrome, cardiac
insufficiency, pulmonary fibrosis, renal dysfunction.53−57
CONCLUSIONS
COVID-19 is a multi-systemic inflammatory pan-

demic disease, mainly affecting the lungs and heart,
characterized by cytokine release syndrome, thrombo-
embolic phenomenon, and microcirculatory dysfunction,
causing severe to critical illness in some patients. Wide-
spread EC dysfunction may contribute significantly to
the pathogenesis of severe and critical illness of COVID-
19. There are dual aspects of ECs dysregulation in
COVID-19. The common cardiovascular comorbid con-
ditions in SARS CoV-2 infected elderly persons are
already associated with endothelial dysfunction and ACE
2 receptor deficiency. The SARS CoV-2 infection itself
can induce change in endothelial function by various
means like direct viral replication with loss of barrier
integrity; downregulation of ACE2 & antibody-dependent
enhancement culminating in inflammatory storm &
hypercoagulability. This exuberant pain inflammatory &
pro-thrombotic response of ECs dysfunction result in
detrimental effects as refractory ARDS, diffuse microvas-
cular and macrovascular thrombo-embolism, fatal car-
diovascular complications, and multi-organ failure.
Long-term effects of endothelial dysfunction in COVID-
19 survivors, which might be related to persistent chronic
inflammation and hypercoagulable state, need to be
determined.

The understanding of role of endothelial function serves
as potential targets for further study on relevant prognostic
or predictive biomarkers and newer therapeutic options to
manage patients. In severe COVID 19, endothelial dys-
function involves not only pro inflammatory and pro coag-
ulant pathways, but also pro-oxidant, anti-fibrinolytic,
direct barrier function, vasoconstrictor and complement
pathways. Along with standard regimens of steroids and
anticoagulants, other newer therapies to augment the
function of endothelium like ACE inhibitors, angiotensin
receptor blockers, statins, complement (C3 and C5) inhibi-
tors, vasodilators (Nicorandil) and antioxidants have been
proposed.
Copyright © 2022 Southern Society for Clinical Investigation. Published by Elsev
www.amjmedsci.com � www.ssciweb.org
One of the main pathogeneses of endothelial dam-
age resulting in thrombotic microangiopathies is through
‘cytokine storm’, which in turn is due to complement dys-
regulation. The initial effector mechanism is by over acti-
vation of C3, which may favor procoagulation over
fibrinolysis and inflammation. Magro et al demonstrated
deposition of C5b-9, C4d, and MASP2 in the microvas-
culature of lungs and skin in severe COVID-19 patients
with thrombogenic vasculopathy.58 The hyper-inflamma-
tory response may be controlled by modulating comple-
ment cascade through complement pathway inhibitors, C3
inhibitors, and anti-C5 and anti-cytokine therapeutics.59,60

Though both C3 and C5 blockade brings a rapid reduction
in inflammatory markers with good clinical response in
severe COVID-19, C3 inhibitors show broader therapeu-
tic effects, especially on a microvascular injury. This
effect of C3 inhibitors is likely mediated by C3a mediated
P selection upregulation, C3b mediated opsonophago-
cytosis, C3aR dependent endothelial platelet adhesion,
and C3 dependent endothelial adhesion of lymphocytes
and by intercepting alternate pathway amplification.61

Mastaglio et al reported the first case of successfully
treated COVID-19 with severe ARDS in a patient with
advanced coronary artery disease & peripheral arterial
diseases.62 The endothelial cell-based therapeutics like
defibrotide are emerging as a potential target to reduce
endothelial activation with anti-thrombotic, fibrinolytic,
anti-inflammatory, antioxidant, and anti-adhesive
properties.63

It is challenging to reduce mortality and long-term
complications in the survivors of critically ill COVID-
19. The therapeutic regimens aiming at endothelial
activation and complement inhibition showing signifi-
cant outcomes in the management of severe COVID-
19. Table 1 summarises the role of certain drugs with
potential benefits.
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