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ABSTRACT

Bone morphogenetic protein-7 (BMP7) is known to antagonize transforming 
growth factor β 1 (TGFβ1)-mediated fibrosis through suppressing epithelial-
mesenchymal transition (EMT). We recently reported that BMP7 also antagonizes the 
effects of TGFβ1 in breast cancer (BC) tumorigenesis-related EMT. Nevertheless, the 
control of BMP7 expression in BC remains ill-defined. Here, we detected significantly 
lower levels of BMP7 and significantly higher levels of microRNA-137 (miR-137) in the 
BC specimens, relative to paired adjacent non-tumor breast tissue. BMP7 and miR-137 
levels were correlated inversely. Additionally, the high miR-137 levels in BC specimens 
were correlated with reduced patient survival. In vitro, overexpression of miR-137 
significantly increased cell EMT and invasion, while depletion of miR-137 significantly 
decreased cell EMT and invasion in BC cells. The increases in BC cell invasiveness by 
miR-137 appeared to result from its suppression of BMP7, through direct binding of 
miR-137 to the 3'-UTR of BMP7 mRNA, thereby blocking its protein translation in BC 
cells. This study sheds light on miR-137 as a crucial factor that enhances BC cell EMT 
and invasiveness, and points to miR-137 as a promising innovative therapeutic target 
for BC treatment.

INTRODUCTION

Breast cancer (BC) is a common malignant tumor 
in women worldwide [1]. The transforming growth 
factor β (TGFβ) superfamily receptor signaling pathway 
plays a key role in the tumorigenesis of BC [2–5], in 
which action of TGFβ receptor signaling by its ligand 
TGFβ1 promotes a biological process called Epithelial-
Mesenchymal Transition, which cancer cells use to favor 
an invasive and metastatic phenotype (EMT) [6–9]. In 
this process, cancer cells begin to secrete proteinases 
in order to traverse collagenous extracellular matrix 
proteins. Bone morphogenetic protein-7 (BMP7) 
is a well-described matrix proteinase that breaks 
down collagen type IV, a constituent of the basement 
membrane. Down-regulation of BMP7 facilitates the 
metastatic spread of BC cells [10–15]. TGFβ1 and 
BMP7 are two central members in the TGFβ superfamily 
that each have different effects on EMT regulation. We 
recently reported that BMP7 does not modify TGFβ1-
stimulated phosphorylation of the TGFβ receptor, 

but significantly inhibited activation of EMT-related 
genes by TGFβ1 in BC cells, thereby reducing TGFβ1-
mediated cell growth and metastasis [16]. However, the 
regulation of BMP7 in BC remains unclear.

MicroRNAs (miRNAs) are non-coding small 
RNAs that regulate gene expression at a post-
transcriptional level, through specific binding to the 
3′-untranslated region (3′-UTR) of target mRNA [17–
19]. Specifically, miRNAs have been shown to play an 
important role in the tumorigenesis of BC [20–28], and 
in the control of BMP7 activation [29–32]. However, 
previous studies on miR-137 never addressed BMP7 as 
a potential target [33–37].

Here, we studied the expression of BMP7 and 
miR-137 in BC tissues, and investigated the association 
of miR-137 levels with patient prognosis. We used 
bioinformatics analyses to elucidate the interaction 
between miR-137 and BMP7. We then overexpressed 
miR-137 or inhibited miR-137 in 2 established BC 
cell lines in vitro, and examined their effects on BMP7 
activation and BC cell invasion.
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RESULTS

Association of high BC miR-137 levels with poor 
patient prognosis

The levels of BMP7 and miR-137 in 40 pairs of 
resected BC tissues (Stage IV) and adjacent non-tumor 
breast tissues (NT) were measured by Western blot 
and RT-qPCR, respectively (Table 1). BC specimens 
contained significantly lower levels of BMP7 (Figure 
1A), and significantly higher levels of miR-137 (Figure 
1B). We then performed a correlation test using these 40 
BC specimens, and detected a strong inverse correlation 
between BMP7 and miR-137 (Figure 1C, ɤ=-0.72, 
p<0.0001, N=40), indicating a possible regulatory 
relationship between miR-137 and BMP7 in BC. These 
patients were followed up for 60 months to assess overall 
survival. The relationship of miR-137 or BMP7 levels and 
clinicopathological characteristics was evaluated using 
multivariate Cox regression analysis, showing that both 
were significantly associated with survival of the BC 
patients (Table 2). Next, the median value for miR-137 in 
these patients was used as the cutoff point for separating 
miR-137-high cases (n=20) from miR-137-low cases 
(n=20). Kaplan-Meier curves showed that patients with 
high miR-137 levels in BC tissue had a significantly lower 
5-year survival than those with low miR-137 levels in BC 
tissue (Figure 1D). These data suggest that high miR-137 
levels in BC specimens may be associated with reduced 
patient survival.

MiR-137 inhibits BMP7 protein translation in 
BC cells

Next, we examined the levels of miR-137 and 
BMP7 levels in diffirent BC cell lines. We found that 
BT474 expressed relatively high level of miR-137 and 
relatively low level of BMP7, while MCF7 expressed 
relatively low level of miR-137 and relatively high level of 

BMP7 (Figure 2A-2B). Next, we transfected MCF7 cells 
with miR-137 (Figure 2C), and transfected BT474 cells 
with antisense for miR-137 (as-miR-137) (Figure 2D). 
The cells transfected with a null sequence were used as 
a control (null). The levels of miR-137 in these modified 
BC cells were assayed by RT-qPCR. The alterations of 
miR-137 levels in these cells were confirmed (Figure 
2C-2D). These miR-137-modified BC cells were used 
to examine the functional binding of miR-137 to BMP7 
mRNA predicted by bioinformatics algorithms (Figure 
2E, Table 2). The intact 3'-UTR of BMP7 mRNA (BMP7 
3'-UTR) and a 3'-UTR with mutant at miR-137-binding 
site of BMP7 mRNA (BMP7 3'-UTR mut) were prepared 
and then cloned into luciferase reporter plasmids. First, 
BT474 cells were co-transfected with 1μg as-miR-137/
null plasmids and 1μg BMP7 3'-UTR or BMP7 3'-UTR 
mut plasmids (Figure 2F). Next, MCF7 cells were co-
transfected with 1μg miR-137/null plasmids and 1μg 
BMP7 3'-UTR or BMP7 3'-UTR mut plasmids (Figure 
2G). The results show that miR-137 specifically targets 
the 3’-UTR of BMP7 mRNA to inhibit its translation in 
BC cells.

MiR-137 decreases BMP7 protein but not mRNA 
in BC cells

The effects of miR-137 on BMP7 were then 
examined in BC cells. The BMP7 mRNA did not alter 
(Figure 3A), but the BMP7 protein was significantly 
decreased in miR-137-overexpressing MCF7 cells (Figure 
3B). Moreover, the BMP7 mRNA did not alter (Figure 
3C), but the BMP7 protein was significantly increased in 
miR-137-depleted BT474 cells (Figure 3D).

MiR-137 reduces BC cell EMT and invasion

The effects of miR-137 modification on the EMT 
and invasion of cultured BC cells were then investigated. 
We found that miR-137 overexpression in MCF7 cells 

Table 1: Clinical-pathological characteristics (total)

  Patients (n; %) p

BC tissue/ Normal tumor-adjacent 
tissue 40 (100%) /40 (100%)  

Age (<60/≥60 years old) 12 (30%) /28 (70%) 0.62

Gender (male/female) 0 (0%) /40 (100%)  

Tumor site (breast) 40 (100%)  

Tumor grade (well or moderate/poor) 0 (0%) /16 (40%) /24 (60%) 0.008

Tumor stage (I/II/III/IV) 0 (0%) /0 (0%) /20 (50%) /20 (50%) 0.005

Lymph node metastasis (no/yes) 0 (0%) /40 (100%) 0.003

Distal metastasis at diagnosis (no/yes) 40 (0%) /0 (0%) 0.003
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Figure 1: High miR-137 levels in BC specimens is associated with poor prognosis. A-C. The levels of BMP7 and miR-137 in 
40 pairs of BC tissues and adjacent non-tumor breast tissues (NT) were measured by Western blot (A) and RT-qPCR (B). C. A correlation 
test was performed between BMP7 and miR-137, using the 40 BC specimens. D. The 40 BC patients were followed-up for 60 months. The 
median value of all 40 cases was chosen as the cutoff point for separating miR-137-high cases (n=20) from miR-137-low cases (n=20). 
Kaplan-Meier curves were performed to compare 5-year survival between two groups. *p<0.05. **p<0.01. N=40.

Table 2: Analysis of the prognostic values of miR-137 and BMP7 in BC patients by Cox regression model

  HR 95% Cl P value

miR-137 (high vs low) 5.11 3.13-9.92 0.005

BMP7 (low vs high) 4.42 2.21-7.97 0.004
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Figure 2: MiR-137 targets BMP7 to inhibit its protein translation in BC cells. A-B. The levels of miR-137 by RT-qPCR (A) 
and BMP7 by Western blot (B) in BC cell lines BT474 and MCF7, compared to BC tissue from patients. C. MCF7 cells were transfected 
with miR-137 mimics (miR-137) or null as a control and examined for miR-137 levels. D. BT474 cells were transfected with antisense for 
miR-137 (as-miR-137) or null as a control and examined for miR-137 levels. E. Prediction of miR-137-binding sites on BMP7 mRNA by 
bioinformatics algorithms. F-G. The intact 3'-UTR of BMP7 mRNA (BMP7 3'-UTR), together with a 3'-UTR with mutant at miR-137-
binding site of BMP7 mRNA (BMP7 3'-UTR mut), was then cloned into luciferase reporter plasmids. Luciferase activity was determined 
in BT474 cells, which were co-transfected with 1μg as-miR-137/null plasmids and 1μg BMP7 3'-UTR or BMP7 3'-UTR mut plasmids (F), 
and in MCF7 cells, which were co-transfected with 1μg miR-137/null plasmids and 1μg BMP7 3'-UTR or BMP7 3'-UTR mut plasmids 
(G). *p<0.05. N=5.
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Figure 3: MiR-137 decreases BMP7 protein but not mRNA in BC cells. A-B. The BMP7 levels in miR-137-overexpressing (and 
BMP7-overexpressing) MCF7 cells by RT-qPCR (A) and by Western blot (B). C-D. The BMP7 levels in miR-137-depleted (and BMP7-
depleted) BT474 cells by RT-qPCR (C) and by Western blot (D). *p<0.05. NS: non-significant. N=5.
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did not alter cell growth in an MTT assay (Figure 4A), 
but significantly increased the potential of EMT and 
cell invasion in a transwell cell migration assay (Figure 
4B-4C). Moreover, miR-137 depletion in BT474 cells 
did not alter cell growth in an MTT assay (Figure 5A), 
but significantly decreased the potential of EMT and 
cell invasion in a transwell cell migration assay (Figure 
5B-5C). Thus, MiR-137 decreases BC cell EMT and 
invasion.

MiR-137 enhances BC cell invasion by 
suppressing BMP7

In order to ascertain whether miR-137 promotes 
BC cell invasion through suppressing BMP7, we 
prepared plasmids for BMP7 overexpression (BMP7) and 
depletion (shBMP7). First, MCF7-miR-137 cells were 
further transfected with BMP7, which increased BMP7 
mRNA (Figure 3A) and protein (Figure 3B) in these cells. 

Overexpression of BMP7 abrogated the promoting effects 
of miR-137 on the EMT and cell invasion in MCF7 cells 
(Figure 4B-4C), without affected cell growth (Figure 4A). 
Next, BT474-as-miR-137 was further transfected with 
shBMP7, resulting in decreases in BMP7 mRNA (Figure 
3C) and protein (Figure 3D) in these cells. We found that 
the effects of as-miR-137 on BMP7 protein compromised 
the effects of shBMP7 on BMP7 protein, which explained 
the findings in BC cells transfected with both as-miR-137 
and shBMP7. We found that BMP7 suppression abolished 
the inhibitory effects of as-miR-137 on EMT and cell 
invasion in BT474 cells (Figure 5B-5C), without affected 
cell growth (Figure 5A). Thus, miR-137 may enhance BC 
cell invasion by suppressing BMP7 (Figure 6).

DISCUSSION

The inhibitory role of BMP7 in BC EMT and 
invasion has been well documented in the past studies. 

Figure 4: Overexpression of miR-137 increases MCF7 EMT and cell invasion through suppressing BMP7. A-C. MCF7 
cell invasion by miR-137 overexpression (and BMP7 overexpression) in a transwell cell invasion assay, shown by quantification (A-B), and 
by representative images (C). *p<0.05. N=5.
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Figure 5: Depletion of miR-137 decreases BT474 EMT and cell invasion through augmentation of BMP7. A-C. BT474 
cell invasion by miR-137 depletion (and BMP7 depletion) in a transwell cell invasion assay, shown by quantification (A-B), and by 
representative images (C). *p<0.05. N=5.

Figure 6: Schematic of the model. MiR-137 enhances BC cell EMT and invasion, through translational suppression of BMP7.
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However, the regulation of BMP7 by miRNAs was 
only recently reported in lung cancer [42]. Yang et al. 
reported that miR-137 was significantly down-regulated 
in NSCLC tissues and cell lines. An In vitro functional 
assay demonstrated that over-expression of miR-137 
inhibited lung cancer cell proliferation, migration and 
invasion, suggesting that miR-137 could act as a tumor 
suppressor in lung cancer progression. In addition, they 
identified BMP7 as a target of miR-137 in lung cancer 
cells, and used a luciferase reporter assay to show that 
miR-137 directly targeted 3'-UTR of BMP7. Furthermore, 
they showed that re-expression of BMP7 substantially 
reversed the tumor suppressive effects of miR-137 on lung 
cancer cell proliferation, migration, and invasion [42]. 
This study is interesting but also suggests that the role of 
a molecular could be very different from cancer to cancer, 
since BMP7 is believed to be a tumor suppressor in many 
cancers [43–46].

Here, we used bioinformatics analyses to screen 
all miRNAs that target BMP7, and we focused on the 
expression levels of those which were altered in BC 
specimens compared to normal tissue control. We found 
miR-137 to be one such microRNA. To the best of our 
knowledge, this follow-up study of our previous work [16] 
is the first study showing that BMP7 protein levels could 
be regulated by a miRNA in BC. High level of miR-137 
in BC tissues was associated with poor prognosis in BC 
patients. We thus designed in vitro experiments to show 
a regulatory relationship between miR-137 and BMP7 in 
BC cells, which was consistence with the clinic findings 
showing an inverse correlation of these two factors in BC 
specimens.

In addition to regulation of BMP7 by miRNAs, 
BMP7 protein levels are modulated at the level of 
degradation, such as through protein ubiquitination. 
Moreover, miR-137 may have targets other than BMP7, 
and these targets should be analyzed to have an overview 
of the effects of miR-137 in the carcinogenesis of BC. 
Besides, future studies may also address the regulation of 
miR-137 in BC and confirm this model in vivo.

To summarize, the current study may provide 
evidence for using miR-137 as a specific target for future 
BC therapies.

MATERIALS AND METHODS

Experimental protocol approval

All experimental protocols were approved by 
the Research Bureau of Shanghai Jiao Tong University 
Affiliated Sixth People's Hospital. All mouse experiments 
were approved by the Institutional Animal Care and Use 
Committee at Shanghai Jiao Tong University Affiliated 
Sixth People's Hospital (Animal Welfare Assurance). 
Animal and human specimens were handled according to 
previously established guidelines.

Patient specimens

Surgical BC resected specimens were obtained from 
40 BC patients (all Stage III or IV) and paired adjacent 
non-tumor breast tissues (NT) in Shanghai Jiao Tong 
University Affiliated Sixth People's Hospital from 2008 
to 2010 (Table 1). All patients were followed-up for 60 
months, before which they obtained Informed consent and 
provided signed agreement about this study. The histology 
of the resected tissue were examined and determined 
independently by 2 senior pathologists.

Culturing and transfection of BC cells

Human BC cell lines MCF7 [38] and BT474 
[39] were originated from adenocarcinoma and ductal 
carcinoma, respectively. Both lines were purchased from 
ATCC (American Type Culture Collection, Manassas, 
VA, USA), and cultured in in RPMI1640 medium 
(Invitrogen, Carlsbad, CA, USA) supplemented with 15% 
fetal bovine serum (FBS; Sigma-Aldrich, St Louis, MO, 
USA) in a humidified chamber with 5% CO2 at 37 °C. All 
constructs were purchased from Origene (Beijing, China). 
Transfection was performed with 50nmol/l plasmids, 
using Lipofectamine 2000 (Invitrogen). The transfection 
efficiency (>95%) was determined based on expression of 
GFP in the transfected cells.

Transwell cell invasion assay

Transwell cell invasion assay was performed as has 
been described previously [16].

Cell growth assay

An MTT Kit (MTT, Roche, USA) was used for 
analyzing cell growth.

MiRNA target prediction and 3'-UTR luciferase-
reporter assay

MiRNAs targets were predicted using the 
algorithms from TargetScan [40]. The data were analyzed 
as previously described [41]. The candidate miRNAs 
were analyzed for context+ score (Supplementary Table 
1). The BMP7 3'-UTR reporter plasmid (pRL-BMP7) 
and the BMP7 3'-UTR reporter plasmid with a mutant 
at miR-137 binding site (pRL-BMP7-mut) were both 
purchased from Creative Biogene (Shirley, NY, USA). 
Dual-luciferase reporter assay (Promega, Fitchburg, WI, 
USA) was performed according to the instructions from 
manufacturer.

Quantitative RT-PCR (RT-qPCR)

Quantitative RT-PCR (RT-qPCR) was performed as 
has been described previously [16].
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Western blot

Western blot was performed as previously described 
[16].

Statistical analysis

All statistical analyses were performed using the 
GraphPad Prism 6 (GraphPad Software, San Diego, 
CA, USA). Statistical analysis of group differences 
was carried out using a one-way analysis of variance 
(ANOVA) test followed by followed by Turkey multiple 
comparison post-hoc analysis. The relationship between 
miR-137 levels and clinicopathological characteristics 
was evaluated using multivariate Cox regression analysis. 
Bivariate correlations were calculated by Spearman's Rank 
Correlation Coefficients. Patients’ survival was determined 
by Kaplan-Meier analysis. All values represent the mean ± 
standard deviation (SD). A value of p<0.05 was considered 
statistically significant after Bonferroni correction.
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