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Abstract

Kainate type ionotropic glutamate receptors (KARs) are expressed in hippocampal interneurons and regulate interneuron excitability
and GABAergic transmission. Neuropilin tolloid-like proteins (NETO1 and NETO2) act as KAR auxiliary subunits; however, their
significance for various functions of KARs in GABAergic interneurons is not fully understood. Here we show that NETO1, but not
NETO?2, is necessary for dendritic delivery of KAR subunits and, consequently, for formation of KAR-containing synapses in
cultured GABAergic neurons. Accordingly, electrophysiological analysis of neonatal CA3 stratum radiatum interneurons revealed
impaired postsynaptic and metabotropic KAR signaling in Netol knockouts, while a subpopulation of ionotropic KARs in the
somatodendritic compartment remained functional. Loss of NETO1/KAR signaling had no significant effect on development of -
amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA)-receptor-mediated
glutamatergic transmission in CA3 interneurons, contrasting the synaptogenic role proposed for KARs in principal cells.
Furthermore, loss of NETO1 had no effect on excitability and characteristic spontaneous network bursts in the immature CA3
circuitry. However, we find that NETO! is critical for kainate-dependent modulation of network bursts and GABAergic transmis-
sion in the hippocampus already during the first week of life. Our results provide the first description of NETO1-dependent
subcellular targeting of KAR subunits in GABAergic neurons and indicate that endogenous NETO1 is required for formation of
KAR-containing synapses in interneurons. Since aberrant KAR-mediated excitability is implicated in certain forms of epilepsy,
NETOI represents a potential therapeutic target for treatment of both adult and early life seizures.
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Introduction

Kainate type ionotropic glutamate receptors (KARs) modulate
synaptic transmission and neuronal excitability in various
parts of the brain and exhibit subunit, subcellular compart-
ment, and cell type dependent functions [1-3]. Various com-
binations of GluK1-5 subunits form a functional KAR tetra-
mer that may be complemented with neuropilin tolloid-like
proteins (NETO1 and NETO2) that act as KAR auxiliary
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subunits [1, 3]. NETOs provide an additional level of regula-
tion to KAR localization and function in neurons [4]. For
instance, at the glutamatergic CA3-MF synapse in the hippo-
campus, NETOI regulates synaptic targeting, biophysical
properties, and ligand affinity of postsynaptic GluK2/3-
containing KARs [5-7].

KARs are expressed in hippocampal interneurons and,
when activated, have robust effects on GABAergic transmis-
sion [1-3, 8, 9]. Based on pharmacological studies, genetic
mouse models, and mRNA expression pattern, interneuronal
KARs in the hippocampus contain subunits GluK1, GluK2, or
both [7, 10-15]. Of the GIluK1 c-terminal splice variants,
GluK1b is specifically expressed in interneurons while
GluKlc is restricted to principal cells and mainly expressed
during early development [16]. While KARs mediate a prom-
inent inward current in response to agonist application, the
synaptic KAR-mediated excitatory postsynaptic current
(EPSC), described in CAl interneurons, is rather modest
[10, 17, 18]. Activation of KARs increases interneuron firing
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by membrane depolarization that consequently leads to higher
GABAergic drive onto principal cells. In addition, axonal and
presynaptic KARs regulate GABA release, likely via both
ionotropic and metabotopic G protein coupled signaling
[1-3, 8, 9]. At immature CA3 stratum lucidum interneurons,
tonically activated KARs have a developmentally restricted G
protein coupled function that regulates interneuron excitability
by inhibiting medium after hyperpolarizing current I oyp
[19]. Thus, hippocampal interneurons contain distinct subpop-
ulations of KARs that regulate interneuron excitability and
GABAergic drive both in the immature and in the adult
hippocampi.

Numerous studies have documented NETO/KAR func-
tional interactions in the principal neurons in adult [20] and
recently also in the newborn hippocampus [21]; however,
much less is known about NETO involvement in regulating
KARs in interneurons. Netol is expressed in GABAergic in-
terneurons in the adult hippocampus [5, 22] where it regulates
agonist-induced KAR currents and KAR-dependent recruit-
ment of inhibitory drive onto principal cells [22].

Here, we have further studied the role of NETO1/KAR
interaction in hippocampal interneurons, focusing on its phys-
iological role during the first 2 weeks of postnatal develop-
ment. We show that NETO1, but not NETO?2, is necessary for
dendritic delivery of KAR subunits and, consequently, for
formation of KAR containing synapses in GABAergic neu-
rons. In contrast to principal neurons where KARs promote
formation and maturation of glutamatergic synapses [21,
23-26], loss of NETO1/KAR signaling had no significant
effects on development of AMPAR-containing synapses in
GABAergic interneurons in culture or in area CA3 of the
hippocampus. Moreover, NETO1 was not indispensable for
maintenance of basal network excitability in the immature
hippocampus but was necessary for kainate-induced modula-
tion of GABAergic transmission and network bursts.

Methods

Animals Male and female wild-type (WT), Netol knockout
(KO), and Neto2KO (C57B1/6NCrl) mice [6, 27] were used
in this study. The animal experiments were performed in ac-
cordance with the University of Helsinki Animal Welfare
Guidelines.

Cell Culture and Lentiviral Infection Primary hippocampal dis-
persed neuron culture was prepared from P02 old WT,
Netol1KO, and Neto2KO mice pups as previously described
[21]. Cultured neurons were infected with lentiviruses to ex-
press GFP, GluK1b-flag, GluK1c-flag, and GluK2-myc at
days in vitro 3 (DIV3) and fixed at DIV14 using 4% PFA
4% Sucrose in PBS. Lentiviral plasmids and production of
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virus particles used in this study were described earlier by
Vesikansa and colleagues in 2012 [16].

Immunofluorescence Fixed neurons were permeabilized with
0.2% Triton X-100 and incubated with PBS-based blocking
solution containing 5% goat serum, 2% bovine serum albumin
(BSA), 0.1% Triton X-100, and 0.05% Tween-20. Primary
antibodies (Table 1) were diluted in the blocking solution
and incubated overnight at +4 °C. Secondary antibodies
(Table 2) were diluted in PBS and incubated 1 h at room
temperature.

The stained samples were mounted on microscope
slides using Prolong Gold antifade reagent (P36934, Life
Technologies). Confocal images were acquired using a
LSM Zeiss 710 confocal microscope (alpha Plan-
Apochromat 63%/1.46 OilKorr M27 objective) for KAR
dendritic targeting experiments. All other samples were
imaged using Leica TCS SP8 confocal microscope and
HC PL APO 93%/1.30 motCORR STED WHITE
(glycerol) and 3x digital zoom to obtain high resolution
images for synapse analysis.

Image Analysis All samples were blinded for genotype and
KAR subunit expression during staining, image acquisition,
and analysis. Samples included in the analysis were obtain-
ed from 2 to 3 independent culture batches. n number rep-
resents the total number of neurons analyzed. GAD67 stain-
ing was used in all samples to identify GAD67+ putative
interneurons. Under our culture conditions, 9.7% =+ 1.0% of
cultured neurons was positive for GAD67 (n=333).
Dendritic and axonal targeting of overexpressed tagged-
KARs was analyzed in MAP2 positive dendrites and
MAP?2 negative axons of GAD67+ neurons using SynD/
MATLAB [28] by measuring flag or myc intensity along
the neurite and normalizing it to soma intensity. Synaptic
clusters were visualized using co-staining against presynap-
tic (Synaptophysin, red) and postsynaptic (PSD9S5, green)
markers. Synaptic cluster density was analyzed from 3D
construction using Imaris software. The Synaptophysin
(Syn) and PSD95 puncta included in the analysis had spot
diameter of at least 0.5 wm on XY-axis and 1 um on Z-axis.
Syn and PSD95 spots within a distance of 0.7 um were
considered as synaptic clusters. In some samples, KAR
and/or GluA2/4-containing synapses were analyzed.
Similarly, minimum KAR or GluA2/4 spot diameter on
XY-axis was 0.5 um and on Z-axis 1 pum. KAR and
GluA2/4 spots were considered to co-localize if the distance
between the spots were max 0.35 um. KAR spot was con-
sidered to be extrasynaptic if the distance between the flag/
myc spot and PSD95 spot was above 0.35 um. All spot size
measurements were calculated from the center of the spot
using Imaris software. Syn, PSD95, KAR, and GluA2/4
spots, and synaptic clusters were confirmed visually.
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Table 1 Primary antibodies used

in this study Antibody Dilution Product nr Manufacturer
Guinea pig anti-Synaptophysin 1:2000 101,004 Synaptic Systems
Mouse anti-PSD95 1:1000 75-028 NeuroMab
Chicken anti-GAD67 1:2000 198,006 Synaptic Systems
Mouse anti-GAD67 1:1000 MABS5406 Millipore
Rabbit anti-GAD67 1:2000 198,013 Synaptic Systems
Rabbit anti-flag 1:1000 F7425 Sigma Aldrich
Rabbit anti-myc 1:1000 06-549 Millipore
Chicken anti-MAP2 1:8000 AB5543 Millipore
Mouse anti-GluA2/4 1:2500 MAB396 Millipore

Acute Slice Preparation Acute parasagittal hippocampal sec-
tions (350 wm) were prepared from brains of WT and
Neto1KO mice using dissection solution containing (in
mM): 87 NaCl, 2.5 KCI1, 7 MgCl,, 1.25 NaH,POy,, 0.5
CaCl,, 25 NaHCOs3, 50 p-sucrose, and 25 D-glucose and
equilibrated with 95% O, and 5% CO,. Slices were trans-
ferred to artificial cerebrospinal fluid (ACSF) containing (in
mM): 124 NaCl, 3 KCI, 1.25 NaH,PO,, 3 MgS0y, 26
NaHCOs, 2 CaCl,, and 15 D-glucose and incubated 30 min
at+ 35 °C and at 30 min—4 h at room temperature before use.

Electrophysiological Recordings Whole-cell voltage clamp re-
cordings were performed from CA3 stratum radiatum inter-
neurons that were visually identified with differential interfer-
ence contrast (DIC) optics. No further identification of inter-
neuron subtype was undertaken.

During the recordings, the chamber was continuously per-
fused with ACSF (32 °C) bubbled with 95% O, and 5% CO,.
AMPAR-KAR-mediated responses were recorded in the pres-
ence of 100 uM picrotoxin (Abcam) and 50 uM D-APS
(HelloBio) at a holding potential —70 mV. NMDAR-
mediated responses were recorded at a holding potential +
40 mV and in the presence of 10 uM CNQX (Abcam) and
100 uM picrotoxin. One micromolar of tetrodotoxin (TTX,
Abcam) was added to the drug cocktail for recording of min-
iature excitatory postsynaptic currents (mEPSC). In order to
isolate KAR component of the evoked response, AMPAR-

selective antagonist GYKI53655 (30 uM) was added to the
bath solution. In some experiments, GluK1-specific antago-
nist ACET (200 nM, Tocris) and agonist ATPA (1 uM, Tocris)
were used.

Glutamatergic currents were recorded with 3—-5 MQ
glass electrodes filled with Cs-based intracellular solution
containing (in mM): 130 CsMeSO,, 10 HEPES, 0.5
EGTA, 4 Mg-ATP, 0.3 Na-GTP, 5 QX-314, 8 NaCl, and
285 mOsm (pH 7.2). For evoked EPSC, the stimulation
electrode was placed in CA3 stratum radiatum. For re-
cording of after hyperpolarizing current (/;,onp), the fill-
ing solution contained (in mM): 130 K-gluconate, 10
HEPES, 10 KCI, 4 ATP-Mg, 0.3 GTP-Mg, 0.2 EGTA,
and 285 mOsm (pH 7.2). I,,anp Was induced by applying
depolarizing 60 mV 40 ms step from holding potential of
—47 mV. Spontaneous network activity was recorded
from CA3 pyramidal neurons voltage-clamped at —
47 mV with pipette filling solution containing (in mM):
135 K-gluconate, 10 HEPES, 2 KCl, 2 Ca(OH),, 5 EGTA,
4 Mg-ATP, and 0.5 Na-GTP. Spontaneous action potential
firing was measured in cell-attached configuration using
10 MQ electrodes filled with ACSF.

Data were collected using Axoscope 9.2 (Axon instru-
ments) and WinLTP software [29]. For whole-cell patch
clamp recordings uncompensated series resistance (R;<
30 MS2) was monitored, and cells were discarded if R, varied
more than 20%.

Table 2 Secondary antibodies
used in this study

Antibody Dilution Product nr Manufacturer
Goat anti-chicken Alexa Fluor 405 1:2000 ab175674 Abcam

Goat anti-mouse Alexa Fluor 488 1:2000 A11029 Life Technologies
Goat anti-guinea pig Alexa Fluor 568 1:2000 A11075 Life Technologies
Goat anti-rabbit Alexa Fluor 647 1:2000 A-21245 Molecular Probes
Goat anti-mouse Alexa Fluor 647 1:2000 A21236 Life Technologies
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Spontaneous events were analyzed with MiniAnalysis
6.0.3 program (Synaptosoft Inc.) and calculated in 1 min bins.
Events were verified visually, and events with amplitude less
than three times the baseline noise level were rejected. Evoked
EPSC and I,opyp amplitude was analyzed using WinLTP.
Holding current data were collected during /;,, oyjp recordings.

Statistical Analysis All statistical analysis was performed on
raw data using SigmaPlot software. First, the data distribution
was tested with Shapiro—Wilk test. Then, one-way ANOVA
with Holm-Sidak post hoc comparison or Kruskal-Wallis test
was used accordingly as stated. Student’s paired ¢ test was
used to assess the treatment effect as indicated. All data are
presented as mean + SEM; p <0.05 was considered statisti-
cally significant. In figures, the significance levels are indicat-
ed by asterisks as follows: *p <0.05, **p <0.01, and
**%p <0.001.

Results

NETO1 Regulates Dendritic Targeting but Not
Synaptic Recruitment of KAR Subunits GluK1b
and GluK2 in GAD67+ GABAergic Neurons In Vitro

NETO1/2 has been suggested to promote plasma membrane
entry and synaptic targeting of KAR subunits depending on
the cell type and KAR subunit identity [4, 20]. However,
currently, there is no consensus on the precise mechanisms
that guide the subcellular compartmentalization of KARs at
GABAergic interneurons. Therefore, we characterized the
subcellular localization of recombinant tagged KAR subunits
in cultured GADG67 positive neurons from wild-type (WT),
NETO1- and NETO2-deficient mice, focusing on the subunits
GluK1 and GluK2. Both the GluK1b and GluKlc¢ splice var-
iants were included in the analysis.

All the GluK subunits studied were targeted to MAP2 pos-
itive dendrites and MAP2 negative axons in WT GAD67+
neurons. The relative intensity of GluK2 was higher as com-
pared to GluK1b and GluK1c in both dendrites (GluK2 0.71
+0.04; GluK1b 0.41£0.01, p<0.001, Kruskal-Wallis; and
GluKlc 0.40+0.01, p<0.001, Kruskal-Wallis) and axons
(GluK2 0.38+0.02; GluK1b 0.21+£0.01, p<0.001,
Kruskal-Wallis; and GluKlc 0.21+0.01, p<0.001,
Kruskal-Wallis) of GAD67+ neurons. Dendritic delivery of
all three subunits was significantly lower in the dendrites of
GAD67+ Neto1KO neurons as compared to controls (GluK1b
75.3% £2.2%, p<0.001, Kruskal-Wallis; GluK1c 74.6% =+
2.6%, p <0.001, Kruskal-Wallis; GIluK2 79.9% +3.5%, p =
0.01, Kruskal-Wallis) (Fig. 1a, c¢). Also, axonal delivery of the
KAR subunits was significantly lower in the GAD67+
Netol1 KO neurons than controls (GluK1b 80.6% + 3.80%,
p=0.001; GluKlc 86.0% +4.1%, p=0.031, Kruskal—
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Wallis; GluK2 79.7% +4.0%, p = 0.004) (Fig. 1b, d). In con-
trast, we found no differences in dendritic (GluK1b 101.6% +
6.2%, p=0.82; GluKlc 101.3% £4.6%, p=0.69; GluK2
109.5% +3.4%, p=0.072) (Fig. 1a, ¢) or axonal (GluK1b
110.0% +7.5%, p=0.26; GluKlc 112.3% +8.5%, p=0.11;
GluK2 105.7% +5.9%, p =0.49) (Fig. 1b, d) delivery of the
tested KAR subunits in Neto2KO neurons as compared to WT
controls. Therefore, we excluded Neto2KO from further
study.

We then analyzed the distribution of the KAR subunits
between synaptic and extrasynaptic pools, using puncta with
co-localized Synaptophysin (Syn) and PSD95 staining as a
synapse marker. At WT GADG67+ neurons, only a minority
of the recombinant GluK subunits co-localized with Syn-
PSD95 positive puncta (GluK1b 12.0% +1.4%, GluKlc
13.1% +1.0%, GluK2 12.5% +2.2%). This distribution was
not significantly altered in Neto1KO for the subunits GluK1b
and GluK2 (GluK1b 13.6% + 1.4%; GluK2 11.5% + 1.2%).
However, proportion of synaptically located GluKlc in
Netol1KO GABAergic neurons (6.4% +1.1%) was signifi-
cantly lower as compared to WTs (p < 0.001) (Fig. 2a, b).

Thus, under our culture conditions, subcellular localization
of KAR subunits in GABAergic neurons depends on endog-
enous expression of NETOI1 but not NETO2. Our findings
further suggest that NETO1 regulates dendritic targeting rath-
er than synaptic recruitment of interneuron specific KAR sub-
units GluK1b and GluK2. In contrast, synaptic localization of
the GluK1c¢ splice variant, which is endogenously expressed
in the hippocampal pyramidal neurons during early develop-
ment [16], was dependent on NETO1 expression.

NETO1 Is Required for Postsynaptic and Metabotropic
KAR Functions in Immature CA3 Interneurons

Interneurons in area CA3 of hippocampus express NETOI
already during the first week of life [21]. To understand the
physiological functions of NETO1/KAR complex in the im-
mature GABAergic neurons, we performed electrophysiolog-
ical recordings in CA3 stratum radiatum interneurons in acute
hippocampal slices from neonatal WT and Neto1 KO mice.
Postsynaptic KARs contribute to synaptic transmission at
certain interneurons [10, 17, 30]; however, it is not known
whether KAR-mediated EPSCs at GABAergic neurons are
modulated by NETO1. To investigate this, we placed a stim-
ulation electrode to CA3 stratum radiatum in order to activate
all possible glutamatergic inputs to the recorded cell and used
pharmacological tools to isolate putative KAR-mediated post-
synaptic currents. At P5 WT slices, application of the
AMPAR-selective antagonist GYKI53655 (30 uM) in the
presence of antagonists for NMDAR and GABA receptors
revealed a small slowly decaying EPSC in response to 5 pulse
50 Hz afferent stimulation (peak amplitude 9.4+ 1.1 pA)
(Fig. 3a). This current component is likely mediated by
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Fig1 NETOI regulates dendritic and axonal delivery of KAR subunits in
cultured GAD67+ GABAergic neurons. a Example images depicting the
localization of overexpressed GluK1b-flag, GluK 1c-flag and GluK2-myc
(red) in dendrites of cultured WT, Neto1KO and Neto2KO GABAergic
neurons. MAP2 (purple) is used as dendritic marker, while GAD67 stain-
ing (blue) identifies GABAergic neurons. Scale bar 20 wm. b Examples
illustrating the localization of overexpressed GluK1b-flag, GluK1c-flag,
and GluK2-myc (red) in MAP2-negative axons of GABAergic neurons in
the same cultures as in a. Scale bar 20 pm. ¢ Quantification of the

synaptic KARs as it was significantly reduced with AMPAR-—
KAR antagonist CNQX (50 uM; EPSC amplitude to 65.5% +
4.8% of control, p=0.001, Student’s ¢ test) (Fig. 3a).

Having detected functional synaptic KARs in immature
CA3 interneurons in WTs, we then performed the same ex-
periment using Neto1KO slices. Application of GYKI53655
completely blocked the EPSCs in response to 5 pulse 50 Hz
stimulation in Neto1KO slices (peak amplitude 5.1 £0.4 pA),
and application of CNQX had no further effect on the response
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dendritic targeting of KAR subunits GluK1b (n=49, n=34, n=18),
GluKlc (n=49, n=33, n=15), and GluK2 (n=42, n=32, n=18) in
WT (black bar), Neto1KO (gray bar), and Neto2KO (white bar) GAD67+
neurons, respectively. d Quantification of the axonal targeting of KAR
subunits GluK1b (n=40,n=34,n=12),GluK1c (n=45,n=33,n=12),
and GluK2 (n=23, n=26, n=18) in WT (black bar), Neto1KO (gray
bar), and Neto2KO (white bar) GAD67+ neurons, respectively. For quan-
tification, GluK signal intensity in the neurites is normalized to the soma
intensity. *p <0.05; **p <0.01; ***p <0.001

(92.8% +7.5% of control) (Fig. 3a). These data indicate that
ionotropic KARs are present at the glutamatergic synapses
inCA3 stratum radiatum interneurons, where they mediate a
modest EPSC that is not observed in the absence of NETO1.
In addition to the ionotropic function, KARs in CA3 stratum
lucidum interneurons activate a G protein coupled signaling
pathway that inhibits medium after hyperpolarizing potassium
current (/,app) during the first week of postnatal development
[19]. To investigate the possible role of NETOI1 in the

@ Springer



7478

Mol Neurobiol (2019) 56:7473-7489

GluK1b - flag

GluK1c - flag

)
o1
z
i)
=

Neto1KO

N
O] o
1 1

—
o
1

(9]
1

% of synaptic KARs

0-

GluK1b GluK1c

Fig. 2 Synaptic localization of KAR subunits in cultured WT and
NetolKO GABAergic neurons. a Example images of immunostaining
against Synaptophysin (Syn, red), PSD95 (green), and tagged KAR
subunits (flag/myc, blue) in dendrites of WT and Netol KO GAD67+
neurons. Enlarged insets of a single synapse cluster (co-localization of
Syn and PSD95, circled with a dashed line) and corresponding synapti-
cally and extrasynaptically located GluK1b-flag, GluK1c-flag, and

metabotropic signaling initiated by GluK1-containing KARs,
we studied the effect of GluK1-selective agonist ATPA
(1 uM) on I,app in neonatal (P4-6) WT and Neto1KO slices.
The I,opp amplitude was not different between the genotypes
under basal conditions (WT 137.0 +19.8 pA, Neto1KO 139.3
+14.5 pA). ATPA had no significant effect on WT [ app cur-
rents when all recorded cells were included in the analysis
(97.7% + 3.5% of control; n = 12). However, ATPA significant-
ly decreased I,app amplitude in 5 out of the 12 WT cells
(87.4% £ 0.4% of control, p = 0.03, Student’s # test). In contrast,
ATPA did not reduce I,app in any of the 10 recorded CA3
interneurons in Netol KO (104.7% £2.9% of control) (Fig.
3b). It should be noted that our recordings included interneurons
located in CA3 stratum radiatum, while the previous study was
restricted to interneurons in CA3 stratum lucidum [19], proba-
bly explaining why the effect of ATPA was observed only in a
subpopulation of the neurons.

During these recordings, ATPA induced an inward
current in WT interneurons, detected as an increase in
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GluK2-myc clusters. GAD67 staining not shown for clarity. Scale bar
20 um. b Pooled data showing percent of synaptically located KARs in
WT (black; GluK1b-flag n =16, GluK1c-flag n = 17, GluK2-myc n = 20)
and Netol1KO (gray; GluK1b-flag n =20, GluKlc-flag n=10, GluK2-
myc n =20) GAD67+ neurons. Scale bar 20 um. *p <0.05; **p <0.01;
**¥p <0.001

the holding current during the whole-cell voltage clamp
recording (A7 39.3+8.9 pA). Interestingly, a clear
ATPA-induced current was also detected in NetolKO
interneurons (A7 12.3£2.1 pA); however, it was signif-
icantly smaller as compared to WT (p =0.007, Kruskal—-
Wallis) (Fig. 3c).

Taken together, these findings show that NETOI1 is re-
quired for many, but not all, of the functions described for
KARs in immature GABAergic interneurons. Loss of
NETO1 impaired postsynaptic and metabotropic KAR signal-
ing, while a subpopulation of ionotropic GluK1-containing
KARSs remained functional.

Absence of NETO1 Selectively Impairs Formation
of KAR-Containing Synapses in GAD67+ GABAergic
heurons

Both ionotropic and metabotropic KAR signaling have been
implicated in synaptogenesis and synapse maturation in
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Fig. 3 NETOI regulates postsynaptic and metabotropic KAR functions
in neonatal CA3 stratum radiatum interneurons. a Example traces and
pooled data demonstrating the effect of 30 uM GYKI and 50 uM CNQX
on EPSC, evoked by 5 pulse at 50 Hz stimulation of mixed afferents, in
WT (n=10) and Neto1 KO (n =7) CA3 stratum radiatum interneurons at
P4-6. b Example traces and quantified data illustrating the effect of ATPA
(1 uM) on I, ayp currents. Pooled data show the effect of ATPA on [, app

hippocampal principal neurons [16, 23, 31]. Therefore, we
next investigated the role of NETO1/KAR complex in the
formation of glutamatergic synapses in cultured GAD67+
neurons from WT and Neto 1-null mice.

The density of synapses, identified as puncta with co-
localized PSD95 and Synaptophysin (Syn) staining, was sig-
nificantly lower in Netol KO GAD67+ neurons (0.42 +£0.02/
pum) as compared to WT (0.53 £0.03/um, p =0.01) (Fig. 4a).

in WT cells, where ATPA decreased /,app amplitude over 10% (black,
n = 06), the remaining WT cells (white, n = 8), and Neto1KO interneurons
(grey, n=10) at P4-6. ¢ Example traces and pooled data showing the
effect of ATPA (1 uM) on holding current during voltage clamp record-
ings in CA3 stratum radiatum interneurons in WT (n = 12) and Neto1 KO
(n=10) at P4-6. *p <0.05; **p < 0.01; ***p <0.001

This phenotype was KAR-dependent as it was fully rescued
with the overexpression of either GluK1b (0.51 + 0.04/pm) or
GluK2 (0.49+0.01/um), but not GluKl1c (0.39 +0.04/um,
p=0.04, as compared to WT) in Netol KO cultures (Fig. 4a).

To further characterize this phenotype, we analyzed the
density of KAR and AMPAR-containing synapses in KAR-
overexpressing GAD67+ neurons. AMPAR synapses were
defined as co-localized clusters of staining against

@ Springer



= Mol Neurobiol (2019) 56:7473-7489
a
Synapse clusters/um
g i 0 02 04 06
=l 3 . . l |
o d—'—
j | —
o) 2|
o| %8 £
Y 5
5l ¢ d 1 L
; ég g Kl *
b K2 L
° M Wild-type [0 Neto1KO
b Wild-type Neto1KO c
y
py Syn g 0.5
Rl Gl El
flag 8 044
O
2 o
3 . g 03
X yn » |
° 3
< 0.1
w - T —  —
= GluK1b GluK1c ~ GIuK2
A Syn 0.5-
Ny Glun2/a £
flag 2 0.4
g [0
5 2 0.3
‘_6 g p = 0.096
e Syn > 0.2 — .
o flag o
o 4TIl I ]ﬂ
S 0- || || [ ]
aySAm GluK1b GluKic GluK2
g
oy 3 0.5 B Wild-type
§ GluA2/4 § yp
S 0.41 O Neto1KO
g [
£ # 0.3 *
C\II § | ' *%
5 <:’:, 024 *%
@ 8 il I i
+
x oA 1| | [ |
GluA2/4 N GluK1b GluK1ic GluK2

Fig.4 Loss of NETOLI leads to selective impairment of KAR-containing
synapses in cultured GAD67+ GABAergic neurons. a Example images
showing immunostaining against GAD67 (purple), Synaptophysin (Syn,
red) and PSD95 (green) in hippocampal neurons. Merged images show
synapses (co-localization of Syn and PSD95, circled) in non-infected WT
(n=35) and NetolKO (n=30), and in GluK1b-flag (n=20), GluKlc-
flag (n=10) and GluK2-myc (n=20) overexpressing NetolKO
GADG67+ neurons. Graphs show the quantified synapse density for the
corresponding experimental conditions. Scale bar 10 pm. b Example
images of Synaptophysin (Syn, red); GluA2/4 (green); and GluK 1b-flag,
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GluK1c-flag, or GluK2-myc (blue) staining in WT and NetolKO
GADG67+ neurons. Synapses are identified as having a contact with
Synaptophysin and highlighted with arrowheads: GluA2/4 positive (open
arrowhead), KAR positive (closed arrowhead), or KAR and GluA2/4
positive (closed arrowhead). GAD67+ staining not shown for clarity.
Scale bar 10 um. ¢ Quantified data for the density of GluA2/4 positive,
KAR positive, or KAR and GluA2/4 positive synapses in WT and
Netol1 KO GAD67+ neurons. GluK1b-flag (WT n =20, NetolKO n=
20), GluKlc-flag (WT n =20, NetolKO n=18), or GluK2-myc (WT
n=19, NetolKO n =20). *p <0.05; **p < 0.01; ***p <0.001
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endogenous GluA2/4 and Syn and represented 44% of the
glutamatergic synapses in the WT GAD67+ neurons. KAR
synapses were visualized as clusters of overexpressed tagged
KAR subunits that co-localized with Syn (25% of synapses).
The remaining 31% of glutamatergic synapses contained both
AMPARs (GluA2/4) and KARs.

The density of synapses that contained only AMPARs in
GADG67+ neurons was not different between WT and
Netol1KO cultures, irrespective of the overexpressed KAR sub-
unit (GluK1b 0.25 £0.02/um, 0.25 £ 0.04/um; GluK1c 0.29 +
0.03/um; GluK2 0.23 £0.03/pm, 0.25+0.03/um; WT and
Neto1KO, respectively) (Fig. 4b, ¢; open arrowhead). In con-
trast, the density of KAR-only synapses was significantly more
sparse in NetolKO as compared to WTs in GluK2-expressing
(0.17+0.02/pm and 0.10 = 0.01/pum, p = 0.02, Kruskal-Wallis,
WT and NetolKO, respectively), but not in GluK1-
expressing GAD67+ GABAergicneurons (GluK1b 0.12 +
0.02/pum and 0.12 +0.02/um; GluKlc 0.15+0.02/um and
0.11+£0.02/um, WT and Netol1KO, respectively) (Fig. 4b, c;
closed arrowhead). Similarly, the density of synapses containing
both KARs and AMPARs was affected by loss of NETO1 as
evidenced by lower density of GluK1c + GluA2/4 or GluK2 +
GluA2/4-containing synapses in Neto1KO as compared to WT
controls (GluKlc 0.19+0.02/um and 0.09+0.01/um, p=
0.001, Kruskal-Wallis; GluK2 0.21 +0.02/um and 0.11 £
0.02/um, p = 0.02, Kruskal-Wallis, WT and Neto1KO, respec-
tively) (Fig. 4b, c; closed arrowhead).

Taken together, these data suggest that loss of NETOL se-
lectively impairs the formation of KAR-containing synapses
in GABAergic neurons while AMPAR synapses appear to
differentiate normally. The loss of KAR-containing synapses
in the Neto1 KO cultures can fully explain the lower density of
glutamatergic synapses, identified by PSD95-Syn co-localiza-
tion in GAD67+ neurons (Fig. 4a).

Loss of NETO1 Has No Effect on AMPAR
and NMDAR-Mediated Synaptic Inputs in CA3
Interneurons

We went on to analyze whether absence of NETO1 affected
functional glutamatergic input in CA3 stratum radiatum inter-
neurons by recording spontaneous action potential indepen-
dent miniature EPSC (mEPSC) at two different stages of de-
velopment (P5 and P15). Both pharmacologically isolated
AMPAR-KAR-mediated mEPSCs (mEPSCnpa.xa) and
NMDAR-mediated mEPSC (mEPSCyvpa) Were studied
using hippocampal slices from WT and Neto1 KO mice.
There was no significant difference between the genotypes
in mEPSCanpaka at either developmental stage (frequency,
P50.33+£0.07Hzand 0.29 £ 0.06 Hz; P15 2.07 £ 0.22 Hz and
2.42+0.57 Hz; amplitude P5 26.3+2.7 pA and 30.2+1.9
pA; P15 20.5+1.0 pA and 23.1+1.3 pA; for WT and
Netol1KO, respectively) (Fig. 5a). Interestingly, application

of the GluK1-selective agonist ACET (200 nM) significantly
reduced mEPSC s ppa.xa amplitude in PS5 WT (79.0% + 5.8%
of control, p=0.04, Student’s # test) but not in Netol KO in-
terneurons (93.7% £4.3% of control) (Fig. 5b), supporting
that immature CA3 interneurons contain NETO1-dependent
synaptic KARs that have a minor contribution to postsynaptic
current. In these experiments, no significant effect of ACET
on the frequency of mEPSCanpaxa Was detected in either
genotype (119.7% +15.1% and 87.3% +9.9%, for WT and
Neto1KO, respectively).

Similar to mEPSC onmpa-ka, We detected no differences be-
tween the genotypes in mEPSCywvpa at PS (frequency 0.10 +
0.01 Hz and 0.11+0.02 Hz, amplitude 19.4+0.8 pA and
20.5+0.8 pA, for WT and Neto1KO, respectively). At P15,
however, the mEPSCyyvpa amplitude was slightly higher in
Netol1KO interneurons (WT 18.1£0.8 pA, NetolKO 20.8 +
1.0 pA, p=0.04) while there was no difference between the
genotypes in their frequency (WT 0.33 +0.07 Hz, Netol KO
0.31+0.07 Hz) (Fig. 5¢).

NETOI has been shown to be an interaction partner of
NMDA receptors [7, 27] and to regulate the subunit compo-
sition of NMDAR at MF-CA3 synapses [7]. Therefore, we
further tested the possibility that NETO1 affects NMDAR
subunit composition in immature interneurons (P4-6).
Application of ifenprodil (5 pM), an antagonist selective for
the NR2B-containing receptors, reduced the amplitude of
evoked NMDAR-mediated EPSCs both in WT (63.8% +
16.7%, n=5) and Neto1KO slices (74.8% +11.1%, n=9),
but this effect was not significantly different between the ge-
notypes (data not shown). Therefore, we concluded that
NETO!1 does not affect synaptic NMDARs in CA3 interneu-
rons during early postnatal development.

Taken together, these data show that loss of NETO1 has no
major effects on AMPAR- and NMDAR-mediated synaptic
transmission in CA3 interneurons.

Loss of NETO1 Has Minor or No Effects
on the Excitability of Immature Hippocampal Network

Hippocampal KARs have been shown to modulate early net-
work activity [19, 32, 33], characterized by spontaneously
occurring network bursts [34] that are highly dependent on
intact excitation—inhibition balance [35]. To evaluate the sig-
nificance of NETO1 in regulation of network excitability in
the immature hippocampus, we first recorded spontaneous
action potential (AP) firing of CA3 stratum radiatum inter-
neurons using cell-attached recordings from P3 and P10 WT
and Neto1 KO mice (Fig. 6a). At P3-6, we observed a large
heterogeneity in the firing frequency of individual recorded
cells in both WT and Neto1KO, but no significant differences
between genotypes (mean AP frequency, WT 2.82 +£0.46 Hz;
NetolKO 2.42+0.38 Hz) (Fig. 6b, ¢). The interneuron sub-
types become more differentiated by P10 with some cells
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<« Fig.5 NETOI deficiency has no significant effect on the development of

AMPAR- or NMDAR-mediated synaptic input into CA3 stratum
radiatum interneurons. a Example traces and pooled data illustrating
AMPAR-mediated mEPSCs recorded from CA3 stratum radiatum inter-
neurons in WT (black, n =12, n=17) and Neto1 KO (gray, n =14, n=15)
slices from P4-6 to P14-16 mice, respectively. b Example traces and
quantified data illustrating the effect of GluK1-selective antagonist
ACET (200 nM) on mEPSC frequency and amplitude in WT (n =8)
and NetolKO (n=6) P4-6 CA3 stratum radiatum interneurons. ¢
Example traces and pooled data depicting NMDAR-mediated mEPSCs
recorded from CA3 stratum radiatum interneurons in WT (black, n =13,
n=14) and Netol1KO (gray, n=9, n=13) slices from P4-6 and P14-16
mice, respectively. *p <0.05; **p <0.01; ***p < 0.001

acquiring distinctive high action potential firing frequency.
The mean AP firing frequency was not different between the
genotypes at P10 when all cells were included in the analysis
(3.27+0.78 Hz, n=12; 2.56+0.69 Hz, n=14; WT and
Netol1KO, respectively). However, if the cells with high (>
5 Hz) firing frequency were excluded from the analysis, we
observed a significantly slower spontaneous firing of
Neto1KO interneurons (1.51+0.28 Hz, p=0.02) as com-
pared to WT (2.43 £0.19 Hz) at P10 (Fig. 6b, c).

To further study the role of NETO1 in neonatal network
activity, we recorded spontaneous synaptic currents from WT
and Neto1KO CA3 pyramidal cells that receive GABAergic
inputs from CA3 interneurons. By using a low chloride con-
centration in the pipette filling solution, we were able to ana-
lyze the frequency of network bursts, spontaneous inhibitory
(sIPSC) and spontaneous excitatory postsynaptic currents
(sEPSC) from the same recordings. The basal frequency of
network bursts was not different between the genotypes at
P4-6 (WT 0.032+0.003 Hz; NetolKO 0.029 +£0.002 Hz)
(Fig. 7a, b). Consistent with the data showing no difference
in the interneuron firing frequency, the frequency of sIPSCs in
the CA3 pyramidal neurons was similar in WT and Neto1 KO
slices (1.46+0.84 Hz and 1.28 +0.16 Hz, respectively).
However, sIPSC amplitude was lower in NetolKO (17.1 +
0.6 pA) as compared to WT (21.2+1.0 pA, p=10.005) (Fig.
7b). Lastly, sEPSC frequency, but not amplitude, was signif-
icantly lower in NetolKO CA3 pyramidal cells as compared
to WT (frequency 0.23+0.03 Hz and 0.13+0.01 Hz, p=
0.04; amplitude 22.3+1.7 pA and 19.7+ 1.2 pA, for WT
and Neto1KO, respectively) (Fig. 7b).

Thus, NETO1 deficiency had minor or no effects on the
spontaneous network activity in area CA3 during the first
week of life. Despite its strong effects on interneuronal
KARs, NETOI is not indispensable for physiological network
activity, and the immature circuit lacking NETO1 is able to
maintain the excitability similar to that in the WT.

NETO1-Deficient Network Is Less Sensitive to Kainate

Since the excitability of the neonatal hippocampal network is
under strong homeostatic control [36], mechanisms that
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Fig. 6 Spontaneous action potential firing of CA3 stratum radiatum
interneurons in WT and NetolKO slices. a Example traces of cell-
attached recordings illustrating spontaneous action potential firing of CA3
stratum radiatum interneurons of WT (black) and Neto1KO (gray) slices at
P4 and P10. b Graphs showing the mean action potential firing frequency
of individual CA3 stratum radiatum interneurons at P3-6 (n=18, n=17)
and P9-10 (n=12, n=14) in WT and Netol1KO slices, respectively. ¢
Pooled data of mean action potential firing frequency of CA3 stratum
radiatum interneurons at P3-6 (n=18, n=17) and P9-10 n=9, n=11)
from WT and Neto1KO, respectively. Cells with high firing frequency are
excluded from the P9-10 age group. *p < 0.05; **p < 0.01; ***p < 0.001

o
1

modulate circuit activity might be compensated for in a
knockout model and thus not observed under basal conditions.
Therefore, we went on to investigate whether the NETO1-
deficient network was able to respond to low concentration
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<« Fig. 7 NETO1/KAR complex increases the kainate sensitivity of the
immature CA3 network. a Example traces illustrating the effect of
100 nM kainate (KA) on spontaneous network activity recorded from
P5 CA3 pyramidal neurons in WT and Neto1KO slices. With the use of
low chloride electrode filling solution, GABAergic and glutamatergic
synaptic events are seen as outward and inward currents, respectively.
The network bursts are indicated with black arrowheads. b Pooled data
illustrating the frequency of network bursts (n =29, n=30), sSIPSCs (n=
14, n=14), and sEPSCs (n=14, n=14) as well as the amplitude of
sIPSCs and sEPSC in P46 CA3 principal neurons in WT (black) and
Netol1KO (gray) slices, respectively. ¢ Time course plot and pooled data
demonstrating the effect of 100 nM kainate on network bursts in CA3
pyramidal neurons of P4—6 WT (n=7) and NetolKO (n=5) mice. d
Time course plots and pooled data showing effect of 100 nM kainate on
sIPSC frequency and amplitude in CA3 pyramidal neurons of P4-6 WT
(n=6) and NetolKO (n=3) mice. e Corresponding data for sEPSCs
(WT, n=7; NetolKO, n=4). *p <0.05; **p <0.01; ***p < 0.001

of kainate (KA), which potently increases excitability of the
hippocampal network already during the first postnatal week
[33].

As expected, application of 100 nM KA resulted in a robust
increase in the occurrence of network bursts in CA3 pyramidal
neurons in WT slices (P4-6) (313.6% +39.7% of baseline,
p=0.001, Student’s ¢ test) (Fig. 7a, c). In the Neto1KO slices,
100 nM KA induced a small increase in the frequency of
network bursts (129.3% +9.0% of baseline, p =0.02,
Student’s 7 test) (Fig. 7a, c). However, KA effect on the burst
frequency in WT was significantly larger as compared to
NetolKO (p =0.003, Kruskal-Wallis) (Fig. 7a, ¢).

In addition to the increase in the network bursts, 100 nM
KA caused a large increase in the frequency of sIPSCs
(237.6% +41.7% of baseline, p=0.007, Student’s 7 test) in
WT slices but had no significant effect on sSIPSC amplitude
(119.6% £+ 9.1% of baseline) (Fig. 7d). Consistent with the
loss of somatodendritic ionotropic KARs in interneurons,
KA had no effect on sIPSCs in Neto1KO slices (frequency
110.9% +37.2% of baseline; amplitude 110.2% +8.9% of
baseline) (Fig. 7d). Analysis of spontaneous glutamatergic
currents indicated an increase in sEPSC amplitude in response
to KA application in WT (150.1% +6.0% of baseline,
p<0.001, Student’s ¢ test) but not in Netol KO slices
(94.7% £ 5.3% of baseline; p<0.001 between genotypes)
(Fig. 7e). KA had no effect on sEPSC frequency either in
WT (94.0% + 14.0% of baseline) or Netol KO (79.8% =+
12.9% of baseline) (Fig. 7e).

These data provide evidence that NETO1 is critical for KA-
induced network bursts and participates in recruiting the in-
hibitory drive from immature GABAergic interneurons to
CA3 pyramidal cells.

Discussion

KARs have developmentally restricted functions in the hippo-
campus both in principal cells [21, 26, 31] and in interneurons

[19, 37]. We have previously shown that NETO1 is critical for
the immature-type KAR functions and maturation of the con-
nectivity between CA3-CA1 principal neurons [21], while the
role of NETOs at GABAergic interneurons in the neonatal
hippocampus is not previously characterized. In the present
study, we provide the first description of NETO1-dependent
subcellular targeting of KAR subunits in GABAergic inter-
neurons. Furthermore, we show that NETO1 regulates both
ionotropic and metabotropic KAR functions in CA3 interneu-
rons already during the first week of life and is critical for KA-
induced modulation of network bursts and GABAergic trans-
mission at the immature network.

NETO1 and Subcellular Targeting of KARs
at GABAergic Neurons

NETOL1 is expressed in interneurons in the neonatal [21] and
adult hippocampus [5, 22], where it is co-expressed with KAR
subunits GluK1, 2, and 5 in different interneuron subpopula-
tions [22]. While the role of NETO1 in targeting of various
KAR subunits has been studied in glutamatergic neurons
[5-7, 21, 38—40], no previous data from GABAergic neurons
exists.

Our data show that a predominant effect of NETO1 on
interneuronal KARs is to promote their dendritic and axonal
targeting, which was significantly impaired in NETO1-
deficient GABAergic neurons irrespective of the KAR subunit
identity. We recently reported a similar role for NETO1 in
axons of hippocampal principal neurons [21]. In contrast to
NETO1, NETO?2 appears to not be involved in axonal and
dendritic delivery of interneuronal KAR subunits, at least un-
der our culture conditions.

In the principal neurons, NETOL is also reported to pro-
mote the postsynaptic capture of GluK1 and GluK2 [6, 7] or
selectively GluK1 [39, 40]. Here, we observed no difference
in synaptic recruitment of KAR subunits GluK1b and GluK2
between WT and NETO1-deficient interneurons. In contrast,
the synaptic distribution of GluK1c subunit, which is endog-
enously mainly expressed in principal neurons of the imma-
ture hippocampus, was significantly impaired in the Netol KO
interneurons. These data suggest that NETO1 has subunit and
cell-type specific effects on KAR trafficking at the level of
synapses [38, 40], while promoting distal targeting of KARs
in a subunit independent manner in both glutamatergic and
GABAergic neurons.

NETO1/KAR-Dependent Synaptic Signaling
in Immature Interneurons

Functional characterization of immature CA3 interneurons in-
dicated that both ionotropic and metabotropic KAR signaling
were compromised or completely lost in the absence of
NETOI, similar to that previously shown for CA3 principal
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neurons in adult hippocampus [5—7]. Thus, we identified a
small KAR-mediated component of EPSC in the WT but not
Neto1KO interneurons in response to 50 Hz/5 pulse afferent
stimulation. Also, the G protein coupled regulation of 7, app
via GluK1 subunit containing KARs was not observed in
NETO1-deficient interneurons. Intriguingly, however, agonist
application revealed a subpopulation of functional ionotropic
GluK1-containing KARs in NETO1-deficient CA3 stratum
radiatum interneurons supporting the idea that NETO1 has
distinct effects on different types of KARs even within one
neuron.

Postsynaptic KAR-mediated current has been previously
described in adult CA3 pyramidal cells [41, 42] and in CAl
interneurons [ 10, 17]. In addition, there is evidence suggesting
that KARs and AMPARs in CALl interneurons are located at
distinct synapse populations [15]. Interestingly, in CA1 pyra-
midal cells, NETO1 overexpression targets KARs preferen-
tially to synapses that contain no AMPARSs [39], providing a
plausible mechanism for generation of KAR-containing
AMPAR-lacking synapses in GABAergic interneurons where
NETOL1 is endogenously expressed. Indeed, analysis of
AMPAR- and KAR-containing synaptic clusters in cultured
GABAergic neurons identified synapses that contained only
AMPAR, only KAR, but also synapses with both AMPARs
and KARs. In the absence of NETOI, the density of both
KAR-only and AMPAR-KAR synapses were reduced, while
AMPAR-containing synapses were not affected. It should be
noted that these data were obtained using overexpression of
recombinant KAR subunits in cell culture, which might over-
ride some endogenous targeting mechanisms. However, also
functional analysis supported existence of NETO1-dependent
postsynaptic KARs in immature CA3 interneurons. Therefore,
the most likely interpretation of these results is that ionotropic
NETO1/KAR signaling operates in a small fraction of synap-
ses in the CA3 interneurons during early postnatal develop-
ment and exhibits a rather modest contribution to postsynaptic
current.

NETO1 Regulates Formation of KAR-Containing
Synapses but Has No Effect on Maturation of AMPAR-
and NMDAR-Mediated Transmission in Interneurons

KARs have been implicated in synaptogenesis and synaptic
maturation in the CA1 circuitry [21, 24, 26, 31] as well as in
the mossy fiber-CA3 synapse [23, 25]. In addition, KARs
regulate maturation of the dendritic tree in both, principal
neurons and interneurons [43, 44]. Our data from cell cultures
showed that loss of NETOL is associated with compromised
synaptogenesis that can be rescued with overexpression of
KARs in GABAergic neurons. However, this effect could be
fully explained by the loss of KAR-containing synapses,
while AMPAR-containing synapses formed apparently nor-
mally in the absence of NETOI.
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The rescue of KAR-synapses in NETO1-deficient
GABAergic neurons was subunit dependent. GluK1c overex-
pression was not able to rescue the impaired synapse forma-
tion in the Neto1 KO, most likely because it is not efficiently
recruited to postsynaptic compartments in GABAergic
Netol1 KO neurons. However, overexpression of GluK1b and
GluK2 subunits rescued the overall density of synapses in the
NetolKO GABAergic neurons to the WT level. Since
NETO1 had no effect on the synaptic distribution of GluK1b
and GluK2 in the GABAergic neurons, the loss of KAR-
containing synapses in the Neto1KO is likely due to the im-
paired dendritic delivery of KAR subunits which limits the
number of available receptors at the synaptic site. In support
to this idea, overexpression of GluK2 subunit in the WT was
associated with a significantly higher density of KAR-
containing synapses as compared to GluK1b, which is not
delivered to dendrites as efficiently as GluK2.

Consistent with the lack of effect of NETO!1 on synaptic
AMPAR clusters in cultured interneurons, we found no sig-
nificant differences in the AMPAR-mediated transmission to
WT vs NetolKO interneurons in the area CA3 of neonatal
mice. Interestingly, NMDAR transmission exhibited
NETO1-dependent phenotype by the end of the second post-
natal week. Therefore, we tested for the possibility that
NETOI regulates the NMDAR subunit composition in the
interneurons, similar to that shown for CA3 principal cells
[7], which could consequently affect development of gluta-
matergic inputs to interneurons [45]. However, no difference
in the ifenprodil sensitivity of NMDAR-mediated current was
detected between the genotypes.

Thus, while our data identify a role for NETO1 in promot-
ing formation of KAR-containing synapses, lack of NETO1/
KAR signaling had no apparent consequences on develop-
ment and maturation of AMPAR-NMDAR-mediated synap-
tic transmission in GABAergic interneurons. Together with
previous data [21, 23-26, 31], these results support that
KARSs regulate development of glutamatergic transmission
in a cell type specific manner, promoting maturation of
AMPAR-mediated transmission in principal glutamatergic
neurons, but not in GABAergic interneurons. Further, our data
suggest that KAR-synapses at GABAergic interneurons are
not developmental precursors of AMPA-containing synapses
but rather represent a distinct population of synapses, whose
physiological significance at the immature circuitry remains
elusive.

NETO1/KAR Complex Has Little or No Effect
on the Excitability of the Immature Hippocampal
Network but Is Required for KA Modulation

KARs are potent regulators of interneuron excitability in the
neonatal hippocampus [19, 32, 37]. However, we observed no
effect of NETO1 on the basal spontaneous action potential
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firing of CA3 interneurons during the first week of postnatal
development, in contrast to significantly lower firing of
GluK1KO interneurons at the same developmental stage
[19]. Consistently, under basal conditions, NETO1 deficiency
had no effect on the medium after hyperpolarizing current,
proposed to underlie the differences AP firing frequency in
neonatal GluK1-lacking interneurons [19]. The excitability of
the neonatal network is under strict homeostatic control [36,
46-48]; thus, it is feasible that any NETO1-dependent mech-
anisms regulating action potential firing frequency are com-
pensated for and thus not manifested in a knockout model.

Interestingly, during the second postnatal week and in par-
allel with maturation of interneuronal firing properties, the
spontaneous AP firing frequency became lower in NETO1-
deficient CA3 interneurons as compared to WT controls.
Possibly, at the mature network, postsynaptic NETO1/KAR
signaling controls temporal summation of EPSCs and thereby
contributes to spike generation in CA3 interneurons, similar to
that shown for CA3 pyramidal neurons [5, 49] and CAl in-
terneurons [18]. Alternatively, the altered firing frequency in
the Neto1KO interneurons could reflect some developmental
delay in their maturation [44].

In accordance with the unchanged interneuron firing during
the first postnatal week, immature-type spontaneous network
activity, recorded from CA3 pyramidal neurons, was not
markedly affected by the absence of NETO1. The main ob-
served effect, i.e., a significant reduction in the frequency of
sEPSCs, is likely due to loss of presynaptic KARs that toni-
cally facilitate glutamate release at this developmental stage
[21, 31, 32]. However, similar to that shown previously in
adult NetolKO [22], the immature NETO1-deficient CA3
network was strikingly less sensitive to KA modulation.
Application of 100 nM KA had only modest effects in the
Neto1KO in contrast to the robust induction of network bursts
in the WT [33]. KA activates KARs in various subcellular
compartments in the pyramidal neurons and interneurons,
and both cell types express NETO1 in the neonate CA3. Our
data do not resolve which KAR population is mainly respon-
sible for the loss of KA-dependent network bursts in the
NetolKO. However, previous data have identified that low
concentration of KA induce ectopic spiking of CA3 pyramidal
neurons that initiates network bursts in the neonatal hippo-
campus [33], suggesting that loss of axonal KARs in
NetolKO CA3 pyramidal neurons [21] contributes to this
phenotype.

KA application in the CA3 network also associates with a
large increase in the frequency of spontaneous GABAergic
events, an effect that has been attributed to KAR-mediated de-
polarization of GABAergic neurons and their axons as well as
regulation of GABA release [1-3, 8, 9]. This effect is strongly
impaired in adult NETO1-deficient mice [22], indicating a cen-
tral role for NETO1 in recruitment of GABAergic inputs to
CA3 pyramidal neurons in response to KA application.

Consistent with these previous findings, we found that the ef-
fect of 100 nM KA on sIPSCs in the immature CA3 network
was lost in Netol KOs. Interestingly, axonal delivery of KAR
subunits was significantly impaired in cultured Neto1 KO
GABAergic neurons, suggesting that loss of axonal and presyn-
aptic KARs, together with the deficit in somatodendritic KARs,
contributes to the low KA sensitivity of GABAergic transmis-
sion in the NetolKO. In support to this idea, it was recently
reported that NETO1 is required for presynaptic KAR function
at CCK/CBI interneurons in the adult hippocampus [22].
However, we cannot rule out the possibility that reduced affin-
ity of KARs in the absence of NETO1 also contributes to the
observed phenotype [5, 50, 51].

Taken together, these findings support that while NETOL1 is
required for many of the functions ascribed to KARs in im-
mature CA3 interneurons, NETO1 deficiency does not have
severe consequences on the basal excitability of the CA3 net-
work during early postnatal development. However, NETO1
is central for KA-dependent modulation of the network activ-
ity and GABAergic synaptic transmission already during the
first week of life. Given that aberrant KAR-mediated trans-
mission has been implicated in certain forms of epilepsy [52],
NETO1 might provide an attractive target for development of
novel treatments against adult and early life seizures.
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