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From single-molecule spectroscopy to 
super-resolution imaging

Fluorescence microscopy permits cellular processes 
to be imaged with high specificity and with a 
lateral resolution of around 200 nm [1]. However, 
numerous cellular structures, such as vesicles or 
molecular complexes, remain inaccessible for 
imaging with conventional fluorescence techniques.  
State-of-the-art super-resolution imaging methods, 
on the other hand, can now routinely improve on 
the ~200 nm resolution limit by a factor of ten and 
more, and thus have opened the door for the study of 
finer cellular ultrastructure, such as the cytoskeletal 
organization in axons [2]. The conceptual achievement 
and future potential of super-resolution imaging 
techniques were acknowledged with the award of the 
2014 Nobel Prize in Chemistry to Eric Betzig and W E 
Moerner for single-molecule-based super-resolution 
microscopy (or SMLM for single-molecule localization 
microcopy) and to Stefan Hell for stimulated emission 
depletion (STED) microscopy [3]. Structured 
illumination microscopy, SIM, pioneered by the late 
Mats Gustafsson, is another super-resolution method 
that is rapidly gaining in popularity [4–7]. All these 

approaches enable the diffraction limitations in 
conventional light microscopy to be overcome and 
have their advantages under particular experimental 
conditions.

Many technical innovations have taken place over 
the last decade and today super-resolution methods 
are widely available, even as commercial solutions, and 
their use, even by non-specialists, is becoming routine. 
Methods based on single-molecule imaging are becom-
ing particularly widespread since they are technically 
simple to implement yet typically achieve a resolution 
in the 10–20 nm range. In this review, we focus the sto-
ryline on how progress in single-molecule spectroscopy 
has led to the advent of advanced localization micros-
copies and how these methods are now transforming 
biomedical research (figure 1). The neurosciences, and, 
in particular, research into so-called protein misfold-
ing diseases have benefitted greatly from these recent 
developments and we use examples from the recent 
literature to illustrate how SMLM is shedding light on 
the molecular anatomy of the neuron, offering ground 
breaking information on its structural and functional 
components and insights into the molecular mech-
anisms behind devastating diseases such as Alzheimer’s 
and Parkinson’s.
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Abstract
For more than 20 years, single-molecule spectroscopy has been providing invaluable insights into 
nature at the molecular level. The field has received a powerful boost with the development of the 
technique into super-resolution imaging methods, ca. 10 years ago, which overcome the limitations 
imposed by optical diffraction. Today, single molecule super-resolution imaging is routinely used 
in the study of macromolecular function and structure in the cell. Concomitantly, computational 
methods have been developed that provide information on numbers and positions of molecules 
at the nanometer-scale. In this overview, we outline the technical developments that have led to 
the emergence of localization microscopy techniques from single-molecule spectroscopy. We then 
provide a comprehensive review on the application of the technique in the field of neuroscience 
research.
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The first individual molecule was detected by Moe-
rner and Kador in 1989 [8]. For this pioneering work, 
para-terphenyl crystals were doped with pentacence 
and the absorption spectrum of single molecules was 
measured at liquid helium temperature. A year later, 
the experiment was repeated by Orrit and Bernard 
who used fluorescence detection instead of absorption 
[9]. In the latter study, pentacene was excited with a 
pulsed dye laser and fluorescence detected with a pho-
tomultiplier. The same year, Rigler et al and Shera et al 
succeeded in detecting the fluorescence of single mol-
ecules in solution [10, 11]. Shera et al focused the beam 
of a pulsed Nd:YAG laser into a flow cell containing a 
solution with 100 fM of Rhodamine 6G and detected 
the fluorescence with a multi-channel plate as single-
molecules diffused through the laser focus. These were 
extraordinary achievements with the technology avail-
able at the time, but owing to dramatic advances in laser 
and detector technologies in intervening years, single 
molecule detection is today routinely achieved in labo-
ratories around the world, with compact, cost effective 
technologies, such as diode lasers and CCD cameras.

The power of single-molecule methods was rec-
ognized from the start, and led to numerous appli-
cations, most especially in the biochemical sciences 
[12–14]. For instance, single-molecule fluorescence 
methods were used to unravel enzymatic reactions at 
the single-molecule level. An early example is the study 
of cholesterol oxidase activity in real time, exploiting 
the fact that the enzyme’s active site is fluorescent in its 
oxidized form, and non-fluorescent in its reduced form 
[15]. In another impressive experiment, Noji et al were 
able to observe directly the rotary action of F1-ATPase 

by attaching the γ-subunit to a fluorescently labelled 
actin filament [16]. Single-molecule fluorescent spectr-
oscopy is widely exploited to detect conformational 
changes in macromolecular protein complexes. An 
example is the synaptotagmin 1–SNARE fusion com-
plex, crucial for neurotransmitter release: Choi et al 
combined single molecule detection with Förster reso-
nance energy transfer (FRET) to monitor conforma-
tional changes in the synaptotagmin C2 domains upon 
SNARE binding, and were able to deduce structural 
models with an experimental resolution of between 
2 and 10 nm [17]. Similarly, photoinduced electron 
transfer (PET) spectroscopy is capable of detecting the 
dynamics of molecules at a resolution of ~1 nm [18].

These are examples of spectroscopic methods cou-
pled to single molecule detection, which indirectly 
offer resolution far below the classical limit imposed 
by optical diffraction [19, 20]. Although such meth-
ods do not improve resolution of microscopic images 
per se, they are nevertheless conceptual forerunners of 
single-molecule super-resolution imaging methods, in 
exploiting a photophysical or photochemical process 
that takes place over spatial scales much smaller than 
the wavelength of light itself to offer information on 
the nanometer scale. Although single-molecule assays 
are not restricted to single-molecule fluorescence, we 
will here focus on their applications that led to the birth 
of SMLM.

The precise localization of single molecule emitters 
with resolution and noise limited instruments, e.g. with 
two-dimensional (2D) detector arrays, was already dem-
onstrated both theoretically [21] and exper imentally 
[22] upon the realization that diffraction does not per se 

Figure 1. Theoretical and technical developments in single molecule spectroscopy: from birth (ca. 1989) to Nobel Prize to Eric 
Betzig, W E Moerner and Stefan Hell in 2014. Single-molecule spectroscopy contributed to the emergence of super-resolution 
microscopy, but also to the development of conformational study at the single molecule level. The potentials of super-resolution for 
the study of neuroscience was in particular highlighted by the launch of the BRAIN initiative. Modified with permission from  
[12, 30, 42, 80]. Copyright 1999 AAAS, 2004 Macmillan, 1997 Macmillan and 2008 AAAS, respectively.
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pose a limitation on one’s ability to locate an individual 
fluorophore with good precision. A diffraction limited 
image of a single fluorophore, yields a photon emission 
pattern on the detector that is distributed according to 
the point spread function, PSF, of the microscope. The 
latter can be modeled and fitted with a spatial photon 
distribution function, typically  using a Gaussian func-
tion for computational convenience, whose centroid 
gives a more precise estimation of the fluorophore posi-
tion than imposed by the ~200 nm diffraction limit [23]. 
In fact, the fidelity with which the centroid position can 
be estimated is governed by the size of the PSF, the sig-
nal to noise ratio, and the number of photons that are 
detected. The precision of the localization, typically 
described as the standard deviation of the localization 
estimator, scales as the inverse of the square root of the 
photon number [24–27]. Also, in addition to sufficient 
fluorescence signal, the only other criterion required is 
that the density of imaged fluorophores is sparse, so that 
individual PSFs do not exhibit a significant degree of 
overlap in individual images. This principle was already 
exploited in early single molecule tracking experiments 
[22].

The use of organic dyes and quantum dots, with 
their high fluorescence quantum yield, permits very 
high localization precisions to be achieved, down to the 
single-digit nanometer range. For instance, early single-
molecule tracking experiments, referred to as fluores-
cence imaging with one nanometer accuracy (FIONA) 
[28] revealed the mechanism that permits myosin to 
walk along actin filaments [29, 30]. More recently, 
postsynaptic receptor proteins in living neurons were 
labeled with small quantum dots and their diffusion 
behavior determined within the synaptic cleft, using 
similar concepts [31]. In another study, single molecule 
tracking revealed the reversible formation of functional 
hydrogels from protein linked to motoneuron disease 
[32].

However, single-particle (or single-molecule) 
tracking techniques require that only a single emitter 
is present within a diffraction-limited region (DLR). 
Therefore, the emitter localization approach cannot 
be immediately extended to obtain super-resolved 
images, because in densely labeled structures the dis-
tances between fluorophores are smaller than the DLR 
and consequently their emission patterns overlap and 
lead to image blur.

In 1995, Betzig proposed that fluorescence imag-
ing beyond the diffraction barrier might be possible 
if the individual emitters (molecules) within the DLR 
have unique optical characteristics [33] such that they 
become optically discernable. He thus proposed that 
molecules must be ‘identified and isolated through 
one or more distinguishing optical characteristics’. The 
spatial coordinates of each molecule can then be deter-
mined and, finally, ‘the complete set of coordinates for 
all features can then be used to reconstruct the final 
image in which the relative positions of the features are 
shown’ [33]. This concept was originally proposed to be 

combined with near-field scanning optical microscopy 
at cryogenic temperatures, but it embodies completely 
the principle of the ‘localization technique’ that is now 
widely in use to achieve optical super-resolution with 
conventional wide-field microscopes operating at room 
temperature.

In the work of van Oijen et al in 1999, a technique 
had already been proposed for far-field super-resolution 
microscopy on the principle that suitable molecules can 
be spectrally distinguished with high-resolution laser 
spectroscopy [34]. The work was based on a 1985 pub-
lication by Burns et al which demonstrated the spatial 
discrimination of two molecules separated by a distance 
below the diffraction limit through exploitation of dif-
ferent spectral characteristics of certain dyes [35]. Simi-
lar attempts to discriminate multiple emitters within the 
DLR were made using differences in emission spectra 
[36, 37] or fluorescence lifetimes [38]. At the turn of 
this century, the separation of individual fluorophores 
was achieved through photobleaching [39] or temporal 
intensity fluctuations by exploiting the blinking proper-
ties of quantum dots (QDs) [40].

However, all of the approaches described above 
required a low number of molecules to be present 
within a DLR, and thus the reconstruction of densely 
labeled and complex biological structures remained 
challenging.

A milestone was reached with the advent of pho-
toswitchable fluorophores. These are molecules whose 
fluorescence can be controlled by external means, such 
as photoactivation by light at a certain wavelength or 
by photochemical control upon addition of suitable 
compounds to the imaging solution [41]. These pho-
toswitches can be either organic dyes or fluorescent 
proteins (FPs). Dickson et al showed that fluorescence 
blinking occurs over time scales of many seconds in sin-
gle molecules of green fluorescent protein (GFP) upon 
illumination at 488 nm [42]. The authors also reported 
that GFP molecules can populate a non-fluorescing 
dark state from which the photoactive ground state 
can be repopulated by illumination at 405 nm. Later, 
improved photoswitches with long lasting non-flu-
orescent dark states (or OFF-states) were created, e.g. 
FPs such as PA-GFP [43], Kaede [44], EosFP [45] and 
Dronpa [46], and organic dyes such as Cy5 or Alexa 647 
[47] or the Cy5-Cy3 dye pair [48]. New photo-activat-
able, -convertible, and -switchable FPs have been cre-
ated and optimized through site specific mutagenesis of 
established variants [49–51]. The development of pho-
toswitchable organic dyes is on the other hand driven by 
a direct understanding of the photophysics associated 
with the chemical structures of individual dyes [41, 52]. 
In general, most standard organic dyes can be turned 
into photoswitches under appropriate buffer condi-
tions [53–61].

In 2006, Betzig et al used photoactivatable FPs for 
super-resolution imaging of cellular structures such as 
the lysosomal transmembrane protein CD63 in mam-
malian cells, and termed it photoactivated localization 
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microscopy (PALM) [62]. At the same time, different 
acronyms for methods based on the same principle 
have been proposed, such as fluorescence photoacti-
vation localization microscopy (FPALM) [63] with 
FPs, and stochastic optical reconstruction microscopy 
(STORM) [64] utilizing a Cy5-Cy3 dye pair. Thence-
forth, different refinements have been made such as 
direct STORM (dSTORM), a simplified variant of 
STORM, in which the photoswitching is achieved in 
single dyes, without requirement for an activator fluo-
rophore [54, 65].

A plethora of super-resolution techniques have 
since been developed, which exploit the single molecule 
localization principle, but they are not conceptually 
different. Variations only exist in the way that fluores-
cent emitters are made to photoswitch. In all cases, the 
fluorophores are separated in time and measured as dif-
fraction-limited spots on a 2D array detector (figure 2).  
The coordinates of each fluorophore are determined 
with sub-pixel resolution by fitting each emission pat-
tern with a Gaussian function and determining its cen-
tre. From a complex sample structure labeled with thou-
sands to millions of fluorophores, only a sparse subset of 
fluorophores is activated (or switched into a fluorescent 
ON-state) at any given time in order to permit single-
molecule detection and localization. The majority of 
fluorophores, however, stays in the non-fluorescent 
OFF-state. Consecutively, the active ON-state molecules 
are either bleached or switched back to the OFF-state and 
a new subset of fluorophores is stochastically activated. 
The sequence is then repeated for many emitter subsets 
in the sample, and their coordinates are recovered. If 
enough emitters are localized and the spatial sampling 
fulfils the Nyquist criterion, the localization coordinates 
obtained can be used to provide a ‘super-resolved’ rep-
resentation of the underlying structure. Photoswitching 
is typically controlled by irradiation with laser light of 

different wavelengths and/or by chemical buffers. The 
final resolution of the obtained reconstructed image 
does not only depend on the precision at which single 
emitters are localized, but also on the density of labels 
on the structure of interest and on parameters such as 
the pixel size of the reconstructed image. Here, the label-
ling density will define the smallest feature resolvable as 
described by the Nyquist–Shannon theorem for spatial 
frequencies in the sample [66, 67].

An alternative approach to obtaining super-reso-
lution images by single-molecule localization in the 
absence of photoswitching is based on the diffusion 
and stochastic binding of fluorescent probes onto their 
target, e.g. cell membranes. The probes become emis-
sive on contact with their target and thus permit their 
localization. The principle of the technique is summa-
rized in its acronym, PAINT, which is short for ‘points 
accumulation for imaging in nanoscale topography’ 
[68]. A variant of the latter technique, uPAINT, was used 
by Giannone et al to obtain super-resolved images and 
diffusion maps of membrane proteins in living neurons 
[69]. For a full list of the different SMLM methods and 
their underlying switching mechanisms, we refer the 
reader to recent literature [52, 70–72].

Development of single-molecule 
localization microscopy

Image reconstruction
After its first demonstration, SMLM was immediately 
embraced by many research laboratories around 
the world. In the early years, the challenges for the 
technique were mainly of a computational nature, since 
the efficient localization of millions of single-molecules 
and the reconstruction of high-resolution images from 
their coordinates was too time consuming to lead to 
widespread applicability. Post-acquisition data analysis 

Figure 2. Principle of SMLM. If the underlying structure (here, a yellow circle) is labelled efficiently with appropriate fluorescent 
dye, it can be imaged with a fluorescent microscope. A conventional wide-field image of this structure will result in a blur limited 
by the diffraction limit (red blur). However, in SMLM, each fluorophore on the structure of interest is imaged sequentially such 
that their individual fluorescence pattern can be isolated in each camera frame (indicated by the time axis). The coordinates of each 
imaged fluorophore can be estimated, typically by 2D Gaussian fit, and the super-resolved image can be computed. Additionally, the 
set of coordinates can be exploited to perform quantitative analysis, clustering or single particle averaging.
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took hours in the pioneering experiments. However, 
faster reconstruction methods were soon developed 
either via improved algorithms [73] or parallelized 
computing with graphics processing units [74]. Today, 
reconstruction is not a limitation of the technique 
and several efficient open source software packages 
are available to achieve reconstruction on desktop 
computers within minutes or even seconds [73–78]. For 
an excellent overview on this topic, we refer the reader 
to the review of Small and Stahlheber [79].

3D imaging
The capability of SMLM has been extended to three 
dimensions (3D) by ensuring that fluorophores 
situated at different depths in the sample produce 
geometrically discernible emission patterns. This can 
be achieved by engineering the emission PSF through 
the introduction of astigmatism in the detection path 
of a wide-field microscope [80]. Variants include the 
use of a PSF that twists like a double helix along the 
imaging axis [81], the use of multiple imaging planes 
[82, 83], and interferometric approaches [84]. Several 
reviews are available to guide the user towards the most 
appropriate technique for a given application [85–87].

Converting quantitative information into molecule 
numbers
In SMLM, if the emitters are sufficiently sparse, each 
extracted set of coordinates corresponds to an individual 
emitter. Therefore, molecular quantification, i.e. counting 
the number of labeled molecules, is possible. Examples 
include the counting of subunits in macromolecular 
complexes labeled with FPs via PALM [88, 89], or, more 
recently, via dSTORM [90]. However, artifacts may arise, 
leading to undercounting, either from imperfect labeling 
efficiencies or the co-incident blinking of two emitters 
within the diffraction limit, or overcounting when 
multiple blinking events from individual fluorophores 
occur, as previously highlighted [91, 92].

The effects of undercounting and overcounting 
depend largely on the chosen labelling method, how-
ever, none of the labelling methods currently available 
fully resolve these limitations and, in practice, rigorous 
control experiments are required.

In theory, genetically-expressed labels such as FPs 
provide a 1:1 stoichiometry between the number of 
fluorescent probes and protein molecules of interest 
but in practice slow, or incomplete, maturation/photo-
activation of FPs in cells, can lead to undercounting. On 
the other hand, when using immuno-labelling in com-
bination with organic dyes, undercounting may be the 
result of imperfect labeling, which is largely dependent 
on the affinity and specificity of the antibodies used 
and the accessibility of the antigen. Other labelling 
strategies attempted to exploit the 1:1 stoichiometry 
of genetically-expressed tags with organic dyes, such as 
Halo [93], SNAP/CLIP [94] or Click chemistry [95] but 
here again, imperfect labelling efficiencies will result 
in undercounting. All these effects of undercounting 

need to be accounted for by estimating the efficiencies 
of FP maturation, fluorophore photoactivation, and 
labeling in situ.

Overcounting occurs when a single emitter is active 
for multiple instances during the acquisition sequence. 
For photoactivatable proteins, such as mEos2, the 
blinking properties are now well understood. The fluo-
rescence of a single mEos2 molecule occurs typically 
in rapid sequential bursts of fluorescence intermit-
ted by short dark times before the fluorophore finally 
bleaches. These dynamics can be modeled and bursts 
grouped computationally into single events to avoid 
overcounting [96]. For organic dyes, however, dark 
times can be very long (e.g. tens of seconds) and thus 
this grouping approach is not applicable. However, 
when using indirect immuno-labelling, the localiza-
tion count per secondary-primary label bound to an 
epitope can be estimated by taking the average number 
of localizations per dye-labeled secondary antibody as 
well as the average number of secondary antibodies per 
primary antibody [90], thereby making it possible to 
correct for overcounting.

Cluster analysis
In many biological systems molecules accumulate in 
nanoscopic domains to elicit a functional effect; the 
clustering of receptor proteins on the cell membrane to 
initiate a signaling pathway is one example. To quantify 
such assemblies, algorithms that were originally 
developed in the field of geographical statistics have 
been adapted to SMLM. They are commonly referred 
to as cluster analysis. The method has been applied to 
estimate both size and densities of membrane protein 
clusters. Notably, the formation of sub-100 nm lipid 
rafts in the plasma membrane could be verified by 
cluster analysis and spatial inhomogeneities were 
quantified using Ripley’s K function [97]. Spatial 
inhomogeneities in protein distributions on the 
membrane can also be characterized using so called 
pair-correlation functions, PCF [98] and density based 
analyses [99]: the latter was used to follow the dynamic 
clustering of syntaxin at neuronal plasma membranes 
into nanometer-scale arrangements that orchestrate 
exocytosis. The method furthermore unraveled the 
nanometer-scale arrangements of the multi-protein 
SNARE complexes that underpin neurotransmitter 
release during synaptic transmission. Cluster 
approaches using multiple colors were also developed, 
such as for the observation of HIV virus-cellular host 
interactions in membranes [100, 101].

Single-particle averaging
The spatial alignment and averaging of localization 
data from measurements of multiple structurally 
identical particles permit a dataset to be obtained with 
much increased signal-to-noise ratio. Such techniques, 
termed single particle averaging, are routinely used in 
high-resolution structural analyses with traditional 
biophysical tools, such as electron microscopy (EM) 
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based tomography techniques [102]. There is much 
to be gained to take such approaches into the field 
of SMLM as has been shown in pioneering recent 
studies. For example, from particle averaged dSTORM 
images the arrangement of gp210 proteins forming 
the nuclear pore complex could be recovered precisely, 
and the eightfold symmetry of the complex and the 
pore formation be resolved with nanometer precision 
[103]. Other proteins of the nuclear pore complex were 
subsequently investigated using particle averaging 
[104], recently even in their 3D arrangements [105].

In a recent example, a model-based fitting approach 
was used in conjunction with particle averaging to 
study the precise arrangement of proteins in the Herpes 
Simplex Virus type-1 (HSV-1) virion with dSTORM. 
A precision of ~1 nm was demonstrated with the tech-
nique, which has the advantage over EM techniques of 
a high molecular specificity to discriminate between 
individual protein species [106]. The study demon-
strated furthermore that virus ultrastructure and 
assembly state can be visualized even inside the cell. In 
summary, SMLM in combination with particle averag-
ing and model-based analyses using a priori informa-
tion (e.g. EM data on ultrastructure) opens tremen-
dous opportunities for structural biology in the future.

These examples make clear, that the future of 
SMLM depends critically not only on further progress 
in dye technology and labels, but also on the devel-
opment of sophisticated reconstruction and analysis 
algorithms [106–108].

Applications in the field of neurosciences

Although super-resolution techniques such as STED 
[109] are significantly contributing to research in the 
neurosciences [110–112], we focus here on SMLM 
imaging in this application section. We begin with 
examples from general neurobiology and conclude with 
examples of research into neurodegenerative diseases.

General neurobiology
The potential of SMLM for studies in the neurosciences 
was embraced from the early days of the technique and 
groundbreaking discoveries have been made since. In 
figure 3 a range of image panels are shown that depict 
examples where SMLM experiments have shed new 
light on the architecture and function of neuronal 
components. The cartoon of two interconnected cells 
in the middle is included to provide a context for the 
examples shown and is labelled to provide positional 
context for panels (A)–(F).

Key questions related to memory and learning 
concern how neuronal activity changes the shape and 
morphology of synaptic connections, a topic generally 
referred to as synaptic plasticity [113, 114]. Synapses can 
strengthen and weaken as neuronal activity increases 
or decreases and these changes are in turn caused by 
dynamic changes in the actin cytoskeleton. PALM was 
successfully applied for studying actin within living 

spines [115, 116]. For instance, Izzedin et al were able to 
perform high resolution SMLM imaging of dendritic 
synaptic spines (see figure 3, panel (A)) using the actin-
binding, photoactivatable fusion protein construct 
ABP-tdEosFP [116]. Impressively, the authors were able 
to perform long term dynamic PALM imaging in live 
neuron cultures to follow changes in spine morphology 
and underlying cytoskeleton structure.

The transmission of signals from the cell body of a 
neuron to an axonal synapse occurs via changes in action 
potential along the axon and is mediated by sodium 
channels distributed across the axonal membrane. Dra-
matic new insights into axonal structure were gained by 
3D STORM imaging of the cytoskeletal proteins actin, 
spectrin, and adducin (figure 3, panel (B)). Intriguingly, 
and in stark contrast to dendritic structures, where lin-
ear actin filaments run primarily along the dendrite axis, 
actin filaments in axons were found to be arranged in 
periodically spaced rings, spanning the circumference 
of the axonal tube [2]. The distance between the actin 
rings was found to be consistent with the size of spec-
trin tetramers, which permitted the authors to suggest 
a new structural model to underpin sodium channel 
arrangements in axons. In a different context, two-color 
dSTORM was more recently applied to observe struc-
tural arrangements of proteins in axonal mitochondria, 
revealing that the protein UCP4 may exclusively act as a 
reactive oxygen species regulator [117].

The transmission of signals between neurons is 
mediated via the synaptic cleft, formed between the 
transmitting neuron and the receiving neuron. Learn-
ing and memory are likely encoded in the number and 
type of synaptic connections formed in neuronal tis-
sue [118]. Distinguishing the pre- and post-synaptic 
termini and obtaining data on the morph ology of, and 
protein distributions near, the synaptic cleft have been 
formidable challenges because of the small size of fea-
tures involved. Two color SMLM imaging has overcome 
this problem. In panel (C), figure 3, taken from Dani 
et al [119], the distributions of the pre- and post-synap-
tic proteins Bassoon and Homer1 are clearly differenti-
ated across the synaptic clefts of neurons in brain tissue. 
This and related studies show that the precise structural 
arrangement of synaptic proteins can now be quanti-
fied by SMLM, revealing extraordinary new details on 
neurotransmitter receptor organization and activity 
dependent plasticity [90, 120].

The study of the dynamic trafficking of receptor 
proteins and their assembly and disassembly into 
functional clusters is powerfully enabled by single 
particle tracking approaches. Hoze et al combined 
the PALM approach with single-particle tracking 
(sptPALM) and measured local velocity and diffusion 
coefficients of AMPA receptors, which regulate excita-
tory postsynaptic potentials, in individual dendritic 
spines (see panel (D), figure 3) [121]. Using advanced 
particle tracking algorithms, the authors were able to 
identify two classes of spinal protrusions, which fea-
tured either inward or outward trafficking of AMPA 
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receptors, respectively. Similarly, Shim et al studied the 
diffusion of the lipophilic, photoswitchable dye DiI 
on the membrane of dendritic spines, and generated 
diffusion maps in this way [122]. They were thus able 
to correlate changes in local diffusion coefficients with 
the underlying dynamics of the membrane ultrastruc-
ture (figure 3, panel (E)).

Neurodegeneration
As a final example of this review we focus on the use 
of SMLM techniques to provide new insights on 
mechanisms causing the degeneration of neurons 
upon aggregation of  disease-related proteins. 
Neurodegenerative diseases, such as Alzheimer’s, 
Parkinson’s and Huntington’s, are all characterized by 

Figure 3. Single molecule localization microscopy, SMLM, uncovers the molecular anatomy of the neuron. The cartoon of two 
connecting neurons in the centre panel illustrates major components of the neuronal architecture, from which information has been 
gained with super-resolution microscopy. Labels in parentheses refer to the approximate locations for which example data from 
SMLM are shown in panels (A)–(F). Panels: (A) Study of actin dynamics in living dendritic spines. The changes in spine morphology 
was investigated using time-lapse PALM (reproduced with permission from [116]). (B) Observation of the periodic structure of 
actin, spectrin and adducin in axons. The images were obtained using multi-color 3D STORM (reproduced with permission from 
[2] copyright 2013 AAAS). (C) 3D STORM imaging in synapses reveal the distribution of Bassoon and Homer1 proteins and thus 
permit, respectively, a clear differentiation of the pre- and post-synaptic termini (reproduced with permission from [119]; copyright 
2010 Elsevier). (D) Observation of AMPA receptor trafficking at the single molecule level. Here, the authors use single-particle 
tracking PALM (sptPALM) to extract local velocity maps of AMPA receptors transported in living dendritic spines: 2 types of spines 
are observed (reproduced with permission from [121]; copyright 2012 National Academy of Sciences). (E) Diffusion maps for the 
photoactivatable, lipophilic dye DiI on dendritic membranes obtained by single-particle tracking (reproduced with permission 
from [122]; copyright 2012 National Academy of Sciences). (F) In vitro assay to probe the seeding activity of amyloid-β from patient 
derived cerebrospinal fluid with amyloid-β1–40 peptide via 2 color dSTORM (reproduced with permission from [143]; copyright 
2014 Oxford University Press).
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the misfolding of protein species and their consequential 
aggregation within the brain of patients, resulting 
in neuronal death and loss of cognitive function.  
The peptides involved differ greatly between the 
different types of disease (α-synuclein for Parkinson’s, 
Tau and Aβ for Alzheimer’s, and polyQ-Huntingtin 
in the case of Huntington’s), yet in their aggregated 
forms, these proteins feature remarkable structural 
similarities, adopting beta sheet rich fibrillar structures, 
so called amyloids [123, 124]. Traditional, non-optical 
techniques, such as atomic force microscopy (AFM) 
or EM, have provided structural details on individual 
aggregate and revealed polymorphisms, i.e. they are 
capable of differentiating between oligomeric or 
fibrillar protein forms. However, these methods do not 
permit in situ observations of amyloid localization and 
formation.

A key question in the context of disease is to estab-
lish which polymorphic species elicit a toxic cellular 
response [125]. To address such questions, the develop-
ment of in situ and in cellulo assays is essential. Optical 
techniques permit protein aggregation to be studied in 
vivo and to put the observations into context with dis-
ease related phenotypes [126]. However, in the past, the 
techniques relied on indirect readouts of aggregation 
state [126–129]. The resolution of SMLM techniques 
has now advanced to a stage where the direct imaging 
of amyloid morphology is possible in vitro at single 
molecule resolution. The method was originally dem-
onstrated using blink microscopy of polyQ aggregates 
[130] and later followed by the first in situ observation 
of Aβ aggregates in cells via dSTORM [131]. The latter 
study highlighted the influence of the cellular environ-
ment on aggregation kinetics and morphologies, differ-
ing markedly from what was observed for comparable 
conditions in vitro, in the test tube. In contrast, fibrillar 
polyQ species appeared to be more similar, structurally, 
between the corresponding in vitro and in cellulo cases 
[132]. Similarly, the aggregation of human lysozyme, 
which occurs in a certain case of hereditary amyloidosis 
linked to specific lysozyme mutations, were observed 
both in vitro and in cells using dSTORM and showed 
similar morphological features [133].

These pioneering studies have paved the way for 
more detailed biophysical and biological studies. Nota-
bly, the growth (polymerisation) of amyloid species 
can now be monitored in situ using multi-color SMLM 
approaches and new insights into the nature of amy-
loid elongation rates were obtained for α-synuclein 
[134, 135] and polyQ [136–138]. Whilst the former 
studies were performed in vitro, in test tube samples, 
similar investigations can now be performed directly 
in cells. Thus it was possible to reveal mechanisms of 
Tau protein propagation from cell to cell and a prion 
like proliferation of aggregating species was observed 
with two color SMLM, which shed new mechanistic 
insights into Alzheimer’s disease (AD) [139]. The latter 
finding highlighted the potential risk associated with 
increased levels of extracellular Tau, as may result, for 

example, as result of neuronal death associated with 
repeated trauma to the head region, providing a pos-
sible link to sports injury related dementia. A similar 
‘prion like propagation’ mechanism was recently veri-
fied for α-synuclein, using similar methods [140]. In 
another study, SMLM revealed that the aggregation 
kinetics of mutant variants of Aβ are faster in cells 
than wild type Aβ, again providing a link to AD dis-
ease pathology [141, 142]. This provides a direct con-
nection to a more recent study using samples from AD 
patients: Using two-color SMLM it was observed that 
Aβ obtained from the soluble fraction of brain extracts 
of AD patients have a higher capacity to propagate the 
amyloid state than that extracted from cerebrospi-
nal fluid [143] (figure 3, panel (F)). The experiments 
reviewed here were obtained with immunofluorescence 
or covalently labelled amyloids, however, other label-
ling approaches have also been successfully combined 
with SMLM, such as using intercalating dyes that are 
specific to amyloids [144]. SMLM is clearly making a 
tremendous impact in the study of protein misfold-
ing diseases, in situ, along with other molecular prob-
ing techniques such as FRET [127, 145]. However, the 
field is still young and numerous questions remain to be 
answered, such as, what is the interaction of each amy-
loid species with the cellular machinery? Which species 
are responsible for cell death? What is the effect of the 
presence of these fibrillar structures on synaptic trans-
mission? Super-resolution fluorescence techniques will 
provide many answers to these related questions, lift-
ing the cover off the molecular phenomena at the root 
of these pathologies and may pave the way for future 
therapeutic strategies.

Conclusion

The immense scientific progress made over the last 25 
years, both from technological and theoretical points 
of view, have caused a revolution in the field of optical 
microscopy. Modern variants enable scientists to observe 
molecular species directly in their native environments 
and in a context relevant to biomedical research. In 
the neurosciences in particular, the impact of super-
resolution imaging is spectacular. Imaging techniques 
will be the key to unlock the mysteries underlying the 
function of the brain, which remains as one of the 
greatest scientific challenges to mankind, as highlighted 
by the launch of the BRAIN initiative. SMLM and other 
super-resolution techniques have begun to unravel key 
phenomena providing new insights into the micro-
physiology of the brain and molecular events at the 
focus of neurodegenerative diseases such as Alzheimer’s, 
Parkinson’s or Huntington’s diseases.

In the future, we expect that combinations of 
super-resolution techniques with non-optical tech-
niques such as correlative optical/AFM [146] or opti-
cal/EM [147, 148] or combination of structural opti-
cal tools with functional imaging such as Fluorescence 
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lifetime imaging (FLIM) and Förster resonance energy 
transfer (FRET) will provide even deeper insights into 
the intricate links between molecular structure and 
function and pathological phenotypes.
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