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Abstract
An increasing number of studies are using landscape genomics to investigate local 
adaptation in wild and domestic populations. Implementation of this approach re-
quires the sampling phase to consider the complexity of environmental settings and 
the burden of logistical constraints. These important aspects are often underesti-
mated in the literature dedicated to sampling strategies. In this study, we computed 
simulated genomic data sets to run against actual environmental data in order to trial 
landscape genomics experiments under distinct sampling strategies. These strategies 
differed by design approach (to enhance environmental and/or geographical repre-
sentativeness at study sites), number of sampling locations and sample sizes. We then 
evaluated how these elements affected statistical performances (power and false 
discoveries) under two antithetical demographic scenarios. Our results highlight the 
importance of selecting an appropriate sample size, which should be modified based 
on the demographic characteristics of the studied population. For species with limited 
dispersal, sample sizes above 200 units are generally sufficient to detect most adap-
tive signals, while in random mating populations this threshold should be increased 
to 400 units. Furthermore, we describe a design approach that maximizes both en-
vironmental and geographical representativeness of sampling sites and show how it 
systematically outperforms random or regular sampling schemes. Finally, we show 
that although having more sampling locations (between 40 and 50 sites) increase 
statistical power and reduce false discovery rate, similar results can be achieved with 
a moderate number of sites (20 sites). Overall, this study provides valuable guidelines 
for optimizing sampling strategies for landscape genomics experiments.
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1  | INTRODUC TION

Landscape genomics is a subfield of population genomics, with the aim 
of identifying genetic variation underlying local adaptation in natural 
and managed populations (Balkenhol et al., 2017; Joost et al., 2007; 

Rellstab, Gugerli, Eckert, Hancock, & Holderegger, 2015). The approach 
consists of analysing genomic diversity and environmental variability si-
multaneously in order to detect genetic variants associated with a spe-
cific landscape composition. Studies of this kind usually incorporate an 
analysis of population structure, such that neutral genetic variation can 

www.wileyonlinelibrary.com/journal/men
https://orcid.org/0000-0003-0904-5486
https://orcid.org/0000-0003-1340-3389
https://orcid.org/0000-0002-2188-2861
https://orcid.org/0000-0002-7978-5239
mailto:﻿￼
https://orcid.org/0000-0002-1184-7501
http://creativecommons.org/licenses/by-nc/4.0/
mailto:stephane.joost@epfl.ch


     |  155SELMONI et al.

be distinguished from adaptive variation (Rellstab et al., 2015). Over 
the last few years, the landscape genomic approach has become more 
widely used (see Table 1; Balkenhol et al., 2017; Rellstab et al., 2015). 
It is being applied to a range of species, including livestock (Colli et al., 
2014; Lv et al., 2014; Pariset, Joost, Marsan, & Valentini, 2009; Stucki 
et al., 2017; Vajana et al., 2018), wild animals (Harris & Munshi‐South, 
2017; Manthey & Moyle, 2015; Stronen et al., 2015; Wenzel, Douglas, 
James, Redpath, & Piertney, 2016), insects (Crossley, Chen, Groves, 
& Schoville, 2017; Dudaniec, Yong, Lancaster, Svensson, & Hansson, 
2018; Theodorou et al., 2018), plants (Abebe, Naz, & Léon, 2015; De 
Kort et al., 2014; Pluess et al., 2016; Yoder et al., 2014) and aquatic 
organisms (DiBattista et al., 2017; Hecht, Matala, Hess, & Narum, 2015; 
Laporte et al., 2016; Riginos, Crandall, Liggins, Bongaerts, & Treml, 
2016; Vincent, Dionne, Kent, Lien, & Bernatchez, 2013).

Sampling strategy plays a pivotal role in experimental research, and 
must be theoretically tailored to the aim(s) of a study (Rellstab et al., 
2015; Riginos et al., 2016). In the context of landscape genomics, the 
sampling design should cover a spatial scale representative of both the 
demographic processes and the environmental variability experienced 
by the study population (Balkenhol et al., 2017; Leempoel et al., 2017; 
Manel et al., 2010; Rellstab et al., 2015). This is imperative to be able to 
properly account for the confounding effect of population structure, to 
provide a biologically meaningful contrast between the environmental 
variables of interest and to definitely allow the search for actual adaptive 
variants (Balkenhol et al., 2017; Manel et al., 2010; Rellstab et al., 2015). 
Consequently, extensive field sampling is generally required and needs 
to be coupled with high‐throughput genome sequencing to characterize 
samples at a large number of loci (Balkenhol et al., 2017; Rellstab et al., 
2015). Beyond these theoretical aspects, pragmatic choices need to be 
made with regard to financial and logistical constraints that are often 
imposed (Manel et al., 2010; Rellstab et al., 2015). A sampling strategy 
consists of: (a) sampling design (the spatial arrangement of the sampling 
locations, D); (b) the number of sampling locations (L); and (c) sample size 
(the number of individuals sampled, N; Table 1). The care with which 
these parameters are defined affects the scientific output of an experi-
ment as well as its costs (Manel et al., 2010; Rellstab et al., 2015).

The landscape genomics community has traditionally focused on 
formulating theoretical guidelines for collecting individuals through-
out the study area. In this literature, particular emphasis has been 
placed on how spatial scales and environmental variation should be 
accounted for when selecting sampling sites (Leempoel et al., 2017; 
Manel, Albert, & Yoccoz, 2012; Manel et al., 2010; Rellstab et al., 
2015; Riginos et al., 2016). Theoretical simulations have shown that 
performing transects along environmental gradients or sampling 
pairs from contrasting sites that are spatially close reduced false dis-
covery rates (FDRs) caused by demographic processes confounding 
effects (De Mita et al., 2013; Lotterhos & Whitlock, 2015). However, 
in these studies the environment was described using a single vari-
able, which oversimplifies the choice of sampling sites. In fact, in a 
real landscape genomics application, several variables are usually 
analysed in order to explore a variety of possible environmental 
pressures causing selection (Balkenhol et al., 2017). The concurrent 
use of several environmental descriptors also allows us to control for 

the bias associated with collinear conditions (Rellstab et al., 2015). 
Furthermore, these studies have focused on the comparison of dif-
ferent statistical methods with the drawback of confronting only a 
few combinations of the elements determining the sampling strat-
egy (De Mita et al., 2013; Lotterhos & Whitlock, 2015). Last but not 
least, the number of samples used in the simulations (between 540 
and 1,800; Lotterhos & Whitlock, 2015) appears to be unrealistic for 
use in most real landscape genomic experiments (Table 1) and thus 
the guidelines proposed are scarcely applicable in practice.

There is therefore a need to identify pragmatic and realistic 
guidelines such that a sampling strategy is designed to maximize sta-
tistical power, minimize false discoveries, and optimize efforts and 
financial expenses (Balkenhol et al., 2017; Rellstab et al., 2015). In 
particular, the fundamental questions that need to be addressed are: 
(a) how to determine the spatial arrangement of sampling locations; 
(b) how to organize sampling effort (for instance preferring many 
samples at a few sites, or rather fewer samples at many sites); and (c) 
how many samples are required to obtain sufficient statistical power 
(Rellstab et al., 2015; Riginos et al., 2016).

Here, we investigate how the outcome of landscape genomic anal-
yses is driven by the sampling strategy. We ran simulations using a fic-
tive genetic data set encompassing adaptive genotypes shaped by real 
environmental variables. The simulations accounted for antithetic de-
mographic scenarios encompassing strong or weak population struc-
ture. We proposed sampling strategies that differed according to three 
elements: sampling design approach (D), number of sampling locations 
(L) and sample size (number of samples, N). For each of these three el-
ements, we measured their relative impacts on the analyses' true pos-
itive rates (TPRs) and FDRs, as well as their impact on the predictive 
positive value (PPV; Marshall, 1989) of the strongest adaptive signals.

2  | MATERIAL AND METHODS

The iterative approach we designed to test the different sam-
pling strategies required that a new genetic data set encompass-
ing neutral and adaptive variation was created at every run of the 
simulations. A simulated genomic data set can be constructed by 
means of software performing coalescent (backward‐in‐time) or 
forward‐in‐time simulations (Carvajal‐Rodríguez, 2008). However, 
methods using coalescent simulations (e.g., splatche2; Ray, Currat, 
Foll, & Excoffier, 2010) did not match our needs as they cannot 
compute complex selective scenarios (e.g., those involving multi-
ple environmental variables; Carvajal‐Rodríguez, 2008). We could 
not use forward‐in‐time methods either, as they are slow and 
therefore not compatible with the computational requirements of 
our simulative approach (Carvajal‐Rodríguez, 2008). We therefore 
developed a customized framework in the r environment (version 
3.3.1; R Core Team, 2016) to compute both neutral and adaptive 
genetic variation based on gradients of population membership 
and environmental variations, respectively (Figure 1). Before run-
ning the simulations across the complete data set (the multivari-
ate environmental landscape of Europe), we tested our approach 
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on a reduced data set and compared it to a well‐established for-
ward‐in‐time simulation software (cdpop, version 1.3; Landguth & 
Cushman, 2010). This step allowed us to define the optimal param-
eters required to simulate two types of demographic scenarios: 
panmictic (no dispersal constraints, random mating) and struc-
tured (dispersal and mating limited by distance).

We then proceeded with the simulations on the environmental 
data set of Europe. At each iteration, a new genetic background en-
compassing neutral and adaptive variation was computed (Figure 1, 
steps 1 and 2). Subsequently, a sampling strategy was applied as a 
combination of sampling design (D), number of sampling locations (L) 
and sample size (N) (Figure 1, steps 3–5), resulting in the generation 
of a genetic data set that, coupled with environmental data, under-
went a landscape genomics analysis (Figure 1, step 6). At the end 
of each iteration, three diagnostic parameters were calculated: TPR 
(i.e., statistical power) and FDR for the analysis, as well as the PPV of 
the strongest genotype–environment associations (Figure 1, step 7).

At the end of the simulations, we analysed how each element 
of the sampling strategy (D, L, N) affected the rates of the three di-
agnostic parameters (TPR, FDR, PPV) under the two demographic 
scenarios (with or without dispersal constraints). All scripts and data 
used to perform this analysis are publicly available on Dryad (https​
://doi.org/10.5061/dryad.m16d23c).

2.1 | Environmental data

As a base for our simulations, we quantified the environmental set-
tings of Europe (Figure S1). We retrieved eight climatic variables 
from publicly available sources (annual mean temperature, mean di-
urnal range, temperature seasonality, mean temperature of wettest 
quarter, annual precipitation, precipitation seasonality, precipitation 
of warmest quarter and altitude; Table S1; Hijmans, Cameron, Parra, 
Jones, & Jarvis, 2005; Ryan et al., 2009). In order to work on a rel-
evant geographical scale (Leempoel et al., 2017) while maintaining 
an acceptable computational speed, the landscape was discretized 
into grid cells of 50  ×  50  km, using qgis toolbox (version 2.18.13; 
QGIS development team, 2009). This resulted in 8,155 landscape 
sites. Average values of environmental variables were computed for 
each cell of the landscape using the qgis zonal statistics tool.

2.2 | Computation of genotypes

For the creation of the genotype matrices, we developed an R‐pipe-
line based on probability functions to compute genotypes from 
population membership coefficients and environmental values (Box 
S1). The theoretical fundaments of this method are based on the ob-
servation that when the population is structured, neutral alleles tend 

TA B L E  1   Sampling design in landscape genomics studies: a nonexhaustive list of landscape genomics studies, highlighting different 
species and their related sampling strategies

Study Species Sampling design (D)
Sampling loca‐
tions (L) Sample size (S)

Colli et al. (2014) Goat Spatial and breed representativeness 10 sites 43

Pariset et al. (2009) Goat Spatial and breed representativeness 16 regions 497

Stucki et al. (2017) and  
Vajana et al. (2018)

Cattle Spatial representativeness 51 regions 813

Harris and Munshi‐South (2017) White‐footed 
mouse

Habitat representativeness 6 sites 48

Stronen et al. (2015) Wolf Opportunistic, population 
representativeness

59 sites 59

Wenzel et al. (2016) Red grouse Spatial representativeness 21 sites 231

Crossley et al. (2017) Potato beetle Habitat representativeness 16 sites 192

Dudaniec et al. (2018) Damselfly Environmental and spatial 
representativeness

25 sites 426

Theodorou et al. (2018) Red‐tailed 
bumblebee

Habitat representativeness 18 sites 198

Abebe et al. (2015) Barley Spatial representativeness 10 regions 260

De Kort et al. (2014) Black alder Spatial and habitat representativeness 24 populations 356

Pluess et al. (2016) European beech Spatial and environmental 
representativeness

79 populations 234

Yoder et al. (2014) Barrelclover Spatial representativeness 202 sites 202

DiBattista et al. (2017) Stripey snapper Spatial representativeness 51 sites 1,016

Hecht et al. (2015) Chinook salmon Spatial representativeness 53 sites 1,956

Laporte et al. (2016) European eel Spatial and environmental 
representativeness

8 sites 179

Vincent et al. (2013) Atlantic salmon Spatial representativeness 26a rivers 641a

aNumbers from the Vincent et al. report (2013) concerning the non‐pooled samples. 

https://doi.org/10.5061/dryad.m16d23c
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to show similar spatial patterns of distribution (a feature commonly 
exploited in FST outlier tests; Luikart, England, Tallmon, Jordan, & 
Taberlet, 2003; and principal component analyses of genotype ma-
trices; Novembre et al., 2008). Conversely, when a marker is under 
selection, its genotypic/allelic frequencies correlate with the envi-
ronmental variable of interest (this is the basic concept of landscape 
genomics; see Balkenhol et al., 2017). For every iteration, 1,000 loci 
are computed: 10 are set to “adaptive,” and the remaining 990 to 
“neutral.” They are computed as follows:

2.2.1 | Neutral markers (Box S1a)

A parameter (m) is set to define the number of population member-
ship gradients used in the simulations, where higher values of m re-
sult in more complex population structures. Every population 
membership gradient is simulated by randomly picking one to five 
landscape locations to represent the centre of the gradient. For each 
landscape location, the geographical distance to the gradient centres 

(calculated using the R dist function) constitutes the membership co-
efficient. Next, a linear transformation converts this coefficient 
(Figure S1) for each sampling site into the probability of carrying a 
private allele for the population described (pA|PS). A second param-
eter (c, Box S2) defines this transformation, with values between 0.5 
(random population structure) and 0 (strong population structure). 
The probability of pA|PS is then used to draw (using the R‐stat sample 
function) the bi‐allelic genotype for each individual. This procedure is 
reiterated for every neutral locus assigned to a specific population 
membership coefficient. Each of the 990 neutral loci is then assigned 
to one of the m population membership coefficients (probability of 

assignment equal to (1−c)
∑m

i=1
(1−ci)

) using the R sample function.

2.2.2 | Adaptive markers (Box S1b)

The probability of carrying an adaptive allele (pA|Env) is calculated 
through a linear transformation of a specific environmental gradi-
ent. This transformation is defined by two parameters. The first 
parameter (s1) determines the amplitude of the transformation, and 
ranges between 0 (strong selective response) and 0.5 (neutral re-
sponse; Box S2). The second parameter (s2) shifts the baseline for 
allele frequencies, and ranges between −0.2 and 0.2 (weakening and 
strengthening the selective response, respectively; Box S2). Each of 
the 10 adaptive loci is randomly associated with one environmen-
tal variable. This implies that some environmental conditions can be 
associated with several genetic markers, and others with none. For 
every adaptive locus, the bi‐allelic genotype is drawn (using the R‐
stat sample function) out of pA|Env.

2.3 | Evolutionary scenarios and parametrization

Two distinct demographic scenarios were chosen for this study: one 
involving a population that is not genetically structured (hereafter 
the “panmictic population scenario”), and one involving a structured 
population (hereafter the “structured population scenario”; see Box 
S2). To define the values of parameters m, c, s1 and s2 that allow the 
production of these two demographic scenarios, we ran a compari-
son of our customized simulation framework against simulations 
obtained using a well‐established forward‐in‐time simulation soft-
ware for landscape genetics called cdpop (version 1.3; Landguth & 
Cushman, 2010).

This comparison was performed on a reduced data set com-
posed of a 10‐by‐10 cell grid, covered with two dummy environ-
mental variables extracted from the bioclim collection (Hijmans 
et al., 2005; Figure S1a,b). Each cell could host up to five individ-
uals, where each individual was characterized at 200 single nu-
cleotide polymorphisms (SNPs). In this set‐up, we ran cdpop using 
two distinct settings: the first that allowed for completely random 
dispersal and mating movements of individuals (i.e., panmictic pop-
ulation scenario), while the second setting restricted movements 
to neighbouring cells using a dispersal‐cost based on distance (i.e., 
structured population scenario). In both scenarios, we applied 

F I G U R E  1   Workflow for each iteration of the simulative 
approach. The seven steps taken for every iteration. Starting with 
the blue boxes, the genetic set‐up is established by selecting the 
demographic scenario (panmictic or structured), which determines 
the neutral structure, and by picking the environmental variables 
implied in adaptation. The environmental variable of interest and 
the strength of selection are randomly sampled for each of the 
10 adaptive markers. Following this, the sampling strategy (here 
shown with red boxes) is set as a combination of design approach 
(geographical, environmental, hybrid or random), number of 
sampling locations (5, 10, 20, 40 or 50 locations) and sample size 
(50, 100, 200, 400, 800 or 1,600 samples). This results in the 
creation of a genotype matrix that undergoes a landscape genomics 
analysis. At the end of iterations, the statistical power (TPR) and 
false discovery rate (FDR) of the analysis and statistical predictive 
positive value of the strongest associations (PPV) are calculated to 
assess the performance of the sampling strategy [Colour figure can 
be viewed at wiley​onlin​elibr​ary.com]

1. Demographic 
scenario

Panmictic or structured

2. Adaptation 
Create 10 adaptive markers

3. Sampling design (D)
Geographic, Environmental, Hybrid or Random

5. Sample size (N)
50, 100, 200, 400, 800 or 1600

4. Sampling locations (L)
5, 10, 20, 40 or 50

6. Landscape
Genomics analysis

7. Evaluate 
performance

TPR, FDR, PPV

Genotype Matrix
(1,000 loci x N individuals)

wileyonlinelibrary.com
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identical mortality constraints related to the two environmental 
variables, and set for each of them a genetic variant modulating 
fitness (Figure S1c,d). Fitness responses were constructed on an 
antagonistic pleiotropy model (i.e., adaptive tradeoffs, Lowry, 
2012), using different intensities to represent moderate (Figure 
S1c) and strong selective constraints (Figure S1d). The following 
default cdpop parameters were used for the remaining settings: 
five age classes with no sex‐specific mortality, reproduction was 
sexual and with replacement, no genetic mutations, and epistatic 
effects or infections were allowed. The simulations ran for 100 
generations and 10 replicates per demographic scenario were 
computed.

In parallel, we ran our customized algorithm to compute geno-
types, using the same simplified data set as above. We iteratively 
tested all the possible combinations (hereafter “simulative vari-
ants”) of the parameters m (values tested: 1, 5, 10, 15, 20, 25), c (all 
possible ranges tested between: 0.1, 0.2, 0.3, 0.4, 0.5), s1 (values 
tested: 0, 0.1, 0.2, 0.3, 0.4, 0.5) and s2 (values tested: −0.2, −0.1, 
0, 0.1, 0.2), and replicated each combination 10 times. Following 
this, we investigated which of the simulative variants provided the 
closest match with the allele frequencies observed in the cdpop 
runs. The comparisons were based on three indicators of neutral 
structure:

2.3.1 | Principal component analysis (PCA) of the 
genotype matrix (Figure 2a)

A PCA of the genotype matrix was performed using the prcomp R 
function for each simulation (of both the cdpop and the present cus-
tomized method), where the differential of the variation explained 
by each principal component was then calculated. When the popula-
tion is structured, the first principal component usually shows strong 
differences in the percentage of explained variation compared with 
the other components (Novembre et al., 2008). In contrast, when 
the population structure is absent, minor changes in this differential 
value emerge. The curve describing this differential value was then 
used for a pairwise comparison between the 10 replicates of each 
cdpop scenario and the 10 replicates of each simulative variant (from 
the customized method). The curves were compared by calculating 
the root mean square error (RMSE), and the average RMSE was then 
used to rank simulative variants.

2.3.2 | F statistic (FST; Figure 2b)

Five areas, which spanned four cells each, were selected to represent 
subpopulations of the study area: four areas located at the four cor-
ners of the 10‐by‐10 cell grid and the fifth located at the centre. For 
each simulation, we computed the pairwise FST (Weir & Cockerham, 
1984) between these subpopulations using the hierfstat R package 
(version 0.04; Goudet, 2005). An FST close to 0 indicates the ab-
sence of a genetic structure between subpopulations, while under a 
structured scenario this value tends to increase (Luikart et al., 2003). 
The distribution of all the FST values for the 10 cdpop replicates was 

compared to the distribution of the FST of 10 replicates of each simu-
lative variant using the Kullback–Leibler divergence (KLD; Kullback 
& Leibler, 1951) analysis implemented in the LAPLACESDEMON R 
package (version 16.1.1; Statisticat & LCC, 2018). KLD was then used 
to rank simulative variants.

2.3.3 | Mantel test (Figure 2c)

For each simulation, we computed the genetic and geographical dis-
tance between all individuals of the population applying the R dist 
function to the genotype matrix and the coordinates, respectively. 
Next, we calculated the Mantel correlation (mR; Mantel, 1967) be-
tween these two distance matrices using the mantel.rtest function 
implemented in the ade4 R package (version 1.7, Dray & Dufour, 
2007). When mR is close to 0, it indicates the absence of correla-
tion between the genetic and geographical distances, suggesting the 
absence of genetic structure (i.e., panmictic population scenario). In 
contrast, an mR closer to −1 or +1 indicates that genetic distances 
match geographical distances, as we would expect in a structured 
population scenario (Mantel, 1967). The average mR was calcu-
lated for each simulative variant and compared to the average mR 
measured in the two cdpop scenarios. The resulting difference in mR 
(∆mR) was used to rank simulative variants.

The three ranking coefficients (RMSE, KLD and ∆mR) were 
scaled using the scale R function and averaged, and the resulting 
value was used to rank simulative variants. In this way, it was possi-
ble to find one simulative variant with the best ranking when com-
pared to the cdpop panmictic population scenario, and another with 
the best ranking when compared to the cdpop structured population 
scenario. These two simulative variants provided the values of m and 
c for the simulations on the complete data set.

Subsequently, we focused on the comparison of the values for the 
parameters defining the adaptive processes: s1 and s2. For each cdpop 
demographic scenario, we searched for the s1 and s2 combination that 
resulted in a simulative variant that best matched the allelic frequen-
cies of each of the two genotypes implied in selection (moderate and 
strong). The environmental variable of interest was distributed in 20 
equal intervals and within each interval the allelic frequencies of the 
adaptive genotype were computed. This resulted in the computation 
of a regression line for each simulation that described the allelic fre-
quency of the adaptive genotype as a function of the environmental 
variable causing the selective constraint (Figure 2d,e). Next, we calcu-
lated the RMSE to compare this regression line between the cdpop sce-
narios and the respective simulative variant (i.e., those with the optimal 
m and c according to the previous analyses) under different s1 and s2 
combinations. For the two demographic scenarios, the ranges of s1 and 
s2 were ranked according to RMSE to represent a moderate to strong 
selection in the simulations for the complete data set.

2.4 | Sampling design

Four types of sampling design are proposed: three of them differ-
ently account for the characteristics of the landscape while one 
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randomly selects the sampling locations. The first is “geographical” 
(Figure 3a) and is defined through a hierarchical classification of the 
sites based on their geographical coordinates. The desired number 
of sampling locations (L) determines the number of clusters and the 

geographical centre of each cluster is set as a sampling location. The 
goal of this strategy is to sample sites located as far apart as pos-
sible from each other in the geographical space to guarantee spatial 
representativeness.
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CDPOP Our method CDPOP Our method 
–0

.0
05

PCA

PC#

D
iff

er
en

tia
l %

 o
f v

ar
ia

nc
e 

ex
pl

ai
ne

d PCA

PC#
D

iff
er

en
tia

l %
 o

f v
ar

ia
nc

e 
ex

pl
ai

ne
d PCA

PC#

D
iff

er
en

tia
l %

 o
f v

ar
ia

nc
e 

ex
pl

ai
ne

d

0 50 100 150 200

PCA

PC#

D
iff

er
en

tia
l %

 o
f v

ar
ia

nc
e 

ex
pl

ai
ne

d

Fst

Fst

F
re

qu
en

cy

0
2

4
6

8
10

Fst

Fst

F
re

qu
en

cy

0
2

4
6

8
10

12

Fst

Fst

F
re

qu
en

cy

0
5

10
15

Fst

Fst

F
re

qu
en

cy

0.00 0.01 0.02 0.03 0.04 0.050.00 0.01 0.02 0.03 0.04 0.05 0.00 0.02 0.04 0.06 0.08 0.10 0.00 0.02 0.04 0.06 0.08 0.10

0
5

10
15

Mantel R

Mantel R

F
re

qu
en

cy

Mantel R

Mantel R

F
re

qu
en

cy

–0.4 0.0 0.2 0.4 0.0 0.2 0.4

Mantel R

Mantel R

F
re

qu
en

cy
Mantel R

Mantel R

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

0.
0

1.
0

2.
0

3.
0

0.
0

1.
0

2.
0

3.
0

0.
0

0.
5

1.
0

1.
5

2.
0

Adaptive allele frequency 
(weak selection)

Enviornmental Variable 1

A
da

pt
iv

e 
al

le
le

 A
 fr

eq
ue

nc
y

Adaptive allele frequency 
(weak selection)

Environmental Variable 1

A
da

pt
iv

e 
al

le
le

 A
 fr

eq
ue

nc
y

Adaptive allele frequency 
(weak selection)

Enviornmental Variable 1

A
da

pt
iv

e 
al

le
le

 A
 fr

eq
ue

nc
y

40 50 60 70 80 90 100

Adaptive allele frequency 
(weak selection)

Environmental Variable 1

A
da

pt
iv

e 
al

le
le

 A
 fr

eq
ue

nc
y

80 100 120 140 160 180 200

Adaptive allele frequency 
(strong selection)

Enviornmental Variable 2

A
da

pt
iv

e 
al

le
le

 B
 fr

eq
ue

nc
y

Adaptive allele frequency 
(strong selection)

Environmental Variable 2

A
da

pt
iv

e 
al

le
le

 B
 fr

eq
ue

nc
y

Adaptive allele frequency 
(strong selection)

Enviornmental Variable 2

A
da

pt
iv

e 
al

le
le

 B
 fr

eq
ue

nc
y

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Adaptive allele frequency 
(strong selection)

Environmental Variable 2

A
da

pt
iv

e 
al

le
le

 B
 fr

eq
ue

nc
y

–0
.0

03
–0

.0
01

–0
.0

05
–0

.0
03

–0
.0

01

–0
.0

06
–0

.0
04

–0
.0

02
0.

00
0

–0
.0

06
–0

.0
04

–0
.0

02
0.

00
0

–0.2 –0.4 –0.2

(a)

(b)

(c)

(d)

(e)

0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

40 50 60 70 80 90 100 40 50 60 70 80 90 100 40 50 60 70 80 90 100

80 100 120 140 160 180 200 80 100 120 140 160 180 200 80 100 120 140 160 180 200



160  |     SELMONI et al.

The second design type is “environmental” (Figure 3b). It is based 
on computation of distances depending on the values of environ-
mental variables. The latter are first processed by a correlation filter: 
when two variables are found correlated to each other (R > ±0.5), 
one of them (randomly chosen) is excluded from the data set. The 
remaining uncorrelated descriptors are scaled (SD = 1) and centred 
(mean = 0) using the R scale function. The scaled values are used to 
perform a hierarchical clustering between the landscape sites. Like 
the previous design, the desired number of sampling locations (L) 
defines the number of clusters. For each cluster, the environmen-
tal centre is defined by an array containing the mean of the scaled 
environmental values. The Euclidean distances between this array 
and the scaled values of each site of the cluster are then computed. 
On this basis, the most similar sites to each centre are selected as 
sampling locations. This strategy aims to maximize environmental 
contrast between sampling locations and thus favours the detection 
of adaptive signals (Manel et al., 2012; Riginos et al., 2016).

The third design is “hybrid” (Figure 3c) and is a combination of 
the first two. It consists of dividing the landscape into k environ-
mental regions and selecting within each of these regions two or 
more sampling locations based on geographical position. Initially, 
the environmental variables are processed as for the environmen-
tal design (correlation‐filter and scaling) and used for hierarchical 
classification of the landscape sites. The next step is separating 
the landscape sites into k environmental regions based on this 
classification. The value of k allowed ranges between 2 and half of 
the desired number of sampling locations (L). We use the R pack-
age nbclust (version 3.0, Charrad, Ghazzali, Boiteau, & Niknafs, 
2015) to find the optimal value of k within this range. The optimal 
k is then used to determine the k environmental regions. Next, the 
number of sampling locations (L) is equally divided across the k en-
vironmental regions. If k is not an exact divisor of L, the remainder 
of L/k is randomly assigned to environmental regions. The number 
of sampling locations per environment region (Lki) can therefore 
be equal among environmental regions or, at worst, differ by 1 
(e.g., if L = 8 and k = 4: Lk1 = 2, Lk2 = 2, Lk3 = 2, Lk4 = 2; if L = 10 
and k  =  4: Lk1  =  3, Lk2  =  3, Lk3  =  2, Lk4  =  2). Sampling locations 
within environmental regions are chosen based on geographical 
position. Geographical clusters within each environmental region 
are formed as in the geographical design, setting Lki as the number 
of clusters. The landscape site spatially closer to the centre of each 
geographical cluster is selected as the sampling location. In this 
way, the procedure allows the replication of similar environmental 

conditions at distant sites, therefore being expected to disentan-
gle neutral and adaptive genetic variation and to promote the de-
tection of variants under selection (Manel et al., 2012; Rellstab et 
al., 2015; Riginos et al., 2016).

The fourth type of design is “random”: the sampling locations 
(L) are randomly selected across all the available landscape sites. In 
our simulations, we tested each type of sampling design with num-
bers comparable to those used in real experiments (see Table 1). 
We used five levels of sampling locations L (5, 10, 20, 40 and 50 
locations) and six of sample sizes N (50, 100, 200, 400, 800 and 
1,600 individuals). In iterations for which the sample size is not an 
exact multiple of the number of sites (e.g., 20 sites and 50 individ-
uals), the total number of individuals was changed to the closest 
multiple (here 40 individuals). The scripts including these proce-
dures were written in R using the functions embedded within the 
stats package (R Core Team, 2016).

2.5 | Landscape genomics analysis

We computed association models for each iteration with the sam-
bada software (version 0.6.0; Stucki et al., 2017). First, the simulated 
matrix of genotypes is filtered through a customized R function with 
minor allele frequency <0.05 and major genotype frequency >0.95 
to avoid including rare or monomorphic alleles and genotypes, re-
spectively. Second, a PCA is run on the filtered genotype matrix 
to obtain synthetic variables accounting for population structure 
(hereafter referred to as population structure variables; Patterson, 
Price, & Reich, 2006). Analysis of the eigenvalues of the PCA is car-
ried out to assess whether the population structure is negligible for 
downstream analysis or not (Patterson et al., 2006). At each itera-
tion, the algorithm runs a Tracy–Widom significance test of the ei-
genvalues, as implemented in the assoctests R package (version 0.4, 
Wang, Zhang, Li, & Zhu 2017). Significant eigenvalues indicate the 
presence of non‐negligible population structure: in these situations, 
the corresponding principal components will be used as covariables 
in the genotype–environment association study.

After filtering, sambada is used to detect candidate loci for local 
adaptation. The software is able to run multivariate logistic regres-
sion models (Joost et al., 2007) that include population structure as a 
covariable, while guaranteeing fast computations (Duruz et al., 2019; 
Rellstab et al., 2015; Stucki et al., 2017). To ensure compatibility with 
our pipeline and increase computational speed, we integrated the 
sambada method into a customized python script (version 3.5; Python 

F I G U R E  2   Comparison of genotypes simulated with cdpop and our method. Two distinct demographic scenarios were conceived, one 
with random mating (panmictic population) and one with dispersal costs related to distance (structured population). For each of them, cdpop 
simulated the evolution of the population over 100 generations (red graphs) and replicated the same scenario 10 times. Simultaneously, we 
replicated the same scenarios using our simulative approach and show here the closest match (also replicated 10 times) to cdpop simulations 
(blue graphs). Five methods for evaluating the genetic makeup are presented. (a) A principal component analysis is applied to the genotype 
matrix and the differential of the percentage of explained variation by each component is plotted for every replicate. (b) Pairwise FST 
analysis between five subpopulations is performed for every replicate and the resulting distribution of FST is shown. (c) Mantel correlation 
is calculated between a matrix of genetic and of geographical distances. The resulting Mantel R for every replicate is shown(d, e) The allelic 
frequency of adaptive genotypes is shown as a function of the environmental variables causing selection (representing a case of moderate 
and strong selection, respectively) [Colour figure can be viewed at wiley​onlin​elibr​ary.com]
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Software Foundation, 2018) based on the pandas (McKinney, 2010), 
statsmodels (Seabold & Perktold, 2010) and multiprocessing (Mckerns, 
Strand, Sullivan, Fang, & Aivazis, 2011) packages. Probability values 
related to the two statistics (G‐score and Wald‐score) associated 
with each association model are computed and subsequently cor-
rected for multiple testing using the R QVALUE  package (version 
2.6; Storey, 2003). Models are deemed significant when showing 
q < 0.05 for both tests. When multiple models are found to be sig-
nificant for the same marker, only the best one is kept (according 
to the G‐score). The pipeline was developed in the R‐environment 
using the STATS library.

2.6 | Simulations and evaluation of the performance

Each combination of demographic scenarios, sampling designs, num-
ber of sampling locations and sample sizes was replicated 20 times 
for a total of 4,800 iterations (Table 2). A new genetic matrix was 
randomly redrawn for each iteration to change the selective forces 
implying local adaptation and the demographic set‐up determining 
the neutral loci. At the end of each iteration, three diagnostic param-
eters were computed:

•	 true positive rate of the analysis (TPR or statistical power): per-
centage of true associations detected to be significant;

•	 false discovery rate of the analysis (FDR): percentage of false as-
sociation among those that are significant;

•	 positive predictive value (PPV; Marshall, 1989) of the 10 stron-
gest associations: significant associations were sorted according 
to the association strength (β, the value of the parameter associ-
ated with environmental variable in the logistic model calculated 
by sambada). PPV represents the percentage of true associations 
among the best 10 associations according to β.

After the simulations, we calculated the median (Mdn) and 
interquartile range (IQR) of TPR, FDR and PPV under the differ-
ent levels of the three elements underlying the sampling strategy 
(i.e., sampling design, number of sampling locations and sample 
size; Table 2). We also estimated how changes in these three el-
ements drove alterations in TPR, FDR and PPV (i.e., effect size). 
We focused only on main effects (i.e., effects of single elements 
of the sampling strategy) because interactions effects (i.e., effects 
obtained combining two elements of the sampling strategy) ap-
peared as minor after a preliminary visual inspection (Figure S2). 
Because TPR, FDR and PPV did not follow a normal distribution, 
we applied a bootstrap resampling technique (r = 5,000) to esti-
mate their means and the related uncertainties under the differ-
ent levels of each element of the sampling strategy (Dixon, 2006; 
Nakagawa & Cuthill, 2007). This step was performed in R, using the 

F I G U R E  3   The three sampling design 
approaches accounting for landscape 
characteristics. The three maps illustrate 
how the eight sampling sites are chosen 
under three different sampling designs. 
Under a geographical strategy (a), 
sample location is selected using only 
geographical coordinates in order to 
maximize distance between sites. The 
environmental design (b) is computed 
using environmental variables (after 
filtering out highly correlated variables), 
in order to maximize the climatic distance 
between the chosen sites. The hybrid 
strategy (c) is a combination of the first 
two designs: first the landscape is divided 
into distinct environmental regions before 
choosing sites within each region that 
maximize spatial distance [Colour figure 
can be viewed at wiley​onlin​elibr​ary.com]
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boot library (version 1.3; Canty & Ripley, 2017; Davison & Hinkley, 
1997). The effect size was then calculated as the difference in the 
mean values of TPR, FDR or PPV (and the related 95% confidence 
interval; Nakagawa & Cuthill, 2007) under different levels of the 
elements defining the sampling strategy. In the case of numeri-
cal elements (i.e., number of sampling locations and sample size), 
effect sizes were calculated as the changes in TPR, FDR and PPV 
along with the increments of the ordinal factor levels (e.g., change 
in TPR between sample sizes of 100 to 200, 200 to 400, 400 to 
800, etc.). In the case of sample design, where the factor levels are 
not ordinal, we compared each design approach against a random 
sampling scheme.

3  | RESULTS

3.1 | Parameters of simulations

For the panmictic population scenario, the simulative variant best 
matching the cdpop results was obtained with the coefficients 
m = 1 and c = 0.5, whereas for the structured population scenario, 
the simulative variant was best at m  =  10 and c  =  Unif(0.2,  0.4)
(Figure 2a–c; Box S2, Table S2a,b). In the panmictic population sce-
nario, we found that the moderate selection case was best emulated 
by s1 = 0.4 and s2 = −0.2 and the strong selection by s1 = 0.3 and 
s2 = +0.1. In the structured population scenario, the moderate selec-
tion found its best match in the simulative variant with s1 = 0 and 

s2 = −0.1,whereas the strong selection in the one set with s1 = 0 and 
s2 = +0.2(Figure 2d,e; Box S2, Table S2c,d).

3.2 | True positive rate

In general, the panmictic population scenario simulations showed 
higher TPR (MdnPAN = 40% [IQR = 0%–90%]) than simulations per-
formed under the structured population scenario (MdnSTR  =  0% 
[IQR  =  0%–40%]; Figure 4a–c). For both scenarios, the largest ef-
fect sizes on TPR were generally related to changes in sample size 
(Table 3a). Smaller sample sizes (N = 50, 100) resulted in TPR close 
or equal to zero for both population scenarios (Figure 4c). Under 
the structured population scenario, an increase of TPR started from 
N  =  200 (Table 3a), leading to an initial increase of ~4% TPR for 
every 10 additional samples. At N  =  400, this increment progres-
sively became less abrupt until reaching a maximal value at N = 800 
(Mdn = 100% [IQR = 60%–100%]; Figure 4c; Table 3a). By compari-
son, the panmictic population scenario showed an increase in TPR 
starting at N = 400, with a more constant and less abrupt rate of 
increase (Figure 4c; Table 3a). Under this scenario, N = 1,600 was 
not sufficient to yield maximal TPR (Mdn = 80% [IQR = 60%–90%]; 
Figure 4c).

The effect sizes on TPR related to the number of sampling lo-
cations were less pronounced, compared to those of sample size 
(Table 3a; Figure 4b). Under both population scenarios, the largest 
increases in TPR were observed when passing from L = 5 to L = 10 
(+7% and +32% TPR under panmictic and structured scenarios, re-
spectively; Figure 4b; Table 3a). At higher numbers of sampling sites 
(L = 20, 40 and 50) the incremental rate of TPR was less evident but 
still positive under the structured scenario and close to zero under 
the panmictic one (Table 3a; Figure 4b).

Similar to the influence of sampling locations, the type of sam-
pling design had a minor effect on TPR when compared to the effect 
of sample size (Table 3a; Figure 4a). When compared to the random 
approach, a hybrid design approach was seen to increase the TPR 
by +11% and +14% under panmictic and structured population sce-
narios, respectively (Figure 4a; Table 3a). Environmental design had 
slightly lower effect sizes on TPR (+10% and +12% under panmic-
tic and structured population scenarios, respectively; Figure 4a; 
Table 3a), while those of geographical design were close to zero 
(Figure 4a; Table 3a).

3.3 | False discovery rate

False discoveries generally appeared at a higher rate under a pan-
mictic population scenario (MdnPAN  =  100% [IQR  =  20%–100%]) 
than under a structured population scenario (MdnSTR  =  63% 
[IQR  =  20%–100%]; Figure 4d–f). Sample size had the largest ef-
fects on FDR for both population scenarios (Table 3b; Figure 4f). 
For the panmictic population scenario, median FDR was 100% at 
smaller sample sizes (N = 50, 100 and 200; Figure 4f), but between 
N = 200 and N = 400, the FDR began to decrease by ~2% for every 
10 additional samples taken (Table 3b). The reduction in FDR was 

TA B L E  2   Table of factors varying in the simulative approach

Factor Number of levels Levels

Demographic 
scenarios

2 Panmictic population, 
structured population

Sampling 
design (D)

4 Geographical, environ-
mental, hybrid, random

Sampling loca-
tions (L)

5 5, 10, 20, 40, 50

Sampling size 
(N)

6 50, 100, 200, 400, 800, 
1,600

Replicates 20  

Total 4,800  

Note: Two different demographic scenarios are possible, one in which 
there is no neutral genetic structure (panmictic population) and one in 
which there is a structured variation (structured population). We then 
used sampling strategies emulating those observed in real experiments. 
Three different sampling design approaches accounting for landscape 
characteristics are proposed: one maximizing the spatial representa-
tiveness of samples (geographical), one maximizing the environmental 
representativeness (environmental) and one that is a combination of 
both (hybrid). A fourth sampling design picks sampling locations ran-
domly. The numerical ranges we used were comparable to those from 
real experiment: five levels for number of sampling locations spanning 
from five to 50 sites, and six levels of sample sizes (i.e., total number 
of samples) from 50 to 1,600 samples. For each combination of the 
aforementioned factors, 20 replicates were computed differing in the 
number and types of selective forces driving adaptation. In total, 4,800 
simulations were computed.
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less abrupt after N = 400, and quasinull after N = 800 (Table 3b). 
At N = 1,600, median FDR was 20% [IQR = 10%–30%] (Figure 4f). 
The structured population scenario produced a different pattern: 
the largest median FDR was found at smaller sample sizes (N = 50 
and 100), before a steep decrease was observed closer to N = 200 
(Figure 4f; Table 3b). At larger sample sizes (N  =  400, 800 and 
1,600), FDR showed a logarithmic increase in growth rate where, at 
its most abrupt (between N = 100 and 400), there was an increase 
of +0.9% FDR for every 10 additional samples (Figure 4f; Table 3b). 
For the structured population scenario, N = 1,600 resulted in a me-
dian FDR of 68% [IQR = 57%–82%].

Under both population scenarios, the effect of sampling location 
number on FDR was weaker than the effect of sample size (Table 3b; 
Figure 4e). Similar to the pattern for TPR, the effects were stronger 
when passing from L = 5 to L = 10 (leading to a decrease of FDR of 
7% and 23% under panmictic and structured population scenarios, 
respectively; Figure 4e; Table 3b), than between higher numbers of 
sampling locations (L = 20, 40 and 50; Table 3b).

Sampling design showed effects on FDR, but it was not as strong 
as the influences of sample size and sampling locations (Table 3b; 
Figure 4d). When compared to a random sampling scheme, both the 
environmental and the hybrid sampling designs showed compara-
ble decreases in FDR (hybrid design: −3% and −6%; environmental 
design: −4% and −5% under panmictic and structured population 
scenarios, respectively), while the geographical design showed neg-
ligible changes (Figure 4d; Table 3b).

3.4 | Positive predictive value

The PPVs of the 10 strongest significant associations (hereafter 
simply referred to as PPV) were generally higher under the struc-
tured population scenario (MdnPAN = 70% [IQR = 0%–100%]) than 
under the panmictic population scenario (MdnPAN = 0% [IQR = 0%–
80%]; Figure 4g–i). As with TPR and FDR, changes in sample size 
had the strongest influence on PPV under both population scenar-
ios (Table 3c; Figure 4i). Under the panmictic population scenario, 

F I G U R E  4   Effects of sampling strategy on the landscape genomics simulations. The plots display how the performance of landscape 
genomics experiments is driven by changes in the elements defining the sampling strategy. Three diagnostic parameters are used to measure 
the performance of each strategy: true positive rate (TPR; a–c) and false discovery rate (FDR; d–f) for the analysis and the positive predictive 
value of the 10 strongest significant association models (PPV; g–i). For each diagnostic parameter, we show the effect of sampling design (a, 
d, g; ran = random, geo = geographical, env = environmental, hyb = hybrid), number of sampling locations (b, e, h; 5, 10, 20, 40 or 50 sites) 
and sample size (c, f, i; 50, 100, 200, 400, 800 or 1,600 individuals) under two demographic scenarios: panmictic and structured population 
[Colour figure can be viewed at wiley​onlin​elibr​ary.com]
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median PPV was ~0% for the smaller sample sizes (N = 50, 100 and 
200; Figure 4i), after which patterns of increase were observed: 
from N = 200 to 400 there was an increase of PPV of ~+2% for every 
10 additional samples, and from N = 800 to 1,600 PPV continued 
to increase although it was less abrupt, resulting in a median PPV 
of 88% (IQR = 75%–100%) at N = 1,600 (Figure 4i, Table 3c). Under 
the structured population scenario, fewer samples were required to 
observe a similar increment: while PPV was close to 0 for N = 50 
to N = 100, PPV increased by +7% for every 10 additional samples 
(Figure 4i; Table 3c). The increment of PPV became gradually weaker 
when transitioning between higher levels (N = 400, 800 and 1,600) 
and led to a median PPV of 100% (IQR = 57.5%–100%) at N = 1,600.

Similar to TPR and FDR, the effect of sampling location number 
on PPV was weaker than that of sample size (Table 3c; Figure 4h). 
This effect was particularly evident under the structured population 
scenario, where an increase in the number of sampling locations 
increased PPV strongly (Figure 4h). The strongest PPV increment 
was observed between L  =  5 and 10, where each additional sam-
pling location raised the PPV by +7% (Figure 4h; Table 3c). With 
more sampling locations (L = 20, 40 and 50) the rate of increase of 
PPV remained but was weaker (Figure 4h; Table 3c). In the panmictic 
population scenario, an increase in the number of sampling locations 
produced weaker changes in PPV (Figure 4h; Table 3c).

The sampling design used resulted in rate changes for PPV, de-
spite being less strong than when compared to the other elements 
of the sampling strategy (Table 3c; Figure 4g). When compared to a 
random sampling scheme, the hybrid design and the environmental 
design increased PPV by +6% and +5% under the panmictic popu-
lation scenario and by +13% and +12% under the structured one, 
respectively (Figure 4g; Table 3c). In contrast, geographical design 
did not result in pronounced changes of PPV (Figure 4g; Table 3c).

4  | DISCUSSION

The simulations presented in this study highlight that sampling strat-
egy clearly drives the outcome of a landscape genomics experiment, 
and that the demographic characteristics of the studied species can 
significantly affect the analysis. Despite some limitations that will 
be discussed below, the results obtained make it possible to answer 
three questions that researchers are confronted with when planning 
this type of research investigation.

4.1 | How many samples are required to detect any 
adaptive signal?

In line with the findings of previous studies (e.g., Lotterhos & 
Whitlock, 2015), our results suggest that sample size is the key fac-
tor in securing the best possible outcome for a landscape genomics 
analysis. Where statistical power is concerned, there is an unques-
tionable advantage in increasing the number of samples under the 
scenarios tested. When focusing on the panmictic population sce-
nario, we found a lack of statistical power in simulations for N ≤ 200, 

while detection of true positives increased significantly for N ≥ 400 
(Figure 4c). As we progressively doubled sample size (N  =  800, 
1,600), TPR linearly doubled as well (Figure 4c). Under the struc-
tured population scenario, this increase in statistical power started 
at N ≥ 100 and followed a logarithmic trend that achieved the maxi-
mum power at N ≥ 800 (Figure 4c).

These results show that it is crucial to consider the population's 
demographic background to ensure sufficient statistical power in 
the analyses, as advised by several reviews in the field (Balkenhol 
et al., 2017; Manel et al., 2012; Rellstab et al., 2015). In fact, the 
allelic frequencies of adaptive genotypes respond differently to a 
single environmental constraint under distinct dispersal modes 
(Figure 2d,e). When individual dispersal is limited by distance (struc-
tured population scenario), the allelic frequencies of adaptive gen-
otypes are the result of several generations of selection, resulting 
in the progressive disappearance of nonadaptive alleles from areas 
where selection acts. When the dispersal of individuals is completely 
random (panmictic population scenario), the same selective force 
operates only within the last generation, such that even nonadaptive 
alleles can be found where the environmental constraint acts. Under 
these premises, a correlative approach for studying adaptation (such 
as sambada) is more likely to find true positives under a structured 
population scenario rather than under a panmictic one.

The dichotomy between structured and panmictic populations 
also emerges when analysing FDRs. Under the panmictic popula-
tion scenario, increasing the number of individuals sampled reduced 
FDR, while the inverse pattern was seen under a structured pop-
ulation scenario (Figure 4f). The issue of high false positive rates 
under structured demographic scenarios is well acknowledged in 
landscape genomics (De Mita et al., 2013; Rellstab et al., 2015). 
Population structure results in gradients of allele frequencies that 
can mimic, and be confounded by, patterns resulting from selec-
tion (Rellstab et al., 2015). As sample size increases, the augmented 
detection of true positives is accompanied by the (mis)detec-
tion of false positives. Under the panmictic population scenarios, 
these confounding gradients of population structure are absent 
(Figure 2a–c) and high sample sizes accentuate the detection of true 
positives only (Figure 4f).

Working with FDR up to 70% (Figure 4f) might appear excessive, 
but this should be contextualized in the case of landscape genomics 
experiments. The latter constitute the first step towards the identi-
fication of adaptive loci, which is generally followed by further ex-
perimental validations (Pardo‐Diaz, Salazar, & Jiggins, 2015). Most 
landscape genomics methods test single‐locus effects (Rellstab et 
al., 2015). This framework is efficient for detecting the few individ-
ual loci that provide a strong selective advantage, rather than the 
many loci with a weak individual effect (for instance those making up 
a polygenic adaptive trait; Pardo‐Diaz et al., 2015). Therefore, when 
researchers are faced with a high number of significant associations, 
they tend to focus on the strongest ones (Rellstab et al., 2015), as 
we did here by measuring the PPV of the 10 strongest associations. 
By relying on this diagnostic parameter, we showed that increasing 
sample size ensures that the genotypes more strongly associated 
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with environmental gradients are truly due to adaptive associations 
(Figure 4i). Under these considerations, acceptable results are ob-
tainable with moderate sample sizes: a median PPV of at least 50% 
was found with simulations with N  =  400 and N  =  200 under the 
panmictic and structured population scenario, respectively.

Each landscape genomic experiment is unique in terms of envi-
ronmental and demographic scenarios, which is why it is not possible 
to propose a comprehensive mathematical formula to predict the ex-
pected TPR, FDR and PPV based solely on sample size. When work-
ing with a species with a presumed structured population (e.g., wild 
land animals), we advise against conducting experiments with fewer 
than 200 sampled individuals, as the statistical requirements to de-
tect true signals are unlikely to be met. Panmixia is extremely rare in 
nature (Beveridge & Simmons, 2006), but long‐range dispersal can 
be observed in many species such as plants (Nathan, 2006) and ma-
rine organisms (Riginos et al., 2016). When studying species of this 
kind, it is recommended to increase sample size to at least 400 units.

4.2 | How many sampling sites?

Increasing the number of samples inevitably raises the cost of an 
experiment, largely resulting from sequencing and genotyping 
costs (Manel et al., 2010; Rellstab et al., 2015). Additionally, field-
work rapidly increases the cost of a study in cases where sampling 
has to be carried out across landscapes with logistic difficulties and 
physical obstacles. Therefore, it is both convenient and economical 
to optimize the number of sampling locations to control for ancil-
lary costs.

De Mita et al. (2013) suggested that increasing the number of 
sampling locations would raise power and reduce false discover-
ies. The present study partially supports this view. A small number 
of sampling locations (L  =  5) was found to reduce TPR and PPV 
while increasing FDR, compared to using more sampling locations 
(L  =  10, 20, 40 and 50; Figure 4b,e,h). This is not surprising, be-
cause when sampling at a small number of locations the environ-
mental characterization is likely to neglect some contrasts and 
ignore confounding effects between collinear variables (Leempoel 
et al., 2017; Manel et al., 2010). This was particularly evident under 
the structured population scenario (Figure 4b,e,h). In contrast, we 
found that higher numbers of sampling locations (L = 40 and 50) 
provided little benefits in terms of TPR, FDR and PPV, compared to 
a moderate number of locations (L = 20; Figure 4b,e,h). These dis-
crepancies with previous studies are probably due to differences in 
the respective simulative approaches applied (we use several envi-
ronmental descriptors instead of one) and the characteristics of the 
statistical method we employed to detect signatures of selection. 
In fact, as a number of sampling locations is sufficient to portray 
the environmental contrasts of the study area, adding more loca-
tions does not bring additional information and therefore does not 
increase statistical power. The implications of the information de-
scribed above are considerable because the cost of fieldwork can 
be drastically reduced with marginal countereffects on statistical 
power and false discoveries.

4.3 | Where to sample?

Compared with random or opportunistic approaches, sampling de-
signs based on the characteristics of the study area are expected 
to improve the power of landscape genomics analysis (Lotterhos & 
Whitlock, 2015). We developed three distinct methods to choose 
sampling locations accounting for geographical and/or environmen-
tal information (geographical, environmental and hybrid designs). 
We compared these design approaches between themselves and 
with random sampling schemes. The approach based on geographi-
cal position (geographical design) resulted in statistical power similar 
to the random designs (Figure 4a,d,f), while those based on climatic 
data (environmental and hybrid design) displayed remarkably higher 
TPRs and PPV and slightly lower FDR (Figure 4a,d,f). These benefi-
cial effects on the analysis were accentuated under the structured 
demographic scenario.

These results match previous observations: methods con-
ceived to take advantage of environmental contrasts facilitate 
the detection of adaptive signals (Manel et al., 2012; Riginos et 
al., 2016). Furthermore, the hybrid design prevents the sampling 
of neighbouring sites with similar conditions, therefore avoiding 
the superposition between adaptive and neutral genetic vari-
ation (Manel et al., 2012). This is likely to explain why the hy-
brid design slightly outperformed the environmental approach 
(Figure 4a,d,f).

Therefore, we strongly advise using a sampling scheme account-
ing for both environmental and geographical representativeness. 
Without bringing any additional cost to the analysis, this approach 
can boost statistical power by up to 14% under a complex demo-
graphic scenario (Table 3a), in comparison to a regular (geographical) 
or random sampling scheme.

4.4 | Limitation

The preliminary run of comparison with a well‐established forward‐
in‐time simulation software (cdpop) showed the pertinence of our 
customized simulative approach (Figure 2). The neutral genetic vari-
ation appeared as random under the panmictic population scenario 
(no skew in the PCA graph, FST close to 0, mR close to 0) and struc-
tured under the structured population scenario (skew in the PCA 
graph, FST higher than 0, mR different from 0; Figure 2a–c). Adaptive 
allele frequencies also matched theoretical expectations: the re-
sponses along the environmental gradients were more stressed 
under the structured population scenario than under the panmictic 
one (Figure 2d,e).

Nonetheless, the use of forward‐in‐time simulations on the 
complete data set (used by De Mita et al., 2013; Lotterhos & 
Whitlock, 2015) would probably have resulted in more realistic 
scenarios. To be used in a framework such as that proposed here, 
the forward‐in‐time methods should be compatible with a large 
number of spatial locations (i.e., potential sampling sites), hun-
dreds of individuals per location and a genetic data set counting 
at least 1,000 loci, of which 10 are set as adaptive against distinct 
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environmental variables. Importantly, all these requirements 
should be fulfilled at a reasonable computational speed (with our 
method, for instance, genotypes are computed in a few seconds). 
As far as we know, there is no existing software meeting these 
criteria.

The framework we presented here is based on an artificial ge-
nomic architecture encompassing 10 adaptive loci and 990 neutral 
loci. Given the generally high rates of false positives in landscape ge-
nomics (Balkenhol et al., 2017; Rellstab et al., 2015), it is hard to esti-
mate a realistic percentage of SNPs implied in local adaptation from 
the literature. Besides, this percentage is driven by various factors 
specific to the biology of the studied species/population (e.g., life 
cycle duration, genome size, mutation rate, population size, extent 
of selective pressures; Dittmar, Oakley, Conner, Gould, & Schemske, 
2016) and to the methods applied (e.g., genotyping strategy; Rellstab 
et al., 2015). Furthermore, not all adaptive genotypes are the same 
(Dittmar et al., 2016) and, as a consequence, diversified landscape 
genomics methods exist. Our framework relied on sambada, a well‐
established method that assumes that (a) genotype–environment 
association follows a logistic response and (b) a few genotypes 
have large effects (Stucki et al., 2017). Not all the landscape ge-
nomics methods are based on these assumptions, however, and the 
guidelines described in this work might not be relevant for all these 
methods.

5  | CONCLUSIONS

The present work provides guidelines for optimizing the sampling 
strategy in the context of landscape genomic experiments. Our sim-
ulations highlight the importance of considering the demographic 
characteristics of the studied species when deciding the sampling 
strategy to be used. For species with limited dispersal, we suggest 
working with a minimum sample size of 200 individuals to achieve 
sufficient power for landscape genomic analyses. When species dis-
play long‐range dispersal, this number should be raised to at least 
400 individuals. The costs induced by a large number of samples can 
be balanced by reducing those related to fieldwork. In cases where 
a moderate number of sampling locations (20 sites) is sufficient to 
portray the environmental contrasts of the study area, there is only 
minimal statistical benefit in sampling a larger number of sites (40 or 
50). Furthermore, we describe an approach for selecting sampling 
locations while accounting for environmental characteristics and 
spatial representativeness, and show its beneficial effects on the 
detection of true positives.
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