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Stem cells (SCs) are special types of cells with the ability of self-renewal and multidirectional differentiation. As the organism ages,
the ability to maintain homeostasis and regeneration deteriorates and the number and activity of stem cells decline. 0eoretically,
the restoration of stem cells might reverse aging. However, due to their own aging, donor-derived immune rejection, and
difficulties in stem cell differentiation control, a series of problems need to be solved to realize the potential for clinical application
of stem cells. Chinese herbal medicine is a nature drug library which is suitable for the long-term treatment of aging-related
diseases. Modern pharmacological studies have revealed that many active ingredients of Chinese herbal medicines with the effect
of promoting stem cells growth and differentiation mainly belong to “reinforcing herbs.” In recent years, exploration of natural
active ingredients from Chinese herbal medicines for delaying aging, improving the stem cell microenvironment, and promoting
the proliferation and differentiation of endogenous stem cells has attracted substantial attention. 0is article will focus on active
ingredients from Chinese herbs-mediated differentiation of stem cells into particular cell type, like neural cells, endothelial cells,
cardiomyocytes, and osteoblasts. We will also discuss the effects of these small molecules onWnt, Sonic Hedgehog, Notch, eNOS-
cGMP, and MAP kinase signal transduction pathways, as well as reveal the role of estrogen receptor α and PPAR c on selectively
promoting or inhibiting stem cells differentiation. 0is review will provide new insights into the health aging strategies of active
ingredients in Chinese herbal medicine in regenerative medicine.

1. Introduction

Stem cells are undifferentiated cells capable of self-renewal
to produce unlimited cells of the same type, as well as being
able to differentiate into other cell types. During differen-
tiation, stem cells gradually lose their pluripotency and
become specialized cells with a more specialized function.
Compared with embryonic stem cells, adult stem cells exist
in highly differentiated tissues, which dedifferentiate and
replace dead and damaged cells under appropriate condi-
tions. Adult stem cells include neural stem cells (NSCs),
hematopoietic stem cells (HSCs), bone marrow mesen-
chymal stem cells (BMSCs), epidermal stem cells (ESCs),
and adipose-derived stem cells (ADSCs). 0e multipotential
characteristics of stem cells may provide beneficial strategy
for age-related diseases treatment.

With aging, the ability to maintain body homeostasis
and regenerate damaged tissues decreases, resulting in the
occurrence of age-related diseases. As humans age, meta-
bolism, self-renewal, differentiation, or quiescent state of
endogenous stem cells are damaged and become exhausted.
0e stem cell niche, as the in vivo microenvironment where
stem cells reside, changes with age, which limited the tissue
regeneration [1, 2]. Because of the attenuation of adult stem
cells regenerative potential in the elderly, the reduced
benefits of autologous stem cell therapy and the immune
rejection of other donors have become obstacles to stem cell
transplantation therapy [3]. If we can provide correct small
molecules intervention and proper survival microenviron-
ment for ameliorating the potential of aging stem cell re-
generation in tissue repair, it will improve the efficiency of
endogenous stem cell-mediated tissue healing mechanism.
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Chinese herbal medicine has a long history of treating
aging-related diseases. Modern medical research has
revealed that many active ingredients of Chinese herbal
medicines with the characteristics of “Tonifying-Qi,”
“Tonifying-Kidney,” and “Tonifying-Blood” have the effect
of promoting the growth and differentiation of stem cells. As
a complementary approach, the active ingredients of tra-
ditional Chinese medicine target specific signal pathways
and epigenetic processes, offering a powerful tool for ma-
nipulating cell fate to achieve the desired effect.

0is envisages that Chinese herbal medicine treatment
will become a rejuvenation strategy for healthy aging, which
is beneficial to improve the microenvironment of stem cells
in vivo. It also promotes the autonomous and intrinsic
signaling pathways of proliferation and differentiation, as
well as the repair of damaged tissue by endogenous stem
cells.

2. Effect of Chinese Medical Herbs on Stem
Cell Differentiation

0e active ingredients of traditional Chinese medicine are
mostly small molecular compounds, which are attractive
approaches to control the stem cell fate.0e biological effects
of small molecules are fast and dose-dependent, allowing
precise control of specific pathological situations. 0e small
molecules are easier to handle and administrate, which
makes them more practical for clinical applications and
therapeutic development compared to genetic interventions.
Chemical regulation of cell fate provides a wide range of
applications in delaying stem cell aging and promoting tissue
and organ regeneration. Small molecules of traditional
Chinese medicine can target endogenous stem cells and
enhance their self-renewal, expansion, differentiation, and
viability in regenerative medicine. A summary list of stem
cell differentiation induced by active small molecules of
Chinese herbal medicine is shown in Table 1.

2.1. Neural Differentiation. Numerous studies have shown
that the active ingredients of Chinese medical herbs have the
effect of promoting nerve cells differentiation. Ginsenoside
Rg1 treatment of mouse embryonic stem cells and human
adipose-derived stem cells induced a significant increase in
neuron-like cell populations in a time- and dose-dependent
manner and upregulated the mRNA or protein expression of
neuronal-specific neurofilament (NEFM), neural cell ad-
hesion molecule (NCAM), synapsin-1 (SYN-1), and β-tu-
bulin III, respectively [4, 5]. Saponins derived from Panax
notoginseng also had neurodifferentiation promoting effects
similar to ginsenosides [6, 7]. Salvianolic acid B and tan-
shinone IIA are active substances from the root of Salvia
miltiorrhiza Bunge, which is widely used as a traditional
Chinese medical herb for stroke. In vitro, salvianolic acid B
improved the differentiation of neurospheres into neuronal
lineage and further promoted the outgrowth of neurites and
differentiated into neurons [8]. Tanshinone IIA treatment
also induced neuronal differentiation in three cell models,
immortalized C17.2 neural progenitor cells, rat embryonic

cortical NSCs, and rat PC12 pheochromocytoma cells, in a
dose-dependent manner [9, 10]. Baicalin is a flavonoid
found in the Chinese herb Scutellaria baicalensis. Previous
studies had demonstrated that baicalin could promote the
neural differentiation of human iPS cells, immortalized
mouse C17.2 neural progenitor cells, and rat embryonic
cortical NSCs [11–13]. Interestingly, baicalin improved
neural differentiation but inhibited glial formation [12].
Many other traditional Chinese medical herbal ingredients
also have the ability to differentiate stem cells into spe-
cialized cell subtypes. Recent studies revealed that astraga-
loside IV, astragalus polysaccharide, and astraisoflavan,
three effective active substances of Astragalus propinquus
Schischkin, could induce the differentiation of NSCs into
dopamine neurons and promote the mRNA expression of
dopaminergic neuron-specific tyrosine hydroxylase and
dopamine transporter in vitro [14]. Ginkgolide B is a bio-
logically active terpenic lactone present in Ginkgo biloba. Li
et al. [15] demonstrated that Ginkgolide B promoted cell
cycle withdrawal and neuronal differentiation of adult NSCs
in the subventricular zone (SVZ) after birth of the mouse
lateral ventricle. Natural lignans and iridoid compounds
including aucubin facilitated neuronal differentiation and
neurite outgrowth in NSCs from the rat embryonic hip-
pocampus or in rat neuronal hippocampal cell line HiB5
cells [16, 17]. Salidroside, a glucoside of tyrosol found in the
plant Rhodiola rosea Linn., could induce rat BMSC differ-
entiate into cholinergic nerve cells in vitro.When salidroside
stimulated rat BMSCs, the expression levels of neuron-
specific enolase (NSE), brain-derived neurotrophic factor
(BDNF), β-tubulin III, and glial fibrillary acidic protein
(GFAP) on the 6th day; the positive rates of NSE, micro-
tubule-associated protein-2 (MAP-2), β-tubulin III, and
GFAP in the immunofluorescence staining images on the
3th day; and the acetylcholine (Ach) positive rate on the 3rd,
6th, and 9th days were significantly higher than those of the
control group [18]. 0e detailed signaling pathways of active
ingredients inducing neural cell differentiation are shown in
Figure 1.

2.2. Endothelial Cell and Cardiomyocyte Differentiation.
Circulating endothelial progenitor cells (EPCs) may contribute
to vasculogenesis after ischemia and tissue injury, so studies
have been conducted to investigate the function of EPCs in
ischemic diseases. Our previous studies have found that
bavachalcone, an isopentenyl chalcone from Psoralea corylifolia
Linn., promoted the differentiation of EPCs and neo-
vascularization in vivo [19]. In a series of cell-based experiments,
Tang and his colleagues observed that ginkgolide B, icariin,
tanshinone IIA, astragaloside IV, ginsenoside Rg1, and sali-
droside exert angiogenic endothelial differentiation effects of
human bone marrow-derived EPCs [20–24]. A study reported
that salvianolic acid A could augment EPC numbers and
promote EPC migration, adhesion, and the vasculogenesis
capacity in myocardial ischemia-reperfusion (I/R) rat model
[25]. In another study,monotropein, an iridoidmonoterpenoid,
promoted mobilization and differentiation of bone marrow-
derived EPCs and attenuated cell autophage and apoptosis,
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Table 1: Small molecule compounds from Chinese medical herbs inducing stem cell differentiation.

Active ingredients Differentiated cells Stem cells or model Pathways Effects References

Astragaloside IV

Endothelial cell-like
cells

Rat mesenchymal stem
cells N/A

1. Differentiated into
endothelial cell-like cells and
promoted tube formation in

vitro
2. Upregulated the expression
of Cx37, Cx40, and Cx43 and

enhanced gap junctional
intercellular communication

(GJIC) function

[22]

Neuronal cells Rat neural stem cells Sonic hedgehog

1. Differentiation into
dopamine neurons

2. Promoted the expressions of
Shh, Nurr1, and Ptx3 mRNAs

[14]

Astraisoflavan Neuronal cells Rat neural stem cells Sonic hedgehog

1. Differentiation into
dopamine neurons

2. Promoted the expressions of
Shh, Nurr1, and Ptx3 mRNAs

[14]

Aucubin Neuronal cells Rat neural stem cells and
neural precursor cells N/A

1. Promoted lengthening and
thickness of axons and

remyelination at 3 weeks after
sciatic nerve injury

2. Promoted differentiation of
neural precursor cells into

GABAergic neurons

[16, 17,
129]

Baicalin

Cardiomyocytes Murine embryonic stem
cells N/A

1. Increased the proportion of
a-actinin-positive
cardiomyocytes

2. Upregulated cardiac specific
genes a-MHC, MLC-2v, and

ANP

[36]

Neuronal cells

Neural stem cells derived
from the cortex of

embryonic E15-16 SD
rats

N/A

1. Increased the percentages of
mature neuronal marker MAP-
2-positive staining cells and
decreased glial marker GFAP

staining cells
2. Downregulated the

expression of p-stat3 and Hes1
but upregulated the

expressions of NeuroD1 and
Mash1

[13]

Osteoblasts N/A Wnt/β-catenin
signaling

1. Increased significantly the
osteoblastic mineralization

levels of mRNAs encoding the
bone differentiation markers
OCN, OPN, and COL-1

[54]

Bavachalcone Endothelial cells

Rat bone marrow
mesenchymal stem cells

and rat hindlimb
ischemia model

RORα-
erythropoietin-
AMPK axis

1. Promoted rat bone marrow-
derived cells to differentiate

into EPC significantly
2. Stimulated blood flow
recovery in ischemic
hindlimbs, increased

circulating EPC, and promoted
capillary neovascularization

[19]

Berberine Osteoblasts Bone marrow-derived
mesenchymal stem cells

Wnt/β-catenin
signaling

Promoted osteogenic
differentiation and osteogenic
genes Runx2, OPN, and OCN

expression

[132]
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Table 1: Continued.

Active ingredients Differentiated cells Stem cells or model Pathways Effects References

Catalpol Osteoblasts Bone marrow
mesenchymal stem cells

Wnt/β-catenin
signaling

1. Enhances the osteogenic
differentiation

2. Significantly enhanced
osteoblast-specific gene
expression, alkaline

phosphatase activity, and
calcium deposition

[53]

Curcumin Cardiomyocytes Human embryonic stem
cells NO-cGMP signaling

1. Promoted differentiation
into cardiomyocytes

2. Significantly increased the
gene expression and protein
levels of NKX2.5, cTNI, MHCs,

and eNOS

[96]

Ginkgolide B

Endothelial
progenitor cells Human bone marrow Akt/eNOS and p38

MAPK signaling

1. Promoted proliferation and
endothelial gene expression,
significantly enhanced VEGF-
induced migration response,
and improved the vascular

network composition of EPCs
2. Induced phosphorylation of

eNOS, Akt, and p38

[20]

Neuronal cells

Neural stem cells derived
from mouse

subventricular zone
(SVZ)

Wnt/β-catenin

1. Promoted neuronal
differentiation

2. Increased the level of nuclear
β-catenin and activated the

Wnt pathway

[15]

Osteoblasts
Rat bone mesenchymal
stem cells and MC3T3-

E1 cells
Wnt signaling

1. Promotes osteoblast
differentiation

2. Reduced OVX-induced bone
loss by enhancing osteoblast

activity

[51]

Ginsenoside
Rb1/RE Cardiomyocytes Human embryonic stem

cell N/A

1. Enhanced differentiation
into cardiomyocytes

2. Upregulated Nkx2.5, Tbx5,
MHC, and KCNE1 expression

[32]

Ginsenoside Rg1 Neuronal cells
Mouse embryonic stem
cells and human adipose-

derived stem cells

Wnt/β-catenin
pathway, MEK-

ERK1/2, and PI3K-
Akt signaling

1. Promoted cell proliferation
and neural phenotype

differentiation
2. Upregulated the mRNA or
protein expression of NSE,
MAP-2, NEFM, NCAM,

synapsin-1, and β-tubulin III

[4, 5]

Ginsenoside
RH2 (S) Osteoblasts MC3T3-E1 cells PKD/AMPK

signaling

1. Stimulated osteoblastic
differentiation and
mineralization

2. Enhanced the expression of
Runx2, ALP, OCN, OPN, Osx,

and ColI

[103]
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Table 1: Continued.

Active ingredients Differentiated cells Stem cells or model Pathways Effects References

icariin

Cardiomyocytes Mouse embryonic stem
cells

p38 MAPK pathway
in early

differentiation and
NO-cGMP signaling

1. Facilitated the directional
differentiation of ES cells into

cardiomyocytes
2. Elevated PGC-1-alpha,
PPAR-alpha, and NRF-1

expression in early
differentiation

3. Increased mRNA level of
MHC, MLC-2v, α-actinin, and

troponin T

[29–31, 95,
102]

Osteoblasts Rat bone mesenchymal
stem cells

ERα-Wnt/β-catenin
signaling, RhoA-

TAZ signaling, and
AKT-eNOS-cGMP

pathway

1. Significantly enhanced
osteogenic differentiation and
increased ALP activity and

Lef1, TCF7 DLX5, OPN, OCN,
COLI, ERα, CXCR4, and HIF-

1α expression
2. Upregulated TAZ, Runx2,
β-catenin, OPN, and Dlx5

expression mainly at the early
stage and OCN expression at

the late stage
3. Improved osteoporosis,
inhibited the expression of
PPARc, C/EBPα, FABP4

mRNA, N1ICD, and Jagged1
proteins and increased Notch2

mRNA in OVX rats

[39–42, 55,
86, 89, 94]

Kaempferol Osteoblasts Rat bone mesenchymal
stem cells

Interaction between
TAZ and RUNX2

Promoted physical interaction
between TAZ and RUNX2 to

increase osteoblast
differentiation of mesenchymal

cells

[43]

Ligustilide Osteoblasts
MC3T3-E1 cells and rat
bone mesenchymal stem

cells

GPR30/EGFR
pathway

1. Promoted osteoblast
differentiation

2. Activated phosphorylated
EGFR and ERK1/2

[45]

Myricetin Osteoblasts

Human bone marrow
stem cells and human
periodontal ligament

stem cells

Wnt/β-catenin
pathway, BMP-2/
Smad, and ERK/
JNK/p38 MAPK

1. Enhanced osteogenic
differentiation

2. Upregulated BMP-2
3. Increased mRNA expression
of OCN, COL-1, ALP, and

RUNX2

[130, 131]

Polydatin Osteoblasts
Human bone marrow
stromal cells and OVX

mouse model

BMP-2-Wnt/
β-catenin signaling

1. Significantly improved the
proliferation and calcium
deposition of hBMSCs and
markedly stimulated the
expression of the mRNAs
RUNX2, OPN, DLX5,

β-catenin, TAZ, and OCN
2. Maintained the bone matrix
in the OVX mouse model

[47]

Puerarin Osteoblasts Rat bone marrow
stromal cells

Estrogen receptor-
dependent manner

1. Enhanced osteoblast
differentiation

2. Increased ALP activity,
OCN, and Wnt5b

[50, 93]

Quercetin Osteoblasts

Human adipose tissue-
derived stromal cells,

mouse adipose stem cells,
rat mesenchymal stem
cells, and rat bone
marrow-derived

mesenchymal stem cells

p38 MAPK, ERK1/2
and JNK MAPK

signaling

1. Promoted the osteogenic
differentiation

2. Promoted expressions of
ALP, Osx, Runx2, BMP-2,
TGF-β1, Col-1, OPN, and

OCN

[134–137]
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Table 1: Continued.

Active ingredients Differentiated cells Stem cells or model Pathways Effects References

Resveratrol

Neuronal-like cells

Human bone marrow
mesenchymal stem cells
and human cord blood-
derived mesenchymal

stem cells

Sonic hedgehog
signaling, PKA-
GSK3β, and

β-catenin signaling

1. Differentiated into neuronal-
like cell types

2. Significantly increased
expression of the neuronal-
specific marker genes Nestin,
Musashi, CD133, GFAP, NF-
M, MAP-2, and KCNH1
3. Increased expressions of
Smo and Gli1 proteins

[75,
138–140]

Osteoblasts
Mouse embryonic stem
cells, rat adipose-derived
mesenchymal stem cells

AMPK/Ulk1
pathway, and Sirt-1/
Runx2 deacetylation

1. Enhancing osteogenic
differentiation and
mineralization

2. Enhanced expression of
pluripotency markers Oct3/4,
Sox2, Nanog, Klf4, SSEA-1,

and ALP
3. Increased expression of
Runx2 and decreased
expression of PPAR-c

[104, 141,
142]

Salidroside Neuronal cells

Rat bone marrow
mesenchymal stem cells,
mouse mesenchymal

stem cells

Notch and BMP
signaling pathways

1. Inhibited the proliferation,
increased expression level of
NSE, BDNF, MAP2, β-tubulin
III, GFAP, Wnt3a, β-catenin,

LRP6, and Axin
2. 0e positive rate of Ach was
significantly higher on the 3rd,
6th, and 9th day than on the 1st

day

[18, 56, 82]

Salvianolic acid a/
B

NF-M (+) neurons
and NG2 (+)

oligodendrocyte
precursors

Neural stem cells derived
from the cerebral cortex
of embryonic mice, bone
marrow-derived neural
stem cells, and induced
pluripotent stem cells

PI3K/AKT/GSK3β/
β-catenin pathway

1. Promoted the neurite
outgrowth of neural stem cells
and their differentiation into

neurons
2. Induced BDNF production

[8, 143,
144]

Osteoblasts

Human mesenchymal
stem cells and rat bone
marrow stromal stem

cells

ERK signaling and
NO-cGMP signaling

1. Significantly promoted
mineralization

2. Increased ALP activity,
Runx2, osterix, OPG, and OCN
level and the OPG/RANKL

ratio

[46, 97]

Hepatocytes Human embryonic stem
cells

0rough
upregulation of

WNT pathway and
inhibition of Notch

pathway

1. Promoted hepatocyte
differentiation and increased
expression of albumin, tyrosine

aminotransferase (TAT),
CYP3A4, CYP2C19, UGT1A6,

UGT1A8, and UGT2B7
2. Enhanced expression of

TCF3 and LEF1 and
downregulated Jagged2, and

Hes1/5

[57]

Alveolar epithelial
cells type I

Rat bone marrow
mesenchymal stem cells WNT pathway

1. By day 14, the majority of
bone marrow mesenchymal

stem cells were
morphologically differentiated
into alveolar epithelial cells
2. Significantly increased the
T1α and AQP-5 protein levels

[58]
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finally, improving wound healing [26]. Polysaccharide, also
called glycan, presents protective effects on cell damage.
Astragalus polysaccharide and Morinda officinalis oligosac-
charide have been shown to stimulate the proliferation and
differentiation of EPCs by releasing growth factors through the
paracrine pathway [27, 28]. 0e detailed signaling pathways of
active ingredients inducing endothelial cell differentiation are
shown in Figure 2.

Cardiomyocytes are the chief cell type in the heart.
Embryonic stem cells (ESCs) remain a potential source for
cardiomyocyte replacement. Several studies from the Lou
team indicated that icariin has a role in promoting the
differentiation of mouse embryonic stem cells into car-
diomyocytes with heartbeat function [29–31]. Ginsenoside
Rb1 (panaxadiol) and ginsenoside Re (panaxatriol) treat-
ment upregulated the expression of mesodermal and cardiac
transcription factor genes in the early stage of differentiation
induction and cardiac sarcomeric genes in the late stage of
differentiation maturation [32]. 0e ginsenoside Rb1 and Re
also elevated the expression of potassium voltage-gated
channel subfamily E member 1 (KCNE1). Ginsenoside Re
treatment showed a longer beating duration compared to the
control [32]. Salvianolic acid B alone had little effect, but
costimulation with vitamin C or transforming growth factor
beta 1 (TGF-β1) in a concentration-dependent manner
promoted differentiation of embryonic or BMSCs and in-
creased expression of cardiomyocyte maturation markers
[33, 34]. Similarly, salvianolic acid B, protocatechualdehyde,
and tanshinone IIA induced human placenta-derived

mesenchymal stem cells to differentiate into cardiomyocytes
and increased the expression of GATA4, atrial natriuretic
peptide (ANP), α-actin, and troponin I to differing degrees
[35]. In addition, continuous baicalin treatment promoted
the differentiation of embryonic stem cells and increased the
proportion of α-actinin-positive cardiomyocytes and tran-
script level of cardiac specific markers, such as α-myosin
heavy chain (α-MHC), ventricular myosin light chain-2
isoform (MLC-2v), and atrial natriuretic peptide (ANP)
[36]. Furthermore, puerarin, another flavonoid compound,
significantly increased the number of mouse embryonic
stem cell-derived cardiomyocytes, induced embryonic stem
cells to differentiate into ventricular-like cells elevated
typical cardiac marker expression, and presented complete
electrophysiological signals [37]. An in vivo study also
showed that simultaneous administration of stem cell
transplantation with 2,3,5,4’-tetrahydroxystilbene-2-O-β-d-
glucoside (THSG) significantly reduced S-T segment ele-
vation, increased heart rate compared with the myocardial
infarction group, and upregulated expression of Nkx2.5,
GATA-4, and connexin 43 in myocardial tissue [38]. 0e
detailed signaling pathways of active ingredients inducing
cardiomyocyte differentiation are shown in Figure 3.

2.3.OsteoblastDifferentiation. Osteoblasts are bone forming
cells. Stimulation of osteoblast differentiation from MSCs is
an effective therapeutic strategy for bone repair. Several
studies indicated that icariin, a flavonoid glycoside of

Table 1: Continued.

Active ingredients Differentiated cells Stem cells or model Pathways Effects References

Silibinin Osteoblasts Human bone marrow
stem cells

Activating BMP and
RUNX2 pathways

1. Promoted ALP activity and
mineralization in hBMSCs
2. Increased the mRNA

expressions of COLI, ALP,
OCN, osterix, BMP-2, and

RUNX2

[133]

Tanshinone IIA

Neuronal-like cells Rat bone marrow
mesenchymal stem cells N/A

Significantly upregulated the
expression levels of Nestin,
NeuN, and NF200 in the
transplanted cells in the
BMSCs + tanshinone IIA
treatment rats compared

among the groups

[10]

Osteoblasts

Mouse bone marrow
mesenchymal stem cells
and human periodontal
ligament stem cells

ERK1/2-dependent
Runx2 induction and
BMP-Wnt signaling

1. Enhanced ALP activity on
day 7 and calcium content on
day 24 in the process of TSA-
induced osteogenesis of mouse
bone marrow mesenchymal

stem cells
2. Promoted both osteogenic
differentiation and maturation
of periodontal ligament stem

cells

[48, 70,
100]

2,3,5,4’-
Tetrahydroxy-
stilbene-2-O-β-D-
glucoside (THSG)

Osteoblasts Rat mesenchymal stem
cells N/A

Promoted osteogenic
differentiation and increased

ALP activity and OCN
expression

[52]

Evidence-Based Complementary and Alternative Medicine 7



Epimedium brevicornu Maxim., significantly promoted os-
teogenic differentiation by increasing ALP activity and
Runx2, β-catenin, type I collagen (COLI), osteocalcin
(OCN), and osteopontin (OPN) expression in rat BMSCs
[39, 40]. Moreover, icariin had a bidirectional regulation
effect on promoting the differentiation of bone marrow
mesenchymal stem cells or bone marrow stromal cells into
osteoblasts and inhibiting the differentiation into adipocytes
[41, 42]. Micro-CT analysis showed that icariin relieved the
loss of cancellous bone of the distal femur in OVXmice [41].
Kaempferol, the main active component of Rhizoma Dry-
nariae, also showed the effect of stimulating osteogenic
differentiation [43, 44]. Interestingly, according to Chinese
medicine theories, Epimedium brevicornu Maxim and
Rhizoma Drynariae both belong to kidney-tonifying herbs
that act to strengthen bones. Ligustilide, an ingredient from
Angelica sinensis, had the function in promoting osteoblast
differentiation of preosteogenic cell line MC3T3-E1 and
BMSCs and inducing the phosphorylation and activity of
EGFR and ERK1/2, through the fast response pathway
mediated by the estrogen membrane receptor GPR30 [45].
Accumulating results showed that a large number of Chinese
herbal ingredients significantly promoted BMSC differen-
tiation, such as salvianolic acid B at 5 μM, tanshinone IIA at
1 and 5 μM, polydatin at 30 μM, salidroside at 0.5–10 μM,
puerarin at 10 μM, ginkgolide B at μM, THSG at 6.25–25 μg/
ml, catalpol at 50 μM, and baicalin at 50 μM [46–54], among
which salvianolic acid B and polydatin can increase the ALP
activity and upregulate the expression of osteogenic genes

COLI, OPN, OCN, Runx2, osterix, and DLX5 in human
BMSCs [46, 47]. 0e detailed signaling pathways of active
ingredients inducing osteoblast differentiation are shown in
Figure 4.

3. Signaling Pathways in Stem Cell
Differentiation Activated by Chinese
Medicinal Herbal Ingredients

Stem cell differentiation is usually controlled by cell sig-
naling. Here, we discuss the signaling involved in stem cell
differentiation activated by Chinese herbal small molecules.
Targeted signaling pathways for active small molecules are
also shown in Figures 1–4.

3.1. Wnt/β-Catenin Signaling. Wnt signaling pathway reg-
ulates stem cell differentiation and proliferation. β-Catenin
transcriptional activity is dependent on Wnt signaling,
which can be regulated by a variety of Chinese herbal in-
gredients. For example, icariin activated the Wnt/β-catenin
signaling pathway during the differentiation of osteoblasts
[41, 55], and the same pathway was provoked by ginkgolide
B and salidroside during neuronal differentiation [15, 56]. In
addition, in the process of promoting osteoblast differen-
tiation, tanshinone IIA, polydatin, and catalpol also selec-
tively activated the bone morphogenetic proteins (BMP)/
Wnt signaling pathway [47, 48, 53]. Surprisingly, salvianolic
acid B promoted bone marrow-derived mesenchymal stem

Ginsenoside Rg1
tanshinone IIA

baicalin
aucubin

Salidroside
ginkgolide B

Wnt

Frizzled

β-Catenin

LEF/TCF

GSK -3β

APC

Shh

GLI

Panaxatriol saponins
astragaloside IV

astragalus polysaccharide
astraisoflavan

salvianolic acid B 
resveratrol
polydatin

THSG

TrkB

BDNF

Ca2+

CaMKII

CREBEGR-3

ERK1/2

RAS

Figure 1: Schematic diagram of signaling in neural cell differentiation induced by active ingredients of traditional Chinese medicine. BDNF:
brain-derived neurotrophic factor; Shh: sonic hedgehog.
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cells to differentiate into alveolar endothelial cell type I and
hepatocytes in the same Wnt pathway [57, 58].

3.2. Shh/Gli1 Signaling. Sonic hedgehog (Shh) signaling is
involved in many types of stem cell differentiation. A large
number of studies have revealed that whether stem cells

develop into cardiomyocytes [59, 60] and vascular endo-
thelial cells [61–63] or differentiate into neurons [64–66] and
osteoblasts [67, 68], the Shh signaling pathway plays an
important role. Astragaloside IV promoted mesenchymal
stem cells into neuronal cells [69], endothelial cells [22], and
cardiomyocytes [70]. 0e angiogenesis and cardiomyocyte
survival induced by astragaloside IV in rats with acute
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myocardial infarction attributed to upregulation of the gene
expression of Shh pathway and their activity of receptors and
signal transducers [71]. Astragaloside IV also promoted the
proliferation and migration of osteoblast-like cells through
the Shh pathway [72]. Gao et al. reported [14] that astra-
galoside IV, astragalus polysaccharide, and astraisoflavan all
promoted the proliferation and committed differentiation of
neural stem cells into dopamine neurons. 0e mechanism of
these active ingredients of radix astragali included the Shh
signaling pathway. Panaxatriol saponins not only improved
the neurological function and reduced infarct volume in
middle cerebral artery occlusion (MCAO) rats but also
enhanced cerebral perfusion, capillary density, and angio-
genesis in ischemic border areas after MCAO surgery and
upregulated VEGF and Ang-1 expression by activating the
Shh signaling pathway [73]. A study of salvianolic acid
injection revealed that salvianolic acid has the effect of
improving stroke via Shh signaling [74]. 0e role of the Shh
pathway involved in improving brain function, increasing
neural progenitor cell (NPC) proliferation, and promoting
the long-term survival of new neurons in the subventricular
zone (SVZ) was determined by intraperitoneal injection of
salvianolic acid injections for 14 days after 24 hours of stroke
onset. Upregulation of nuclear translocations of Shh, Ptch,
and Gli1 was observed in the area around the infarction,
accompanied by the massive production of brain-derived
neurotrophic factor (BDNF) and nerve growth factor (NGF)
[74]. Multiple studies have reported that resveratrol pro-
tected nerve damage in ischemic stroke by activating the
Shh/Gli1 signaling pathway [75]. Interestingly, polydatin, a
resveratrol glycoside, also showed the same effect and
mechanism [76]. Furthermore, the preparation of Polygo-
num multiflorum, mainly containing 2,3,5,4’-tetrahydrox-
ystilbene-2-O-β-D-glucoside (THSG, another resveratrol
glycoside), promoted hair growth by stimulation of Shh
expression [77]. Chinese wolfberry is used as a dual-use fruit
for herbal medicine and food. Its polysaccharide, Lycium
bararum polysaccharides, has been reported to improve the
differentiation of hippocampal NSCs [78]. Lycium bararum
polysaccharides also play a role in reducing apoptosis and
oxidative stress by regulating glycogen synthase kinase-3β
(GSK-3β) phosphorylation, Shh, and phosphoinositide 3-
kinase (PI3K)/Akt signaling pathways [79]. A report indi-
cated that atractylenolide III has the effect on inducing
differentiation of mesenchymal stem cells into chondrocytes,
enhancing the expression of cartilage-associated proteo-
glycans, transcription factor Sox9, and chondrogenic
markers, as well as significantly increasing expression of Shh
signal and its target gene Gli1 [80]. To sum up with western
medical concepts, these active ingredients, which come from
“Invigorating-Qi” herbs and “Invigorating-blood” herbs
according to traditional Chinese medicine theory, can
achieve the effect of regulating immunity and bone marrow
function through the induction of Shh signal pathway.

3.3. Notch/Jagged Signaling. In addition to activating Wnt
signaling, salvianolic acid B also inhibited Notch receptor
Notch1/3, Notch ligand Jagged2, and Notch receptor target

Hes1/5 expression in promoting the differentiation of hu-
man embryonic stem cells into hepatocytes [57]. Another
study showed that serum containing matrine inhibited the
proliferation of rat hepatocyte progenitor cell WB-F344 and
the expression of Jagg1 and HES1 protein in a concentra-
tion- and time-dependent manner, indicating that matrine-
induced differentiation of WB-F344 cells through the Notch
cell signaling pathway [81]. Salidroside inhibited the pro-
liferation of D1 cells, induced the phenotype of neurons, and
upregulated the expression of neuron-specific markers, such
as eno2/NSE, microtubule-associated protein-2, and tubb3/
β-tubulin III, which were related to downregulation of the
expression of Notch1 and its downstream target protein
Hes1 [82]. Astragaloside IV is known to have neuro-
protective property. A study found that in vitro, astraga-
loside IV induced neural stem cells to differentiate into
neuronal marker β-tubulin III (+) cells and astrocyte marker
GFAP (+) cells. Astragaloside IV treatment resulted in an
increase in the number of β-tubulin III (+) cells in the
hippocampus of rat Alzheimer’s disease models transplanted
with neural stem cells and improvements in learning and
memory [83]. In addition, osthole, a natural coumarin
derivative from Cnidium monnieri (L.) Cuss, also increased
the number of neurons in hippocampal DG and CA3 re-
gions, significantly improved the learning and memory
function of mice with mechanical brain injury, and upre-
gulated the expression of self-renewal genes Notch1 and
Hes1 [84]. As a phytoestrogen, icariin increased the ex-
pression and activity of estrogen receptor 1 (ERα), and this
effect of icariin on the differentiation of BMSCs into oste-
oblasts was blocked by the estrogen nuclear receptor an-
tagonist ICI 182780 [39, 41, 55, 85]. Icariin facilitated
osteogenesis in ovariectomized rats by inhibiting peroxi-
some proliferator-activated receptor c (PPARc), CCAAT/
enhancer-binding protein α (C/EBPα), and fatty acid
binding proteins 4 (FABP4) mRNA expression, and
downregulating Jagged1 protein expression in bone tissue
[86]. In addition, transcriptional coactivator TAZ modu-
lated both osteoblast and adipocyte differentiation from
mesenchymal stem cells by stimulating the activities of
RUNX2 [87] and suppressing the activities of peroxisome
proliferator-activated receptor-gamma (PPARc) [88].
Studies demonstrated that icariin stimulated the activation
of TAZ as evidenced by increased total TAZ protein and
nuclear translocation in the osteogenic differentiation
[40, 89]. Similar to icariin, kaempferol fortified the activity of
TAZ by enhancing RUNX2-mediated osteoblast differen-
tiation and suppressing PPARc-stimulated adipocyte dif-
ferentiation [43]. More studies have confirmed that two
coumarins isopsoralen and psoralen, four flavonoids iso-
bavachalcone, bavachin, corylifol A, and neobavaisoflavone,
and one meroterpene phenol bakuchiol of Psoralea cor-
ylifolia [90], glycinol of Glycyrrhiza uralensis [91], noto-
ginsenoside R1 of Panax notoginseng (Burk.) [92], and
puerarin of Puerariae Lobatae Radix [93] had the activity of
phytoestrogens, which activated estrogen receptor signaling
and promoted the differentiation of bone marrow mesen-
chymal stem cells or mouse embryonic osteogenic precursor
cells into osteoblasts.
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0e eNOS/NO/cGMP pathway plays an important role
in the differentiation of osteoblasts, cardiomyocytes, and
EPCs. In induced osteogenic differentiation, icariin stimu-
lated Akt phosphorylation, enhanced nitric oxide synthase 3
(eNOS) and protein kinase G (PKG) expression, increased
nitric oxide (NO) production, and elevated soluble guanylyl
cyclase (sGC) and cyclic guanosine monophosphate (cGMP)
levels [94]. Icariin also promoted the expression of genes
involved in cardiac development and enhanced the increase
in endogenous NO production in stem cells [95]. Curcumin,
in the same manner of icariin, significantly promoted the
differentiation process of embryonic stem cells and in-
creased the gene expression and protein levels of cardiac
specific transcription factors NKX2.5, cardiac troponin I,
myosin heavy chain, and eNOS. Incubation of cells with
curcumin resulted in a dose-dependent increase in intra-
cellular nitrite and elevated levels of intracellular cGMP [96].
Additionally, salvianolic acid B also showed similar effects in
inducing nitric oxide production during osteogenic differ-
entiation [97]. Treatment with ginkgolide B and salidroside
resulted in cell proliferation, angiogenesis, and differentia-
tion of BMSCs-EPCs; enhanced the ability of EPCs to in-
tegrate into vascular networks; and activated Akt
phosphorylation and NO production [21, 25]. Studies have
reported that osteogenic differentiation of BMSCs is closely
related to the activation of the mitogen-activated protein
(MAP) kinase signaling pathway and the upregulation of
transcription factors Runx2 and Dlx5. Various Chinese
herbal ingredients rely on the MAP kinase signaling system
in regulating stem cell differentiation, such as icariin
[39, 98], salidroside [99], salvianolic acid B [46], and

tanshinone IIA [100]. 0e activity of p38 MAP kinase can
control stem cell differentiation switch between neuro-
genesis and cardiomyogenesis [101], which is one of the
mechanisms of icariin in inducing cardiomyocyte differ-
entiation [102].

Furthermore, AMP-activated protein kinase (AMPK)
signaling pathway is also involved in bavachalcone-induced
differentiation of EPCs and ginsenoside RH 2 (s)-stimulated
differentiation of osteoblasts [19, 103]. Resveratrol enhanced
the expression of pluripotency of mouse embryonic stem
cells and increased the pluripotency markers Oct3/4, Sox2,
Nanog, and Klf4 by activating the AMPK/Ulk1 pathway
[104]. Likewise, THSG, a glycoside of resveratrol, enhanced
self-renewal of human dental pulp stem cells via an AMPK
signaling pathway [105]. Evidences showed that medicarpin
and cryptotanshinone promoted the differentiation of
C3H10T1/2 mesenchymal stem cells into brown adipocytes
by increasing the expression of thermogenesis marker
uncoupling protein 1 (UCP1), upregulating brown fat-
specific markers, and reducing the expression of white fat
markers, which were associated with the activation of AMPK
pathway [106, 107].

4. Roles of Wnt, Shh, and Notch Signaling
Pathways in Stem Cell Senescence and
Effects of Active Ingredients fromTraditional
Chinese Medicine

0e antiaging effects of ERα, eNOS/NO/cGMP, and AMPK
pathways have been reported in a large number of high-
quality reviews, so it will not be detailed here. In this article,
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we compare the effect of active ingredients of traditional
Chinese medicine on Wnt, Shh, and Notch signaling
pathways in stem cell differentiation and cell senescence.
Wnt, Shh, and Notch signaling not only regulate stem cell
differentiation but also participate in cell senescence.
Multiple reports suggested that persistent chronic stimu-
lation and dysfunction of Wnt signaling increased cell se-
nescence, mitochondrial biogenesis, and reactive oxygen
species (ROS) production [108–111]. Recent study reported
that LiCl activated the Wnt/β-catenin pathway and pro-
moted the senescence of mouse neural stem cells; ginse-
noside Rg1 inhibited the activation of the Wnt/β-catenin
pathway and promoted the proliferation of neural stem cells
and hematopoietic stem/progenitor cells [112, 113]. In an-
other aging mouse model induced by d-galactose, ginse-
noside Rg1 prevented oxidative stress, and glutathione
peroxidase (GSH-px) and malondialdehyde (MDA)
inhibited phospho-histone H2A.X, 8-OHdG, p16 (Ink4a),
Rb, p21 (Cip1/Waf1), and p53 in senescent Sca-1⁺ hema-
topoietic stem/progenitor cells [113]. However, Shh acting as
an endogenous antiaging factor suppresses endometrial
stem cell aging [114]. Shh gene delivery also inhibited ra-
diation-induced cell senescence in the salivary glands of
mice [115].

Some researchers found that compared with young mice
(5 weeks old), the expression of Shh decreased in osteoblasts
but increased in osteoclasts in old mice (60 weeks old),
which is closely related to senile fracture healing [116], due
to colocalization of Shh and Gli1 with osteogenic markers
Runx2 and Osx, both of which can be observed during
fracture healing [117]. Accumulated evidence indicated that
resveratrol and two of its glycosides, polydatin and THSG,
could activate the Shh pathway [75–77] and delay cell se-
nescence [118–122]. During endothelial cell senescence,
Notch expression was enhanced and activated [123, 124],
and Notch signaling further mediated secondary senescence
and inflammation in oncogene-induced senescence
[125, 126]. Salidroside was one of the active ingredients of
traditional Chinese medicine that not only blocked Notch
signaling [82] but also inhibited the replicative cell senes-
cence [127, 128].

5. Conclusion

0roughout the effect of active ingredients from Chinese
herbal medicine on stem cells, the following points can be
summarized: (1) the botanical source of these active in-
gredients is Chinese herbal medicines with the character-
istics of “Tonifying-Qi,” “Tonifying-Kidney,” and
“Tonifying-Blood,” which are often used to treat aging-re-
lated diseases; (2) the same active ingredient induces stem
cells to differentiate into different tissue cells; although the
active ingredients are different, the signal pathways through
which they act are similar; (3) the same active ingredient may
require different auxiliary conditions in the differentiation of
different tissue cells; for example, salvianolic acid B stim-
ulates differentiation into cardiomyocytes that requires vi-
tamin C or TGFβ, which is not necessary to differentiate into
osteoblasts; (4) several studies have confirmed that there are

crosstalk and integration amongWnt, Shh, Notch, and other
signaling pathways in regulating stem cell differentiation; for
example, salvianolic acid B activated Wnt signaling but
prevented Notch signaling when promoting the differenti-
ation of embryonic stem cells into hepatocytes [57]; sal-
vianolic acid B also activated the Shh signaling pathway and
promoted functional recovery and neurogenesis in neuro-
protection [74]; during the promotion of osteoblast differ-
entiation, the function of salvianolic acid B was also involved
in nitric oxide-cGMP pathway [97]; (5)Wnt, Shh, andNotch
are not only signal pathways of stem cell differentiation but
also important factors of cell senescence. As shown in Ta-
ble 1 and Figures 1–4, the targeted cells and activated
pathways of active ingredients of Chinese herbal medicine
are summarized. Nevertheless, more research is necessary to
explain the targeted molecules of these active ingredients of
Chinese herbal medicine.
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