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Energy metabolism in human melanoma cells under
hypoxic and acidic conditions in vitro

R Sk0yum, K Eide, K Berg and EK Rofstad
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Summary The response to treatment and the malignant progression of tumours are influenced by the ability of the tumour cells to withstand
severe energy deprivation during prolonged exposure to hypoxia at normal or low extracellular pH (pHe). The objective of the present work
was to demonstrate intertumour heterogeneity under conditions of microenvironment-induced energy deprivation and to investigate whether
the heterogeneity can be attributed to differences in the capacity of the tumour cells to generate energy in an oxygen-deficient
microenvironment. Cultures of four human melanoma cell lines (BEX-c, COX-c, SAX-c, WIX-c) were exposed to hypoxia in vitro at PHe 7.4,
7.0 or 6.6 for times up to 31 h by using the steel-chamber method. High-performance liquid chromatography was used to assess adenylate
energy charge as a function of exposure time. Cellular rates of glucose uptake and lactate release were determined by using standard
enzymatic test kits. The adenylate energy charge decreased with time under hypoxia in all cell lines. The decrease was most pronounced
shortly after the treatment had been initiated and then tapered off. BEX-c and SAX-c showed a significantly higher adenylate energy charge
under hypoxic conditions than did COX-c and WIX-c whether the PHe was 7.4, 7.0 or 6.6, showing that tumours can differ in the ability to avoid
energy deprivation during microenvironmental stress. There was no correlation between the adenylate energy charge and the rates of
glucose uptake and lactate release. Intertumour heterogeneity in the ability to withstand energy deprivation in an oxygen-deficient
microenvironment cannot therefore be attributed mainly to differences in the capacity of the tumour cells to generate energy by anaerobic
metabolism. The data presented here suggest that the heterogeneity is rather caused by differences in the capacity of the tumour cells to
reduce the rate of energy consumption when exposed to hypoxia.
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The metabolic microenvironment of tumours differs substantially
from that of the corresponding normal tissue (Vaupel et al, 1989).
Many tumours develop hypoxic regions and regions with low
extracellular pH (pHe) during growth (Wike-Hooley et al, 1984;
Stone et al, 1993). Two types of hypoxia have been recognized in
tumours: chronic hypoxia, resulting from limitations in oxygen
diffusion; and acute hypoxia, resulting from transient cessations in
blood flow (Horsman, 1995). Low PHe in tumours is mainly a
result of increased rate of glycolysis and poor vascularization,
leading to inadequate removal of H+ (Vaupel et al, 1989). The rate
of glycolysis is up-regulated in hypoxic tumour cells (Robin et al,
1984), and as anaerobic glycolysis leads to accumulation of lactic
acid (Busa and Nuccitelli, 1984; Wike-Hooley et al, 1984; Vaupel
et al, 1989) the PHe might be particularly low in the hypoxic
regions of tumours (Kallinowski and Vaupel, 1988; Tannock and
Rotin, 1989; Martin and Jain, 1994).
Tumour treatment response depends on the metabolic micro-

environment of the tumour cells (Wike-Hooley et al, 1984;
Sutherland et al, 1988). Hypoxic tumour cells are resistant to radi-
ation therapy (Coleman, 1988) and some forms of chemotherapy
(Teicher, 1994). The radiation dose required to inactivate tumour
cells under hypoxic conditions is 2.5-3.0 times higher than that
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required under aerobic conditions (Stone et al, 1993). Tumour
cells at low PHe also show increased radiation resistance, although
the increase is much less than that due to hypoxia (Tannock and
Rotin, 1989; Durand, 1991). The cytotoxic activity of chemothera-
peutic drugs is increased, unchanged or decreased at low pHel
depending on the tumour cells and the mechanism of action of the
drug (Tannock and Rotin, 1989; Teicher, 1994).
The malignant progression of tumours is also influenced by the

metabolic microenvironment of the tumour cells (Hill, 1990). The
expression of several specific genes involved in the malignant
progression is increased in hypoxic tumour cells and tumour cells
at low PH. (Brown and Giaccia, 1994; Dachs and Stratford, 1996).
Tumour cells can show increased metastatic potential following
transient exposure to hypoxia (Young et al, 1988; Young and Hill,
1990) or low PHe (Schlappack et al, 1991). Moreover, hypoxia
followed by reoxygenation can lead to increased resistance to
some chemotherapeutic drugs (Rice et al, 1987; Luk et al, 1990;
Sanna and Rofstad, 1994) and to the development of new cell
subpopulations showing increased DNA content (Rice et al, 1986;
Wilson et al, 1989) or a doubling of the number of chromosomes
(Rofstad et al, 1996a).
The probability of microenvironment-induced tumour treatment

failure or malignant progression is influenced by the ability of the
tumour cells to withstand severe energy deprivation during
prolonged exposure to hypoxia at normal or low PHe (Coleman,
1988; Tannock and Rotin, 1989; Vaupel et al, 1989; Hill, 1990).
The energy status of tissues is controlled by the balance between
the rates of ATP formation and utilization. The ATP formation is
reduced markedly in tumour cells in a hypoxic microenvironment,
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mainly because of inhibition of respiration but also because of
inhibition of glycolysis by low PHe (Rotin et al, 1986; Gerweck et
al, 1993). ATP utilization is subsequently reduced, leading to
decreased DNA and protein synthesis and cessation of cell prolif-
eration (Born et al, 1976; Heacock and Sutherland, 1990; Casciari
et al, 1992). The rate of energy deprivation during exposure to
hypoxia at normal or low PHe might thus differ between tumours
because of differences in the capacity of the tumour cells to
generate energy and/or to reduce the energy consumption.
The main purpose of the work reported here was to demonstrate

intertumour heterogeneity under conditions of microenvironment-
induced energy deprivation and to investigate whether the hetero-
geneity can be attributed to differences in the capacity of the
tumour cells to generate energy in an oxygen-deficient micro-
environment. Cell cultures of four human melanoma lines were
exposed to hypoxia in vitro at pHe 7.4, 7.0 or 6.6, and adenylate
energy charge was measured as a function of exposure time. As
glucose is the main energy source of tumour cells under hypoxic
conditions (Wike-Hooley et al, 1984; Vaupel et al, 1989), the rates
of glucose uptake and lactate release were used as measures of
energy generation.

MATERIALS AND METHODS

Cell lines

Four human melanoma cell lines (BEX-c, COX-c, SAX-c, WIX-c)
were included in the study (Rofstad et al, 1991). The cell lines
were maintained in monolayer culture in RPMI-1640 medium
(25 mM Hepes and L-glutamine) supplemented with 13% fetal calf
serum, 250 mg 1-' penicillin and 50 mg 1-1 streptomycin. The
cultures were incubated at 37'C in a humidified atmosphere of 5%
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carbon dioxide in air and subcultured once a week by trypsiniza-
tion (treatment with 0.05% trypsin/0.02% EDTA solution at 37°C
for 2 min). All solutions were purchased from Life Sciences
Technology, UK. The cell lines were verified to be free from
Mycoplasma contamination by using the Hoechst fluorescence and
the mycotrin methods.

Exposure to hypoxia

Monolayer cell cultures growing in glass dishes were exposed to
hypoxia by using the steel-chamber method (Sanna and Rofstad,
1994). The cultures were incubated at 37°C in a humidified atmos-
phere of 5% carbon dioxide in air for 24 h before the hypoxia treat-
ment. The culture medium was removed and replaced by fresh
medium before the cells were exposed to hypoxia. The medium
used during the hypoxia treatment was supplemented with
1.1 mg ml-' sodium bicarbonate and adjusted to a pH of 7.4, 7.0 or
6.6 using sodium hydroxide or hydrochloric acid. Before use, it
was flushed with 5% carbon dioxide in air for 2 h and then the pH
was readjusted (Boyer et al, 1993). The glass dishes were kept in
air-tight steel chambers during the hypoxia treatment. The steel
chambers were flushed with a humidified, highly purified gas
mixture consisting of 95% nitrogen and 5% carbon dioxide at a
flow rate of 5 1 min-'. Measurements showed that the concentra-
tion of oxygen in the medium was less than 10 p.p.m. after 30 min
of flushing. Control cultures were flushed with humidified 5%
carbon dioxide in air. Separate dishes were used for measurement
of adenylate energy charge and concentrations of glucose and
lactate. After medium samples had been collected for measure-
ment of glucose and lactate concentrations, the cells were detached
from the dishes by trypsinization and counted by using a haemo-
cytometer and a phase-contrast microscope.
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Figure 1 Extracellular pH in hypoxic cell cultures vs time under hypoxia. The
cells were cultured in medium adjusted to a pH of 7.4 (0), 7.0 (U) or 6.6 (A)
immediately before the hypoxia exposure. The curves refer to single
experiments with BEX-c. Similar curves were achieved in all experiments,
irrespective of cell line
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Figure 2 Relative cell number vs time for aerobic (0) and hypoxic (0) cell
cultures. The curves refer to single experiments with BEX-c at pH. 7.4.
Similar curves were achieved in all experiments, irrespective of cell line
and pHe
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Measurements of rates of glucose uptake and lactate
release

Cellular rates of glucose uptake and lactate release were deter-
mined by using standard enzymatic test kits (Boehringer
Mannheim, Mannheim, Germany) and spectrophotometric assays
(Casciari et al, 1992). The glucose and lactate concentrations in the
media of aerobic and hypoxic cell cultures were measured as a
function of time. The rates of the concentration changes were
divided by the logarithmic mean cell number to obtain rates of
glucose uptake and lactate release in terms of mol per cell per
second (Rofstad et al, 1996b).
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Measurement of adenylate energy charge

The adenylate phosphates were separated by high-performance
liquid chromatography and quantified at 254 nm. The cells were
lysed in acetonitrile (CH3CN), scraped off the dishes and dried in
nitrogen. Low-strength buffer (100 mm potassium dihydrogen
phosphate, 1.5% acetonitrile, 0.08% tetrabutylammonium bromide
(C16H36NBr), pH 5.0) was added before centrifugation and collec-
tion of the supernatant. The elution was performed with 80% low-
strength buffer and 20% high-strength buffer (150 mm potassium
dihydrogen phosphate, 10% acetonitrile, 0.08% tetrabutyl-
ammonium bromide, pH 5.0) for 10 min, then with a linear
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Figure 3 Medium concentration of glucose (A and B) and lactate (C and D) in hypoxic cell cultures vs time under hypoxia. The curves refer to single
experiments with BEX-c at PHe 7.4 or 6.6. Similar curves were achieved in all experiments, irrespective of cell line
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Aerobic Hypoxic Aerobic Hypoxic

Oxygenation

Figure 4 Rates of glucose uptake and lactate release in BEX-c, COX-c, SAX-c and WIX-c under aerobic and hypoxic conditions. The experiments were
performed at PHe 7.4. Columns and bars represent mean values ± s.d. of 4-9 independent experiments. O, Rate of glucose uptake; *, rate of lactate release

gradient to 100% high-strength buffer for 10 min and finally with
the high-strength buffer for 10 min. The separation was carried out
with a Supelcosil LC-18-T 5-gm cartridge (Supelco, SA, Crans,
Switzerland). The flow rate was 1.0 ml min-'. Adenylate energy

charge (AEC) was calculated from peak areas:

AEC = ([ATP] + 1/2 [ADP])/([ATP] + [ADP] + [AMP])

Statistical analysis

Results are presented as individual values or as arithmetic means
standard deviation (s.d.). Statistical comparisons of mean values
were performed under conditions of normality and equal variance
by using the Student's t-test for single comparisons and one-way

analysis of variance and the Student-Newman-Keuls test for
multiple comparisons. Paired tests were performed where appro-

priate. All P-values were determined from two-sided tests. A
significance criterion of P < 0.05 was used. The statistical analysis
was performed using SigmaStat statistical software (Jandel
Scientific, Erkrath, Germany).

RESULTS

Cell cultures were exposed to hypoxia at PHe 7.4, 7.0 or 6.6 for
3-31 h. In this time interval, the pHe decreased by 0.2 pH units at

PHe 7.4 and 7.0 and by 0.4 pH units at PHe 6.6 (Figure 1). The cells
did not proliferate during the hypoxia treatment. The number of cells
per dish increased exponentially with time in aerobic control cultures
and stayed unchanged in hypoxic cultures (Figure 2). The cells
remained attached to the glass surface during the hypoxia treatment.
The fraction of trypan blue excluding cells after 31 h of hypoxia was
higher than 95% in all cell lines, independent of the pHe.
The glucose concentration in the medium of hypoxic cell

cultures decreased linearly with time at PHe 7.4 and 7.0 and, corre-

spondingly, the lactate concentration increased linearly with time
(Figure 3). In contrast, the glucose and lactate concentration
curves were not linear at PHe 6.6: they showed a break between 10
and 14 h (Figure 3). The rates of glucose and lactate concentration
changes were determined by linear regression analysis. Single
values were derived from each data set at PHe 7.4 and 7.0. Two
values were derived at PHe 6.6: one early value based on analysis
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Figure 5 Rates of glucose uptake and lactate release in BEX-c, COX-c, SAX-c and WIX-c under hypoxic conditions. The experiments were performed at pHe7.4, 7.0 or 6.6. Columns and bars represent mean values ± s.d. of four or five independent experiments. C, Rate of glucose uptake; *, rate of loctate release

of the data in the time interval 0-10 h and one late value based on
analysis of the data in the time interval 14-31 h. The rates of the
glucose and lactate concentration changes in the medium of
aerobic cell cultures were determined by linear regression analysis
of data pertaining to a 6-h time interval (figure not shown).
The rates of glucose uptake and lactate release in BEX-c, COX-

c, SAX-c and WIX-c under hypoxic conditions are compared with
those under aerobic conditions in Figure 4. The experiments were
performed at PHe 7.4. BEX-c showed lower rates of glucose
uptake and lactate release than COX-c, SAX-c and WIX-c under
aerobic conditions (P < 0.01). The rates of glucose uptake and
lactate release were higher under hypoxic conditions than under
aerobic conditions in all cell lines (P < 0.05). The magnitude of the
hypoxia-induced glycolysis up-regulation was not significantly
different in the four cell lines.

Figure 5 shows the rates of glucose uptake and lactate release in
BEX-c, COX-c, SAX-c and WIX-c under hypoxic conditions at

PHe 7.4, 7.0 and 6.6 (early and late). The glucose metabolism
differed significantly between some of the cell lines at PHe 7.4, 7.0
and 6.6 (early). Thus, the rates of glucose uptake and lactate
release were higher in COX-c, SAX-c and WIX-c than in BEX-c at
PHe 7.4 (P < 0.01) and 7.0 (P < 0.01). SAX-c showed higher rates
of glucose uptake and lactate release than BEX-c, COX-c and
WIX-c at PHe 6.6 (early) (P < 0.05). Significant differences
between the cell lines were not detected PH. 6.6 (late).
The glucose metabolism was similar at PHe 7.4 and 7.0 and

inhibited at PH. 6.6 (Figure 5). Thus, the rate of glucose uptake was
lower at PH. 6.6 (early and late) than at PHe 7.4 and 7.0 in all cell
lines (P < 0.05). All lines also showed a lower rate of lactate release
at PH. 6.6 (late) than at PHe 7.4 and 7.0 (P < 0.01). However, the
rate of lactate release at PHe 6.6 (early) was not significantly
different from that at PHe 7.4 and 7.0 in any of the lines. It should
also be noticed that at PH. 6.6 (early), the rate of lactate release was
higher than the rate of glucose uptake by a factor larger than 2.0.
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Figure 6 Chromatograms showing the separation and the relative
concentrations of AMP, ADP and ATP. The number at the peaks represents
the exact elution time. The chromatograms refer to BEX-c exposed to
hypoxia at pHe 7.4 for 0, 10, 18 or 31 h. Similar chromatograms were
achieved in all experiments, irrespective of cell line and pHe
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The adenylate energy charge of the cell lines was 0.94 ± 0.01
(BEX-c), 0.92 ± 0.02 (COX-c), 0.93 ± 0.03 (SAX-c) and
0.93 ± 0.02 (WIX-c) under aerobic conditions at PHe 7.4.
Chromatograms showing that the adenylate energy charge
decreased with time under hypoxia are presented in Figure 6. The
ATP peak was reduced and the AMP and ADP peaks were
enhanced after protracted hypoxia treatments. The adenylate
energy charge followed biphasic curves; the decrease was most
pronounced shortly after the hypoxia treatment had been initiated
and then tapered off (Figure 7). The magnitude of the hypoxia-
induced decrease differed significantly between some of the cell
lines. Thus, 6-31 h after the initiation of treatment, the adenylate
energy charge was higher in BEX-c and SAX-c than in COX-c and
WIX-c at pHe 7.4 (P < 0.05), 7.0 (P < 0.05) and 6.6 (P < 0.05). The
adenylate energy charge in BEX-c was not significantly different
from that in SAX-c and the adenylate energy charge in COX-c was
not significantly different from that in WIX-c at any of these PHe
values. Adenylate energy charge curves were therefore fitted to the
combined BEX-c and SAX-c data and to the combined COX-c and
WIX-c data in Figure 7. The adenylate energy charge was inde-
pendent of the pHe; the curves at PHe 7.4, 7.0 and 6.6 were not
significantly different in any of the cell lines.

DISCUSSION

The adenylate energy charge of BEX-c, COX-c, SAX-c and WIX-
c decreased during exposure to hypoxia. Hypoxia resulted in up-
regulated glycolysis in all four lines. However, the up-regulation
was not sufficiently large to compensate for the loss in energy
generation resulting from the inhibition of the oxidative pathway.
The effects of hypoxia on glycolysis and adenylate energy charge
reported here for human melanoma cells are thus consistent with
those reported previously for rodent tumour cells and other histo-
logical types of human tumour cells (Rotin et al, 1986; Heacock
and Sutherland, 1990; Casciari et al, 1992; Gerweck et al, 1992).
The hypoxia-induced decrease in adenylate energy charge

differed significantly between the four cell lines. Thus, BEX-c and
SAX-c showed a higher adenylate energy charge under hypoxic
conditions than did COX-c and WIX-c, whether the PHe was 7.4,

Time (h)
Figure 7 Adenylate energy charge vs time under hypoxia for BEX-c (0), COX-c (-), SAX-c (A) and WIX-c (V). The experiments were performed at pH6 7.4,
7.0 or 6.6. Points and bars represent mean values ± s.d. of four or five independent experiments. Curves were fitted to the data by regression analysis. The two
curves in each panel represent the best common fit to the BEX-c and SAX-c data and the best common fit to the COX-c and WIX-c data
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7.0 or 6.6. This observation suggests that tumour cells can differ
substantially in their ability to avoid energy deprivation during
microenvironmental stress. As all cell lines studied here were
of melanoma origin, significant intertumour heterogeneity in
microenvironment-induced energy deprivation might occur even
within single histological types of tumours.
The differences between the cell lines in adenylate energy

charge during exposure to hypoxia cannot be attributed mainly to
differences in the capacity of the cells to generate energy by anaer-
obic metabolism, because there was no correlation between the
adenylate energy charge and the rates of glucose uptake and lactate
release. Thus, the adenylate energy charge was similar for BEX-c
and SAX-c, irrespective of the pHe, whereas BEX-c showed lower
rates of glucose uptake and lactate release than SAX-c, except at
PHe 6.6 (late). SAX-c showed a higher adenylate energy charge
than COX-c and WIX-c at pHe 7.4 and 7.0, whereas the rates of
glucose uptake and lactate release were similar. Moreover, the
adenylate energy charge at pHe 6.6 was similar to that at PHe 7.4
and 7.0 in all cell lines, whereas the rates of glucose uptake were
down-regulated at PH. 6.6.
The adenylate energy charge of tumour cells subjected to

microenvironmental stress is controlled by the balance between
the rates of energy generation and energy consumption
(Calderwood et al, 1985; Rotin et al, 1986; Gerweck et al, 1992).
Exposure of cells to hypoxia leads to continuously decreasing rates
of DNA and protein synthesis and cessation of cell proliferation
(Born et al, 1976; Shrieve et al, 1983; Pettersen et al, 1986;
Heacock and Sutherland, 1990). Cell lines might differ in the
capacity to regulate and turn off these energy-requiring processes
(Gerweck et al, 1992). Consequently, the higher adenylate energy
charge in BEX-c and SAX-c than in COX-c and WIX-c might
have resulted from a faster hypoxia-induced decrease in the energy
consumption in BEX-c and SAX-c than in COX-c and WIX-c.
This interpretation is consistent with the biphasic shape of the
adenylate energy charge curves. The decrease in adenylate energy
charge was most pronounced shortly after the hypoxia treatment
had been initiated and then tapered off with time.
The pHe of most tumours in vivo is within the range 6.6-7.4

(Wike-Hooley et al, 1984; Tannock and Rotin, 1989; Vaupel et al,
1989). Experimental studies have suggested that the energy status is
particularly low in hypoxic tumour cells at PHe in the lower part of
this range, because of inhibited glycolysis owing to the low PHe
(Halperin et al, 1969; Rotin et al, 1986; Casciari et al, 1992;
Gerweck et al, 1993). However, the adenylate energy charge at pHe
6.6 was similar to that at pHe 7.4 and 7.0 in hypoxic cultures of the
cell lines studied here, even though the rate of glucose uptake was
lower at PHe 6.6, than at PHe 7.4 and 7.0. It is possible that the
melanoma cells used an intracellular energy source at PHe 6.6, e.g. a
stock of glycogen, to compensate for the reduced rate of glucose
uptake. This suggestion is consistent with the observation that the
rate of lactate release was higher than the rate of glucose uptake by a
factor larger than 2.0 during the first 10 h of the hypoxia treatment at
PHe 6.6. The rate of lactate release corresponded to the rate of
glucose uptake 14-31 h after the treatment had been initiated
(Figure 5), indicating that the intracellular energy source had been
exhausted. The rate of energy consumption might have been
adjusted to the reduced rate of energy generation by then, and hence,
the adenylate energy charge at PHe 6.6 was similar to that at PHe 7.4
and 7.0 in hypoxic BEX-c, COX-c, SAX-c and WIX-c cultures.

In summary, hypoxia and low PHe might cause resistance to
treatment and promote the malignant progression of tumours,

provided that the tumour cells have the ability to avoid severe
energy deprivation during prolonged microenvironmental stress.
The present study suggests that tumours differ in this ability and
that the differences can be attributed to differences in the capacity
to turn off energy-requiring processes in an oxygen-deficient
microenvironment rather than to differences in the capacity to
generate energy by anaerobic metabolism.
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