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Advancement of pharmacokinetic 
models of iohexol in patients aged 
70 years or older with impaired 
kidney function
Max Taubert1*, Elke Schaeffner2, Peter Martus3, Markus van der Giet4, Uwe Fuhr1, 
Amina Lösment5 & Natalie Ebert2

Plasma clearance of iohexol is a pivotal metric to quantify glomerular filtration rate (GFR), but the 
optimal timing and frequency of plasma sampling remain to be assessed. In this study, we evaluated 
the impact of a Bayesian estimation procedure on iohexol clearance estimates, and we identified 
an optimal sampling strategy based on data in individuals aged 70+. Assuming a varying number 
of random effects, we re-estimated previously developed population pharmacokinetic two- and 
three-compartment models in a model development group comprising 546 patients with iohexol 
concentration data up to 300 min post injection. Model performance and optimal sampling times 
were assessed in an evaluation group comprising 104 patients with reduced GFR and concentration 
data up to 1440 min post injection. Two- and three-compartment models with random effects 
for all parameters overestimated clearance values (bias 5.07 and 4.40 mL/min, respectively) and 
underpredicted 24-h concentrations (bias − 14.5 and − 12.0 µg/ml, respectively). Clearance estimates 
improved distinctly when limiting random effects of the three-compartment model to clearance and 
central volume of distribution. Two blood samples, one early and one 300 min post injection, were 
sufficient to estimate iohexol clearance. A simplified three-compartment model is optimal to estimate 
iohexol clearance in elderly patients with reduced GFR.

Plasma clearance of iohexol has become a pivotal metric to quantify glomerular filtration rate (GFR) in clinical 
practice and in research since iohexol is almost exclusively eliminated by the kidneys and has proven to be safe1. 
However, a standardized and universally accepted protocol for iohexol clearance measurement is still missing, 
which is an essential prerequisite for routine use2. The lack of protocol standardization is partly since there is 
no agreement on the optimal blood sampling times and the choice of a pharmacokinetic model and estimation 
method. Different approaches have been suggested, ranging from curve-stripping3 to compartmental models4,5. 
In a recent investigation, we have shown that a three-compartment non-linear mixed-effects model significantly 
improved the description of iohexol pharmacokinetics compared to a two-compartment approach by accounting 
for an early and rapid distributional component of iohexol pharmacokinetics6.

Despite obvious advantages at the population level, it remains unclear whether the use of a three-compartment 
model results in a clinically relevant improvement of individual iohexol plasma clearance estimates. A potential 
disadvantage of three-compartment non-linear mixed-effects models is the need for an empirical Bayesian 
estimation procedure when estimating individual pharmacokinetic (PK) parameters. When using an empirical 
Bayesian estimation procedure, a population PK model serves as a prior distribution to inform the estimation 
of individual parameters, which may result in bias. For example, clearance estimates can be inadequately shifted 
towards the typical clearance in the population if a patient’s characteristics differ significantly from the source 
population or if patient data are incomplete.
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Furthermore, different protocols with regard to the number and timing of iohexol plasma samples have been 
suggested, ranging from a single sample7 to extensive sampling8, including samples taken up to 1440 min after 
iohexol administration in patients with low GFR9.

The aim of the current investigation is to evaluate the impact of the Bayesian estimation procedure on iohexol 
clearance estimation, and to identify the optimal sampling strategy based on data in individuals aged 70+.

Methods
The present analysis is based on data from the previously conducted Berlin Initiative Study (BIS)10,11, which 
was approved by the Ethics Committee of Charité Universitätsmedizin Berlin (proposal number EA2/009/08) 
and carried out in full agreement with all relevant regulations. All participants gave written informed consent.

Inclusion criteria for iohexol plasma clearance measurement, a sub-study of the BIS, were age 70 and above, 
thyroid-stimulating hormone level > 0.3 mIU/L, and no known iodine allergy. In the original sample used to 
develop the BIS equations, 570 patients were included10. Data from seven patients were excluded from this 
analysis due to implausible concentration–time profiles. Out of the remaining 563 patients, samples obtained 
1440 min post injection were available for 17 patients resulting in a subset of 546 patients with data obtained 
up to 300 min post injection and without implausible concentration–time profiles. This subset with data from 
546 patients served as the model development group, while data from the 17 patients with samples obtained 
up to 1440 min post injection were included in the evaluation group. The evaluation group was complemented 
by data from 87 patients with considerably reduced kidney function who underwent iohexol plasma clearance 
measurements including plasma samples obtained 1440 min post injection referred to us from specialist outpa-
tient care. Consequently, the final evaluation group includes 104 patients with samples obtained 1440 min post 
injection11. The selection process for the study population is presented in a flow chart (Supp. Fig. 1). Iohexol 
plasma concentrations from 104 patients after intravenous bolus administration of 3235 mg iohexol were quan-
tified at 30, 60, 90, 120, 150, 180, 240, 300 and 1440 min using high-performance liquid chromatography as 
described previously10,11. The statistical analysis was carried out using NONMEM 7.4.312 and R software13 with 
the tidyverse14, vpc15, and nonmemica16 packages.

This investigation includes three parts. In the first part, we implement population pharmacokinetic (PK) 
two- and three-compartment models that were previously developed based on iohexol concentrations up to 
300 min post injection6 and re-estimate fixed effects parameters based on data from the model development 
group including 546 patients. Based on the resulting models, we obtained empirical Bayes estimates (EBEs; maxi-
mum a posteriori estimates) of elimination clearance from the 104 patients of the evaluation group not including 
concentrations observed 1440 min post injection. In a second step, concentrations 1440 min post injection were 
predicted based on EBEs and compared to observed concentrations in terms of root mean squared error (RMSE, 
Eq. 1). Furthermore, the impact of including versus omitting observations 1440 min post injection on clearance 
EBEs was quantified in terms of clearance RMSE (Eq. 2). Therefore, concentrations observed 1440 min post 
injection were used as the reference values for assessing predicted concentrations, and the calculated iohexol 
clearances of patients based on all available iohexol plasma concentrations up to 1440 min post injection were 
used as the reference values for assessing clearance values determined based on a restricted number of iohexol 
samples up to 300 min post injection. Additionally, Lin’s concordance correlation coefficient (CCC)17, the rela-
tive total deviation index (TDI) for a range of coverage probabilities (CP)18, and the percentage of patients with 
relative differences not exceeding 10% (P10) or 30% (P30) of the reference clearance values were evaluated19. A 
TDI of ≤ 10% for a CP of 90%, based on observed relative differences between iohexol clearance values given a 
restricted number of samples up to 300 min post injection and iohexol clearance reference values based on all 
available samples, was considered optimal. A CCC value of > 0.99, 0.95 to 0.99, 0.90 to 0.95 or < 0.9 was considered 
to reflect almost perfect, substantial, moderate or poor concordance20,21. An at least substantial concordance 
was considered optimal.

Equation (1) Root mean squared error ( RMSEconc ) concerning observed ( Cp(t = 1440min) ) versus predicted 
( ̂Cp(t = 1440min) ) iohexol concentrations 1440 min post injection. Predicted concentrations were based on 
clearance EBEs obtained including iohexol concentration data up to 300 min post injection, i.e., by ignoring 
concentrations observed after 1440 min in the EBE estimation.

Equation (2) Root mean squared error ( RMSECL ) concerning clearance EBEs obtained when including obser-
vations up to 1440 min post injection ( CL1440min ) compared to clearance EBEs obtained based on data up to 
300 min post injection ( CL300min).

In the second part, we restricted the random effects (RE) of the two- and three-compartment models to 
the elimination clearance (CL) and the central volume of distribution (V1). Fixed effects parameters were re-
estimated based on data from the 546 patients in the model development group and the resulting models were 
compared to models with random effects for all PK parameters in terms of RMSE as described above. Further-
more, age, sex, body weight, serum creatinine (CR), and serum cystatin C (CC) concentrations were evaluated 
as clearance covariates and body weight as a covariate on the volume of distribution based on the model that 
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provided the lowest RMSE. For this purpose, the following covariate equations (Eqs. 3 and 4) were applied, in 
which CL and V1 in the ith subject are based on the typical value in the population ( θ1, θ7 ) and a combination 
of covariate effects with parameter estimates represented by θ2 to θ6 and θ8 . In these equations, covariates were 
normalized to the respective median in the group of patients for computational reasons. CCC, TDI90, P10 and 
P30 were considered as additional measures analogous to part 1. Finally, we used the BIS2 equation6,10 to calcu-
late the estimated GFR (eGFR) values based on creatinine and cystatin C data to identify relationships between 
eGFR and RMSE for different models.

Equation (3) Individual clearance in the ith subject ( CLi ) based on the covariates serum creatinine (CR), 
cystatin C (CC), age, body weight, and sex. θ1 is the typical (median/geometric mean) clearance in the popula-
tion while θ2 to θ6 represent the coefficients associated with covariate effects.

Equation (4) Individual central volume of distribution in the ith subject ( V1i ) based on body weight. θ7 is the 
typical (median/geometric mean) central volume of distribution while θ8 represents the coefficient associated 
with the effect of body weight.

Subsequently, a power prior approach22 was used to evaluate the impact of the Bayesian procedure on clear-
ance EBEs for a selection of models. EBEs are typically obtained by finding the vector of random effects ( ηi ) that 
minimizes the objective function value given in Eq. (5) with φ = 1 . Equation 5 represents a combination of the 
likelihood given the jth observation in the ith subject ( yij ), the corresponding model-based predicted value 
( IPREDij ) and the residual error variance of observations ( σ 2

ij ), as well as the prior probability of ηi given the 
covariance matrix of random effects ( � ). Random effects are assumed to follow a multivariate normal distribu-
tion with mean zero, and they are transformed into individual pharmacokinetic parameters ( PKp

i  ) via 
PK

p
i = PK

p
pop × exp
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p
i

)
 . Here, PKp

pop is the geometric mean of the pth pharmacokinetic parameter in the popu-
lation, and ηpi  is the corresponding random effect in the ith subject. By adjusting the parameter φ , the impact of 
the population model on the estimation procedure can be altered systematically. For example, the minimization 
of Eq. (3) with φ = 0 represents maximum likelihood while φ = 1 represents classical EBE estimation.

Equation (5) Objective function value for the ith subject ( OBJi ) based on the jth observation ( yij ), the corre-
sponding model-based predicted value ( IPREDij ), the residual error ( σ 2

ij ) and the prior probability of the vector 
of random effects ηi given the covariance matrix of random effects ( �).

In the third part, we identified optimal sampling times and the optimal number of samples by evaluating 
EBEs for all possible combinations of one to four plasma samples for each of the 104 patients in the evaluation 
group. The optimal sampling protocol was defined as the combination of sampling times resulting in the lowest 
overall RMSE of predicted concentrations 1440 min post injection and individual clearance estimates. For the 
latter, we used clearance estimates obtained when including all available iohexol samples up to 1440 min post 
injection as reference values. Furthermore, we carried out a stochastic simulation to evaluate optimal sampling 
times for each model separately by comparing simulated to estimated individual clearance values based on all 
possible combinations of one to four samples. For this purpose, iohexol concentrations were simulated 30, 60, 90, 
120, 180, 240, and 300 min post injection in 6,500 subjects (ten times the number of the 546 plus 104 patients) 
by sampling random effects from a multivariate normal distribution with (co-)variances obtained from the 
respective population PK model. CCC, TDI90, P10 and P30 were utilized to further compare the performance 
of sampling schedules depending on a varying number of iohexol samples analogous to parts 1 and 2.

Results
Patients evaluated in the present investigation had similar age and weight but lower eGFR levels compared to 
BIS participants included in our previous study6 (Table 1). The current patient population comprised a larger 
fraction of female subjects (67% vs. 34%) and showed (by definition) systematically higher serum creatinine and 
cystatin C concentrations, indicating a lower average kidney function.

Part I—evaluation of models with random effects for all PK parameters.  The models with ran-
dom effects for all PK parameters provided overestimated clearance values and underpredicted concentrations 
1440 min post injection irrespective of the use of two or three compartments. We found that bias and RMSE 
were similar in magnitude concerning clearance (bias of 5.07 and RMSE of 5.60 mL/min for the two-compart-
ment; 4.40 and 4.99 mL/min, respectively, for the three-compartment model). CCC values for the two- and 
three-compartment models were 0.86 and 0.87, respectively, indicating a poor concordance between clearance 
estimates and reference values (Supp. Table 2). Accordingly, the TDI90 indicated that the iohexol clearance esti-
mates deviated from the reference values by at least 40 and 45%, respectively, in 10% of the patients. Similarly, 
P10 and P30 covered only a limited fraction of patients (Supp. Table  2). Please refer to Supp. Fig.  3 for the 
empirical distribution of CP versus TDI values. The bias concerning clearance was more pronounced at lower 
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clearance values for both models (Fig. 1). With respect to iohexol concentrations 1440 min post injection, we 
found a bias and RMSE of − 14.5 and 19.0 µg/ml for the two-compartment and − 12.0 and 16.5 µg/ml for the 
three-compartment model, respectively.

Part II—evaluation of models with reduced random effects structures.  The RMSE and the bias 
for iohexol clearance and for concentrations 1440 min post injection of the three-compartment model could 
be significantly reduced when restricting random effects to CL and V1 (RMSE of 1.82 mL/min and 9.72 µg/ml, 
respectively; bias of -0.742 mL/min and 3.78 µg/ml, respectively) (Fig. 1). In contrast, no relevant improvement 
was observed for the two-compartment model (RMSE of 5.73  mL/min and 20.0  µg/ml, respectively; bias of 
5.10 mL/min and − 15.4 µg/ml, respectively). The inclusion of the covariates shown in Table 1 (gender, age, body 
weight, creatinine and cystatin C) provided a distinctly reduced objective function value based on data from the 
model development group with only 300 min iohexol sampling time (OFV reduced by 1320 points), and a slight 
improvement in terms of RMSE and bias when applying the model with covariates to data from the evaluation 
group. While the two-compartment model with limited random effects was not relevantly better compared to 

Table 1.   Characteristics (mean [standard deviation] or absolute frequency [%]) of the study population 
compared to the previously investigated study population with only 300 min of iohexol sampling time. The 
population pharmacokinetic models were developed in a study population of n = 546 (model development 
group) and validated in a study population with iohexol sampling up to 1440 min (n = 104, evaluation group). 
eGFR = estimated glomerular filtration rate, BIS2 = eGFR equation from the Berlin Initiative Study based 
on serum creatinine and cystatin C. Body surface area (BSA) based on the Du Bois & Du Bois equation 
( BSA = 0.20247 ∗ height0.725 ∗ weight0.425).

Evaluation group with observations up to 1440 min post injection Model development group with observations up to 300 min post injection

Number of subjects 104 546

Female, n (%) 34 (33%) 238 (44%)

Age (years) 79.2 (6.09) 78.3 (6.03)

Body weight (kg) 79.5 (13.9) 77.3 (13.9)

BSA (m2) 1.89 (0.185) 1.85 (0.187)

Serum creatinine (mg/dL) 1.91 (0.603) 0.962 (0.289)

Serum cystatin C (mg/L) 2.13 (0.745) 1.11 (0.309)

eGFRBIS2 (mL/min/1.73m2) 29.4 (7.86) 54.9 (12.3)

Figure 1.   Bland–Altman plots comparing clearance estimates obtained without versus with iohexol 
concentrations observed 1440 min post injection (A, B, C, D) as well as predicted versus observed 
concentrations 1440 min post injection (a, b, c, d) based on empirical Bayes estimates given concentrations ≤ 5-h 
post injection. Random effects for all pharmacokinetic parameters of three (3-cmt; A and a) and two (2-cmt; B 
and b) compartment models and with random effects restricted to CL and V1 with three (C and c) and two (D 
and d) compartment models.
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the full two-compartment model in terms of CCC and TDI90, a clear improvement was observed in case of the 
three-compartment models (Supp. Table 2). For the limited three-compartment model without covariates, the 
CCC increased to 0.98 and the TDI90 reduced to 15%. A further improvement was observed when including 
covariates, resulting in a CCC of 0.99 and a TDI90 of 12%. Thus, the concordance was considered substantial 
based on the CCC, while the pre-defined optimal goal in terms of TDI90 was not achieved. Relative deviations 
exceeding 10% were predominantly observed in patients with a model-estimated iohexol clearance < 20 mL/min, 
for whom the TDI90 was 19 and 18% for the model without and with covariates, respectively. In contrast, the 
TDI90 was 9.0 and 7.4% in patients with an estimated clearance of ≥ 20 mL/min, reaching the pre-defined TDI90 
goal. Please refer to Supp. Fig. 3 for the empirical distribution of CP versus TDI values.

All two-compartment models and the three-compartment model with random effects for all PK parameters 
revealed a clear relationship between eGFR based on the BIS2 equation10 and the prediction error concerning 
concentrations after 1440 min (Fig. 2). With decreasing eGFR values, predictions and observations differed 
increasingly. In contrast, the three-compartment model with limited random effects showed only a slight increase 
in prediction error at low eGFR values and the corresponding model with covariates indicated no relevant rela-
tionship between eGFR and the adequacy of predictions. Full support by the population model ( φ = 1 ) provided 
the lowest RMSE in the case of the simplified three-compartment models (with and without covariates), while 
a reduced model impact (e.g., φ = 0.01 to 0.1 ) provided the lowest RMSE when using the three-compartment 
model with random effects for all PK parameters (Fig. 3). The simplified three-compartment model provided 
the lowest overall RMSE, i.e., a relevantly lower RMSE than the best full three-compartment model. 

Part III—identification of optimal sampling times.  Optimal iohexol sampling times for different 
models and with one to four samples per patient are shown in Table 2 (based on observed data) and Table 3 
(based on stochastic simulations). Based on the observed data, the sample 300 min post injection provided the 

Figure 2.   Absolute difference between predicted and observed 1440 min concentrations (dots) versus eGFR 
values as estimated with the creatinine and cystatin C-based BIS2 equation for the five evaluated models. Two- 
(2 cmt) and three-compartment (3 cmt) models with random effects for all PK parameters (full) or restricted to 
CL and V1 (limited). One model with covariates (cov). LOESS (locally estimated scatterplot smoothing) curve 
(blue line).

Figure 3.   Effect of the prior distribution as defined by the population pharmacokinetic model on RMSE 
concerning clearance (CL) and iohexol concentration predictions 1440 min post injection (Conc.) The three-
compartment model with a simplified random effects structure and with (light gray) or without (dark gray) 
covariates performed best with an undiscounted prior ( φ = 1 ). Both models performed better than the three-
compartment model with random effects for all pharmacokinetic parameters (black).
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most pronounced improvement in terms of RMSE (Table 2). This was further improved when including an ear-
lier sample obtained 2 h post injection. Increasing the number of samples from a single to two samples provided 
a clear decrease in RMSE for most models (Fig. 4a, b). In contrast, the availability of three or more samples 
provided only a small further decrease in RMSE. In the presence of covariates, differences in RMSE with one to 
four samples were marginal.

Inclusion of more than one sample had only a marginal impact on CCC and TDI90 in case of the limited 
three-compartment model with and without covariates (Supp. Fig. 4). The CCC improved from 0.97 to 0.98 
and the TDI90 improved from 16 to 15% when including two samples instead of one with the limited three-
compartment model without covariates. The inclusion of further samples did not improve the CCC or TDI90. 
For the three-compartment model with covariates, the CCC was 0.99 and the TDI90 was 13% irrespective of the 
number of samples. In the sub-group of patients with an estimated iohexol clearance ≥ 20 mL/min, the CCC 
increased from 0.95 with one to 0.97 with two samples, while the TDI reduced from 11% with one to 8.6% with 
two samples using the limited three-compartment model without covariates. Additional samples provided no 
further improvement. Based on the model with covariates, the CCC was 0.97 with one to four and the TDI90 was 
7.3% with one to three samples, with a marginal additional reduction to 7.0% when including four samples. In 
contrast, the inclusion of at least two samples compared to a single sample had a pronounced impact on CCC 
and TDI90 in case of the full two- and three-compartment models. For example, the CCC improved from 0.79 to 
0.86 for the full two- and from 0.81 to 0.87 for the full three-compartment model when including two samples 
instead of one. Similarly, the TDI90 improved from 61 to 50% and from 55 to 40%, respectively.

Optimal sampling times based on stochastic simulations were similar, but favored earlier samples obtained 
300 min post injection (Table 3). The inclusion of a second sample provided a relevant decrease in RMSE, while 
further samples had marginal effects (Fig. 4c). Finally, the eGFR was calculated with the creatinine- and cysta-
tin C-based BIS2 equation to optimize sampling times in different eGFR groups. Optimizing iohexol sampling 
times separately in the groups of patients with low, intermediate and high eGFR, as defined by the quartiles of 
the patient collective (low: < 23 mL/min, intermediate: 23 to 34 mL/min, high: > 34 mL/min), provided only a 
marginally improved RMSE in terms of predictions 1440 min post injection (Fig. 5) and clearance (not shown). 
Differences in CCC and TDI90 between models were marginal in the evaluation based on simulated data (Supp. 
Fig. 5). While the CCC was at least 0.98 for one to four samples in all cases, the TDI90 improved more clearly 
when including at least two samples compared to one sample (Supp. Fig. 5).

Overall, the limited three-compartment model with covariates provided the best performance in terms of 
RMSE, CCC and TDI90 with only limited improvements when increasing the number of samples beyond two 
based on observed and simulated data. To achieve the CCC and TDI90 goals, two samples were sufficient when 
using the three-compartment model with covariates (creatinine and cystatin C concentrations, total body weight, 
age, gender) in patients with an estimated iohexol clearance ≥ 20 mL/min.

Table 2.   Combinations of sampling times with N = 1 to 4 samples providing the lowest root mean squared 
error concerning clearance based on observed data. Brackets indicate optimal sampling times concerning 
predictions 1440 min post injection if they deviated from clearance-based results.

Model

Optimal sampling times [minutes post injection]

N = 1 N = 2 N = 3 N = 4

2 cmt, full 300 120, 300 30, 120, 300 30, 120, 240, 300

2 cmt, limited 300 120 (30), 300 30, 240 (120), 300 30, 60 (120), 240, 300

3 cmt, full 300 120, 300 120 (30), 180 (120), 300 120, 180, 240, 300

3 cmt, limited 300 120, 300 30 (60), 120, 300 30 (120), 60 (180), 120 (240), 300

3 cmt, limited, cov 120 120, 240 (300) 60 (90), 120, 150 (300) 60 (90), 90 (120), 120 (150), 150 (300)

Table 3.   Combinations of sampling times with N = 1 to 4 samples providing the lowest root mean squared 
error concerning clearance based on stochastic simulations.

Model

Optimal sampling times (minutes post injection)

N = 1 N = 2 N = 3 N = 4

2 cmt, full 240 60, 300 30, 120, 300 30, 120, 240, 300

2 cmt, limited 180 60, 300 30, 240, 300 30, 180, 240, 300

3 cmt, full 240 60, 300 30, 90, 300 30, 90, 240

3 cmt, limited 180 30, 300 30, 240, 300 30, 180, 240, 300

3 cmt, limited, cov 180 90, 300 30, 240, 300 30, 180, 240, 300
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Figure 4.   RMSE concerning predicted versus observed iohexol concentrations 1440 min post injection (a) 
and concerning clearance (CL) based on observed data (b) and stochastic simulations (c). Different shades of 
gray represent the full two-compartment, reduced two-compartment, full three-compartment, reduced three-
compartment, and the reduced three-compartment model with covariates (from left to right/black to light gray).

Figure 5.   RMSE concerning predicted versus observed iohexol concentrations 1440 min post injection 
stratified by eGFR quartiles. Different shades of gray represent the full two-compartment, reduced two-
compartment, full three-compartment, reduced three-compartment, and the reduced three-compartment 
model with covariates (from left to right/black to light gray). Patients with low (0), intermediate (1), high (2) 
eGFR as defined by quartiles (< 25%, corresponding to < 23 mL/min; 25–75%, 23 to 34 mL/min; > 75%, > 34 mL/
min). Bars indicate RMSE for optimal sampling times stratified by eGFR while dots represent RMSE in the 
respective eGFR group when a single sampling protocol is used for all patients.
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Discussion
A three-compartment model with a simplified random effects structure and with covariates provided the best 
iohexol clearance estimates in our study sample of 104 individuals aged 70 + and with a mean eGFR of 29.4 mL/
min/1.73m2. Two iohexol measurements, obtained shortly after injection and 300 min post injection, appear to 
be sufficient to precisely estimate iohexol clearance using the presented model in patients with impaired kidney 
function. In contrast to a previous evaluation based on a classical approach11, iohexol concentrations measured 
1440 min post injection were of minor importance when using the simplified three-compartment model with 
covariates, which is of great advantage in clinical practice.

Discussions on optimal iohexol protocols, including the choice of a pharmacokinetic model and the num-
ber and timing of blood samples, are ongoing. Criteria relevant to the selection of an optimal protocol include 
precision and accuracy, operating expenses, feasibility and comprehensibility for its users. The requirement for 
a larger number of late samples (one day after administration of iohexol) would essentially preclude the use of 
such protocols in most clinical settings. The use of complex models though requires permanent provision of 
mathematical expertise.

A general issue associated with empirical Bayesian estimation, which forms the basis of estimating iohexol 
clearance using a population PK model, is shrinkage23. In cases where the PK model contributes stronger infor-
mation than individual iohexol data, for example, due to a limited number of informative blood samples, PK 
estimates might shrink towards the typical values (geometric means) in the population. Consequently, estimates 
might be relevantly biased. However, a strong advantage of Bayesian estimation is its capability to reduce the 
variance of parameter estimates. This plays a pivotal role for three-compartment models since the combination 
of three exponential terms provides a highly flexible PK model with hardly identifiable parameters if limited 
data are available from only a single subject. Thus, either extensive blood sampling or the support by a popula-
tion PK model is needed to warrant reliable PK parameter estimates in the case of three-compartment models. 
For example, Frennby et al. estimated individual parameters of a three-compartment model in pigs based on 16 
plasma samples obtained over a period of 4.5 h9, which would not be a reasonable option in clinical practice. The 
present investigation revealed that the Bayesian procedure provides reasonable iohexol clearance estimates if a 
limited number of plasma samples was obtained. This improved description of iohexol pharmacokinetics via a 
three-compartment model outweighs the potential drawbacks associated with EBE estimation.

The feasibility of limited sampling strategies with one to three plasma samples has been evaluated in numerous 
studies24,25. Overall, two or even a single plasma sample was found to be sufficient for obtaining precise clearance 
estimates7. Previous studies suggested blood samples at 2 and 4 h post injection, with delayed sampling after 5 to 
8 h post injection in CKD patients25. In contrast, we found that the combination of an early sample (e.g., 30 min 
post injection) with a sample obtained after 300 min appears to be sufficient to precisely estimate iohexol clear-
ance. The shortened post injection period is an important and clinically relevant advantage for implementing 
iohexol measurement in routine diagnostics.

A sampling scheme based on two samples missed the strict TDI90 criterion of ≤ 10% in the sub-group of 
patients with an estimated iohexol clearance < 20 mL/min. In this sub-group, a late sample obtained > 300 min 
post injection would be needed to reduce the relative difference between estimated and reference clearance values 
to at most 10% in 90% of the patients. However, it appears unlikely that a TDI90 of 10–20% is of high clinical 
relevance in patients with a significantly reduced kidney function. For example, the TDI90 observed in patients 
with a clearance < 20 mL/min and based on the limited three-compartment model with covariates amounted to 
15%. This implies that the clearance estimates for 90% of all evaluated patients with a true clearance of 20 mL/
min would range from 17 to 23 mL/min, with very limited impact on clinical decision making. Principally, the 
need for an additional late sample could be assessed on the fly if the bioanalytical quantification of iohexol and the 
Bayesian calculations were carried out rapidly after obtaining the first blood samples. This method would allow 
to use an intermediate iohexol clearance estimate to assess whether additional samples should be collected, but 
it appears questionable whether the limited expected improvement in clearance estimates justifies the increased 
complexity of this approach.

Slight differences in optimal sampling schemes compared to previous evaluations might relate to the three-
compartment approach. More specifically, if a two-compartment model tends to provide over-estimated clearance 
values due to a distributional component that especially affects early concentrations6, late observations might 
be needed to obtain appropriate estimates. This is highlighted by the finding that samples obtained during the 
late elimination phase were not needed in terms of RMSE when using a simplified three-compartment model, 
while late samples improved clearance estimates when using a two-compartment approach. Importantly, the 
employed population pharmacokinetic models include an estimate of the random error associated with observed 
iohexol plasma concentrations. The magnitude of this random error might change depending on the setting, 
including potential differences between hospitals and laboratories. If the magnitude of random error increases, 
more samples than identified in our evaluation might be needed. A similar argumentation applies to scenarios in 
which the sample collection and/or the quantification of iohexol concentrations is expected to be exceptionally 
error prone. Then, the collection of more than two samples might be preferrable to ensure that sufficient data is 
available to estimate iohexol clearance.

Finally, we could not evaluate whether a sample obtained > 300 and < 1440 min post injection would be benefi-
cial since no observations from this time window were available. This might be of particular interest for patients 
with a very low GFR. For example, Gaspari et al. identified an optimal sampling time of 10 h post injection for 
subjects with a low GFR, while additionally emphasizing that a one-sample approach might lead to unacceptable 
errors compared to a multiple sample approach26. Due to the remaining ambiguities and the heterogeneity of 
results of different studies with respect to one-sample schedules, the inclusion of at least two observations might 
be preferable compared to a one-sample approach.
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The inclusion of covariates further improved clearance estimates. Patients with reduced eGFR may benefit 
relevantly from the inclusion of covariates (cystatin C, creatinine, weight, age, and sex) particularly when only 
a single iohexol sample is available. However, the positive effects of creatinine and cystatin C observations on 
iohexol clearance estimates might be limited in clinical scenarios with a strong GFR dynamic, such as acute 
kidney injury, due to a discrepancy between creatinine and cystatin C concentrations with actual GFR. To allow 
for the implementation of models with and without covariates, the corresponding model parameter estimates 
are presented in Supp. Table 1.

Since the population PK model plays a major role in the estimation of individual clearance, state-of-the 
art approaches should be used for a proper model evaluation. This includes the evaluation of visual predictive 
checks, which allow assessing whether the entire model structure, including distributional assumptions on PK 
parameters, matches the observed data sufficiently. While this applies to the models presented in our evaluation 
(Supp. Fig. 2), other recently published models do not fulfil this criterion successfully. For example, Åsberg et al.4 
recently reported that a two-compartment model performed best, which we think is not confirmed by the VPCs 
presented by the authors. A misspecified model might have detrimental effects on clearance estimates, particu-
larly when working with a small number of individual samples. For the use of our model, it should be noted that 
patients in the Berlin Initiative Study were at least 70 years old. Thus, it remains to be shown whether our findings 
can be transferred to estimate iohexol clearance in young(er) patients. Furthermore, the determination of optimal 
sampling times was confined to the available sampling times plus observations 6 and 8 h post injection in the 
stochastic simulations. It cannot be precluded that other sampling times would be superior and classical optimal 
design approaches, for example based on Ds-optimality27, might be useful to further optimize sampling protocols. 
However, the evaluated sampling times cover most of the previously evaluated designs25. While concentrations 
observed 1440 min post injection were used as a main tool to validate models in this evaluation, other approaches 
of model validation might also be useful. This could comprise a comparison of model-based iohexol clearance 
(and, therefore, mGFR) estimates and iohexol clearance estimates obtained based on either extensive plasma 
sampling (AUC-based estimation) or plasma sampling combined with urine collection (renal clearance-based 
estimation). Given the respective data, iohexol clearance were determined without compartmental assumptions, 
providing model-independent reference values to compare different clearance estimation approaches.

In conclusion, we suggest a formula based on a simplified three-compartment model including covariates to 
estimate iohexol clearance in elderly patients with reduced GFR. Two iohexol plasma samples, taken shortly after 
administration and 300 min post injection, are sufficient to estimate iohexol clearance adequately based on this 
model. Future development of model-based iohexol approaches should include younger patients and different 
ethnicities, expanding this model-based approach to patients in all clinical settings. Noteworthy limitations of 
this evaluation might be the lack of data from young(er) patients and patients with normal kidney function, the 
lack of iohexol data obtained between 300 and 1440 min post injection, and the observed slightly lower perfor-
mance in patients with a iohexol clearance < 20 mL/min.

Data availability
The datasets analyzed during the current study are available from the corresponding author on reasonable 
request.

Received: 14 June 2021; Accepted: 2 November 2021

References
	 1.	 Olsson, B., Aulie, A., Sveen, K. & Andrew, E. Human pharmacokinetics of iohexol. A new nonionic contrast medium. Investigat. 

Radiol. 18, 177–182 (1983).
	 2.	 Seegmiller, J. C. & Ebert, N. Measuring glomerular filtration rate with iohexol plasma disappearance: Blood collection duration 

is essential for accurate glomerular filtration rate determinations. Kidney Int. 97, 616 (2020).
	 3.	 Schwartz, G. J., Furth, S., Cole, S. R., Warady, B. & Muñoz, A. Glomerular filtration rate via plasma iohexol disappearance: Pilot 

study for chronic kidney disease in children. Kidney Int. 69, 2070–2077 (2006).
	 4.	 Åsberg, A. et al. Measured GFR by utilizing population pharmacokinetic methods to determine iohexol clearance. Kidney Int. Rep. 

5, 189–198 (2020).
	 5.	 Riff, C. et al. Assessment of the glomerular filtration rate (GFR) in kidney transplant recipients using Bayesian estimation of the 

iohexol clearance. Clin. Chem. Lab. Med. 58, 577–587 (2020).
	 6.	 Taubert, M. et al. Using a three-compartment model improves the estimation of iohexol clearance to assess glomerular filtration 

rate. Sci. Rep. 8, 17723 (2018).
	 7.	 Jacobsson, L. A method for the calculation of renal clearance based on a single plasma sample. Clin. Physiol. Oxford England 3, 

297–305 (1983).
	 8.	 Gaspari, F. et al. Plasma clearance of nonradioactive iohexol as a measure of glomerular filtration rate. J. Am. Soc. Nephrol. 6, 

257–263 (1995).
	 9.	 Frennby, B. et al. The use of iohexol clearance to determine GFR in patients with severe chronic renal failure—a comparison 

between different clearance techniques. Clin. Nephrol. 43, 35–46 (1995).
	10.	 Schaeffner, E. S. et al. Two novel equations to estimate kidney function in persons aged 70 years or older. Ann. Int. Med. 157, 

471–481 (2012).
	11.	 Ebert, N. et al. Iohexol plasma clearance measurement in older adults with chronic kidney disease-sampling time matters. Nephrol. 

Dialysis Transp. Official Publ. Europ. Dialysis Transp. Assoc. Europ. Renal Assoc. 30, 1307–1314 (2015).
	12.	 Beal, S. L., Sheiner, L. B., Boeckmann, A. & Bauer, R. J. NONMEM users guides (University of California, San Francisco, 1992).
	13.	 R Core Team. R: A Language and Environment for Statistical Computing (2019), https://​www.R-​proje​ct.​org/.
	14.	 Wickham, H. et al. Welcome to the tidyverse. J. Open Source Softw. 4, 1686 (2019).
	15.	 Ron Keizer. vpc: Create Visual Predictive Checks (2018), https://​CRAN.R-​proje​ct.​org/​packa​ge=​vpc.
	16.	 Tim Bergsma. nonmemica: create and evaluate NONMEM models in a project context (2020), https://​CRAN.R-​proje​ct.​org/​packa​

ge=​nonme​mica.
	17.	 Lin, L.I.-K. A concordance correlation coefficient to evaluate reproducibility. Biometrics 45, 255 (1989).

https://www.R-project.org/
https://CRAN.R-project.org/package=vpc
https://CRAN.R-project.org/package=nonmemica
https://CRAN.R-project.org/package=nonmemica


10

Vol:.(1234567890)

Scientific Reports |        (2021) 11:22656  | https://doi.org/10.1038/s41598-021-01892-1

www.nature.com/scientificreports/

	18.	 Lin, L.I.-K. Total deviation index for measuring individual agreement with applications in laboratory performance and bioequiva-
lence. Statist. Med. 19, 255–270 (2000).

	19.	 Pottel, H., Schaeffner, E., Ebert, N., van der Giet, M. & Delanaye, P. Iohexol plasma clearance for measuring glomerular filtration 
rate: Effect of different ways to calculate the area under the curve. BMC Nephrol. 22, 166 (2021).

	20.	 McBride, G. B. A proposal for strength-of-agreement criteria for Lin’s concordance correlation coefficient. NIWA client report: 
HAM2005–062 62 (2005).

	21.	 Pocar, P. et al. Diagnostic potential of simplified methods for measuring glomerular filtration rate to detect chronic kidney disease 
in dogs. J. Vet. Int. Med. 33, 2105–2116 (2019).

	22.	 Ibrahim, J. G., Chen, M.-H., Gwon, Y. & Chen, F. The power prior: Theory and applications. Stat. Med. 34, 3724–3749 (2015).
	23.	 Savic, R. M. & Karlsson, M. O. Importance of shrinkage in empirical bayes estimates for diagnostics: Problems and solutions. 

AAPS J. 11, 558–569 (2009).
	24.	 Martus, P., Ebert, N., van der Giet, M., Jakob, O. & Schaeffner, E. S. An efficient approach for glomerular filtration rate assessment 

in older adults. Br. J. Clin. Pharmacol. 78, 384–392 (2014).
	25.	 Delanaye, P. et al. Iohexol plasma clearance for measuring glomerular filtration rate in clinical practice and research: A review. 

Part 1: How to measure glomerular filtration rate with iohexol?. Clin. Kidney J. 9, 682–699 (2016).
	26.	 Gaspari, F. et al. Glomerular filtration rate determined from a single plasma sample after intravenous iohexol injection: is it reli-

able?. J. Am. Soc. Nephrol. 7, 2689–2693 (1996).
	27.	 Atkinson, A. C. & Donev, A. N. Optimum experimental designs (Clarendon Press, 2002).

Author contributions
All authors contributed to the conception and design of this evaluation, as well as to the analysis and interpreta-
tion of data. MT wrote, and all authors contributed to and reviewed the manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​021-​01892-1.

Correspondence and requests for materials should be addressed to M.T.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2021

https://doi.org/10.1038/s41598-021-01892-1
https://doi.org/10.1038/s41598-021-01892-1
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Advancement of pharmacokinetic models of iohexol in patients aged 70 years or older with impaired kidney function
	Methods
	Results
	Part I—evaluation of models with random effects for all PK parameters. 
	Part II—evaluation of models with reduced random effects structures. 
	Part III—identification of optimal sampling times. 

	Discussion
	References


