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A B S T R A C T   

This research presents the utilization of an enhanced Sine cosine perturbation with Chaotic 
perturbation and Mirror imaging strategy-based Salp Swarm Algorithm (SCMSSA), which in-
corporates three improvement mechanisms, to enhance the convergence accuracy and speed of 
the optimization algorithm. The study assesses the SCMSSA algorithm’s performance against 
other optimization algorithms using six test functions to show the efficacy of the enhancement 
strategies. Furthermore, its efficacy in improving Support Vector Regression (SVR) models for 
CO2 prediction is assessed. The results reveal that the SVR-SCMSSA hybrid model surpasses other 
hybrid models and standard SVR in terms of training and prediction accuracy by obtaining 95 % 
accuracy. Its swift convergence, precision, and resistance to local optima position make it an 
excellent choice for addressing complex problems such as CO2 prediction, with critical implica-
tions for sustainability efforts. Moreover, feature importance analysis by SVR-SCMSSA offers 
valuable insights into the key contributors to CO2 prediction in the dataset, emphasizing the 
significance and impact of factors such as fossil fuel, Biomass, and Wood as major contributors to 
CO2 emission. The research suggests the adoption of the SVR-SCMSSA hybrid model for more 
accurate and reliable CO2 prediction to researchers and policymakers, which is essential for 
environmental sustainability and climate change mitigation.   

1. Introduction 

Climate change is viewed today as the greatest threat to humanity’s survival [1,2]. Despite the 2015 International Paris Agreement 
aimed at reducing greenhouse gas emissions, global temperatures have risen primarily due to the increased global reliance on fossil 
fuels. Eighty percent of the world’s energy consumption is derived from the use of fossil fuels, a practice that plays a pivotal role in the 
rapid expansion of globalization and industrialization [3,4]. It’s a well-established fact that the emissions of greenhouse gases, most 
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notably carbon dioxide, have detrimental effects on the environment, particularly with regard to global warming [5,6]. These 
emissions are mostly caused by burning fossil fuels to produce electricity and heat. 

According to the scientific community, carbon dioxide releases are the primary cause of global warming [7]. For the purpose of 
establishing effective energy policies and preparing for climate change, it is crucial to predict CO2 emissions from the perspective of 
energy use [7]. Anticipating CO2 emissions may be helpful in estimating future increases in global temperatures and even in assessing 
the possible costs of reducing emissions and the possible advantages of protecting against such increases. Furthermore, according to 
the Copenhagen Accord, increases in global temperatures have to be limited to less than 2 ◦C. This means that by 2050, global 
emissions must drop by 50–80 % from 1990 levels [8–11]. As 2050 draws near, a number of methods for capturing carbon are already 
proposed to reduce the release of carbon dioxide and minimize global warming to 2 ◦C [12–14]. CO2 emissions prediction, in com-
bination with carbon capture technology, can help investigate the extent to which the continuous reinforcement of international 
climate policy can result in a significant drop in CO2 emissions to meet the 2 ◦C target [15]. Otherwise, the governments must 
implement more stringent climate regulations. Over the past few years, there have been significant advancements in artificial intel-
ligence (AI) technology, particularly in its application to forecasting [16,17]. AI stands out due to its ability to self-learn and handle 
intricate non-linear issues, allowing it to consider all the relevant parameters in forecasting, resulting in improved predictive outcomes 
[18,19]. Ahmed et al. focused on improving the accuracy of streamflow forecasting, a critical aspect of water planning and 
decision-making [20]. They combined a Multi-layer Perceptron (MLP) model with the Nuclear Reaction Optimization (NRO). The 
researchers used a streamflow record gathered from the High Aswan Dam (HAD) station over 13 decades to assess the hybrid model’s 
effectiveness. The novel method was contrasted against nine different hybrid MLP-based algorithms, as well as the conventional neural 
networks. According to the research’s findings, adding MLP to the NRO algorithm provides an accurate and dependable method for 
monthly streamflow prediction that offers quick convergence and a high degree of stability. Abedinia et al. proposed an innovative 
forecasting approach that combines a neural network with an Enhanced Smell Shark Optimization algorithm, significantly improving 
the learning capabilities of the forecasting engine in collecting intricate signal mappings [21]. Additionally, this combination prevents 
the forecasting engine from becoming trapped in local minimums. The neural network’s parameters are adjusted using the meta-
heuristic technique. This forecasting approach was carefully applied to an engineering real-life scenario to validate its effectiveness. 
The resulting findings clearly demonstrate this approach’s superior efficacy when compared to alternative prediction techniques. 
Masood et al. presented the ELM-SO, which combines the Snake Optimization Algorithm and the Extreme Learning Machine (ELM) 
[22]. Meteorological parameters and air quality inputs were used to assess this model. With a root mean square error of 30.325 μg/m3 

and a squared correlation coefficient of 0.928, the results show that ELM-SO performs better than other compared techniques in terms 
of prediction. Lashgari et al. [23] presented a novel strategy to improve Taiwan’s transportation energy consumption predictions. The 
research introduced an Improved variant of the Emperor Penguin Optimizer (IEPO). The IEPO algorithm, which takes into account 
variables such as population, GDP growth rate, and total yearly vehicle kilometers, was utilized to maximize the parameters of three 
separate models quadratic, exponential, and linear used in the forecasting process. As a useful tool for decision-making, the simulation 
results demonstrated the excellent efficiency of the IEPO-based transportation energy consumption forecasts across all models used. 
Ismael et al. introduced a hybrid model, which integrates a Spotted Hyena Optimizer (SHO) with support vector machine (SVR) 
techniques, to forecast the flux pressure in Vacuum Membrane Distillation (VMD) [24]. This hybrid model, validated against exper-
imental data, was compared with various machine learning tools such as artificial neural networks (ANNs), classical SVR, and multiple 
linear regression (MLR). Notably, the results demonstrate the superior accuracy of the SVR-SHO model, achieving a correlation co-
efficient (R) of 0.94 in flux pressure prediction. Quin et al. introduced a new Marine Predator Algorithm (MPA) that addresses the 
drawbacks of poor convergence accuracy and the propensity for standard MPA to enter a local optimum state by combining it with the 
Golden sine algorithm with Elite opposition-based learning (EGMPA) [25]. Additionally, the authors introduced a novel multi-kernel 
support vector regression that solves the selection of variables problem by using multiple kernel functions. The study inputs are China’s 
carbon dioxide emission statistics from 1965 to 2020. China’s carbon dioxide emissions are predicted using the suggested method over 
the span of the "14th Five-Year Plan". The outcomes proved that the suggested method improves China’s CO2 emissions forecasting 
precision. Jalaee et al. suggested a novel Artificial Neural Network combined with a Cuckoo Optimization Algorithm called COANN 
[26]. The Correlation Coefficient (CC), Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean Squared Error (MSE) 
between the model’s result and the real dataset are used to assess the performance of the COANN. Finally, a COANN forecast of global 
CO2 emissions by 2050 is presented. The results demonstrated that COANN is an effective and trustworthy technique for tracking 
global warming. An Artificial Neural Network (ANN) model trained using the Grey Wolf Optimizer (GWO) technique was presented by 
Uzlu to forecast Turkey’s GHG emissions [27]. Statistics on energy consumption, the Gross domestic product (GDP), population, pace 
of urbanization, and generation of renewable energy were utilized as forecast factors. The outputs of the novel ANN-GWO model were 
contrasted using numerous error criteria to the performance of the ANN-ABC (Artificial Bee Colony), the ANN-BP (Back-Propagation), 
and ANN-TLBO (Teaching–Learning–Based Optimization) models in order to assess the precision of the suggested approach. Based on 
the average relative error values computed during the test, ANN-GWO outperforms ANN-ABC by 35.29 %, ANN-BP by 32.23 %, and 
ANN-TLBO by 19.33 %. Three situations were used to estimate GHG emissions through 2030 using the ANN-GWO. The results showed 
that GHG emissions are anticipated to exceed government projections and that the GWO optimization algorithm is useful for projecting 
GHG emissions. 

The No-Free-Lunch (NFL) theorem highlights a fundamental principle: there’s no universal optimizer that excels in solving every 
optimization problem and surpasses all other methods [28–30]. Instead, the performance of an optimizer may vary, excelling in some 
cases while falling short in others. Even though the aforementioned algorithm exhibits outstanding performance, there is a tendency to 
fall short in complex optimization problems, according to NFL. This opens up numerous opportunities, including the development of 
entirely new optimization algorithms or the refinement of existing ones, which may have the potential to surpass their predecessors in 
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the context of CO2 emissions prediction. Secondly, AI models and machine learning techniques require fine-tuning their hyper-
parameters to improve their prediction accuracy in CO2 emission prediction. These research gaps form the impetus of this research 
endeavour to enhance the traditional Salp Swarm Algorithm (SSA) as a parameter adjustment mechanism for the CO2 prediction 
model. The Salp Swarm Algorithm (SSA), one of the most current swarm optimization techniques, was introduced by Mirjalili et al. 
[31]. The fundamental principle of the SSA algorithm is to use the salps chain notion to simulate the swarming activity of salps in the 
water. The SSA algorithm was selected for its advantages, including efficiency, adaptability, simplicity in implementation, and a small 
number of initialization parameters. The SSA, however, has limitations in terms of population diversity and local optima [32,33]. To 
address these issues, an improved version of SSAcalled Sine cosine perturbation with Chaotic perturbation and Mirror imaging 
strategy-based Salp Swarm Algorithm (SCMSSA) is introduced in this study to improve the Support Vector Regression model prediction 
accuracy. The SVR-SCMSSA builds on SCMSSA’s improved exploration and exploitation ability to find the most optimal parameters to 
a given optimization problem, through the three newly introduced enhancement techniques, namely Sine Cosine Strategy, Mirror 
Imaging Technique, and Chaotic Perturbation, preventing the local optima’s trap and enhancing solution diversity. 

The subsequent sections of this paper are structured as follows: section 2 provides essential background information about the 
original Salp Swarm algorithm, section 3 outlines the specifics of the newly proposed SCMSSA algorithm, and Section 4 elaborates on 
the steps involved in building the SVR-SCMSSA CO2 prediction model, Section details 5 the data description and preprocessing, in 
Section 6 the conducted experiments on CO2 prediction and the corresponding results are discussed. Finally, Section 7 presents the 
concluding remarks of this study. 

2. Original Salp Swarm Algorithm (SSA) 

Mirjalili et al. introduced the Salp Swarm Algorithm (SSA), as a recent addition to the group of swarm optimization algorithms 
[31]. The goal behind SSA is to mimic the collective habit of salps. Throughout their aquatic existence, salps engage in a distinctive 
swarming habit referred to as the "salp chain" that is also employed in their quest for food. The SSA population consists of two distinct 
groups: leaders and followers. The leader, situated at the forefront of the salps chain, plays a pivotal role in deciding where to move to, 
where to feed, and periodically refreshing these target site options. The rest of the individuals are referred to as "followers" since they 
all follow the leader in succession, forming a chain pattern. Every single point in the n dimensions search area represents a possible 
solution with n representing the number of variables pertinent to the problem at hand. Additionally, the concept of "food supply," 
symbolized by F stands for the objective that the salps are seeking. This scenario is depicted by Equation (1). 

x1
j =

{
Fj + r1

( (
ubj − lbj

)
r2 + lbj

)
r3 ≥ 0.5

Fj − r1
( (

ubj − lbj
)
r2 + lbj

)
r3 < 0.5 (1)  

x1
j and F represent respectively the leader and the target’s position in the jth dimension, while ubj and lbj are the upper and lower 

boundaries of the Salps position components. r2 and r3 scalar values were randomly selected from the [0,1] interval. The critical 
control parameter is r1, responsible for stabilizing the exploration and exploitation. r1 is expressed in Eq (2): 

r1=2e
−

(
4t
T

)2

(2) 

Here, the present number of iterations and the highest number of potential iterations are denoted by t and T, respectively. The 
equation given in equation (3) is used for updating the followers’ positions such that i > 2. 

xi
j =

1
2

(
xi

j + xi− 1
j

)
(3) 

Table 1 
Algorithm 1: Pseudocode SSA.   

1 Initialize the population randomly.  
2 Obtain the fitness of all salps  
3 Set FoodPosition as the leader salp and fitness of leader as FoodFitness  
4 While (end condition not met) do  
5 Update r1 by Eq. (2)  
6 For (every salp (xj)) do  
7 If ((i = < N/2) then  
8 Update the position of leader by Eq. (1)  
9 Else  
10 Update the position of followers by Eq. (3)  
11 End if  
12 Evaluate each salps fitness  
13 Update the FoodPosition  
14 End for  
15 End While  
16 Return FoodFitness  
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Next, as seen in Eq (4), Isaac Newton’s theory of motion is used: 

xi
j =

1
2

k × t 2 + s0 × t (4) 

Here, xi
j signifies the i-th follower’s position in the j-th dimension, t represents the iteration, s0 represents the beginning speed, and k 

is defined in Equation (5): 

k=
sfinal

s0
(5)  

With s0 given in Equation (6) 

s0 =(x − x0) / t (6) 

The steps of SSA and pseudocode are given in algorithm 1 in Table 1. 

3. Proposed sine cosine mirror imaging chaotic perturbation-based Salp Swarm Algorithm (SCMSSA) 

3.1. Logistic Chaotic Single-Dimensional Perturbation 

Chaos is a state of disorder found in nonlinear dynamic systems and is prevalent in various natural and social circumstances [34]. 
Chaos exhibits qualities such as pseudo-randomness, ergodicity, and sensitivity to starting conditions. There are two types of chaotic 
systems: high-dimensional chaotic systems and one-dimensional chaotic systems. Logistic mapping is a very basic and extensively 
researched one-dimensional chaotic dynamic system that is defined as follows in equation (7) [35]: 

C(t+ 1)= μC(t)(1 − C(t)) (7)  

Where the t-th chaotic sequence is represented by C(t),1 ≤ t ≤ (n − 1). The parameter of the logistic chaotic sequence is 0 < μ ≤ 4. The 
impact of various μ values on the chaotic distribution affects the sequence’s ergodicity. The chaos parameter, C(1) is randomly 
initialized from the range (0, 1) and ensures that C(1) is not equal to 0.25, 0.5, 0.75, or 1. Movements made using chaos exhibit non- 
repeating behavior and offer greater search efficiency compared to random movements, as seen in Fig. 1b. As seen in Fig. 1b its values 
are uniformly distributed between 0 and 1, compared to Fig. 1a; therefore, discovering the best solutions in promising areas by using a 
one-dimensional chaotic traversal exploration is efficient. By using this method in SCMSSA, SCMSSA is able to find optimal solutions 
while maintaining the dimensional information associated with the ideal solution. This methodology was initially implemented by 
Ref. [36].This procedure is called the Logistic Chaotic Single-Dimensional Perturbation (LCSDP) [36]. 

The following is an expression for the LCSDP: 

X(t +1)=Xbest (8)  

X(t +1)i= lbi + C(t)(ubi − lbi) (9) 

Here, lbi and ubi represent the lower boundary and upper boundary of the ith dimension. The LCSDP initially relocates the best 
solution’s position to a novel position, X(t +1), as defined in Eq. (8). Subsequently, utilizing Eq. (9), a dimension is chosen at random 
and X(t +1) employs logistic chaos to investigate the search region in one dimension. It’s worth noting that LCSDP is tailored to address 
the SCMSSA’s limitation and greatly improve the algorithm’s exploration capabilities. Most of the valuable dimensional information 
pertaining to the present best solution is preserved all through the search process, ensuring the algorithm’s convergence towards the 

Fig. 1. Uniform and logisitic sequence [36].  
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optimal solution in a given problem. Conversely, this approach makes use of logistic chaos to continuously disrupt one dimension of 
the current best solution, boosting the algorithm’s capacity to exit local optima in subsequent iterations. 

3.2. Leveraging Convex Lens Imaging for Mirror Image Strategy 

Opposition-Based Learning (OBL), pioneered by Tizhoosh, represents a notably efficient optimization methodology. It aims to 
expand the search space by computing opposing solutions based on existing ones. This approach culminates in the attainment of 
superior solutions for optimization conundrums [37]. One variant of OBL, known as the Lens imaging learning technique, is inspired by 
the principles of convex lens imaging in optics. This method produces better answers by using convex lenses that reflect items from one 
side to the opposite one. Yao et al. presented a new opposition-based learning technique referred to as the "mirror imaging strategy 
based on convex lens imaging, which is inspired by the idea of convex lens imaging and merged with the mirror imaging principle [38]. 
Employing the concept of mirror imaging, the methodology generates novel opposing solutions symmetrically to the inverse solution. 
By expanding the potential of convex lens imaging opposition solutions, this approach aids in navigating the optimization process 
away from local optima [38]. The application of this mechanism in our work is inspired by Ref. [38]. The mirror imaging strategy 
based on convex lens imaging, illustrated in Fig. 2, operates within a two-dimensional framework. The exploration of the solution 
space along the x-axis extends from LB (lower bound) to UB (upper bound). Along the y-axis, two distinct regions are delineated: the 
convex mirror area (depicted in blue) in the positive half-axis and the plane mirror area (shown in yellow) in the negative portion of the 
axis. When a salp (s) resides within the convex mirror region with a projection (X) on the x-axis within a height H, it undergoes convex 
lens imaging, resulting in the generation of a real image (s*) with a projection (X*) and a height H*. Subsequently, an opposition salp 
(s*) is derived. By employing the principle of plane mirror imaging, a new opposing individual (s**) is formed, featuring a projection 
(X**) and a height identical to H*, with |X**| = |X*|. Ultimately, the opposing salps (s*) and (s**) are generated based on the initial 
salp (s). The opposing point (s*) is determined concerning the individual (s), utilizing the origin of coordinates (O) as the reference 
point in alignment with the concept of convex lens imaging. The coordinates of this point can be calculated using Eq. (10). 

(UB + LB)/2 − X
X∗ − (UB + LB)/2

=
H
H∗

(10)  

In the equation, UB represents the upper boundary, LB the lower boundary, and δ = H
H∗. X∗ defined in Equation (11) 

X∗ =
UB + LB

2
+

UB + LB
2δ

−
X
δ

(11)  

In lens imaging, the projection points along the x-axis through convex lens imaging exhibit variations contingent upon different lens 
thicknesses, where the thickness is defined as a dynamically adjustable value (scaling factor δ). This dynamic scaling factor facilitates 
the generation of a greater number of convex lens imaging solutions and consequently, more mirror imaging solutions. The scaling 
factor augments the local exploitation capability of the optimization algorithm. SCMSSA employs a nonlinear dynamic scaling factor 
strategy to accomplish these aims. During the initial iterations of the algorithm, substantial values may be attained, permitting the 
algorithm to extensively explore various dimensions, thereby enriching the diversity of the population. As the algorithm progresses, 
the attained values diminish, enabling more precise searches in the vicinity of the best search agent, thereby enhancing the algorithm’s 
efficacy in local search. The calculation of the nonlinear dynamic scaling factor is delineated in Eq. (12): 

Fig. 2. Leveraging Convex Lens Imaging for Mirror Image Strategy [38] (Modified with permission from Elsevier, License Number 
5764290728904). 
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δ= δmax ×

[

(δmax − δsin) − 2×
( t

T

)2]

(12)  

In this equation, δmax represents the upper limit for the scaling factor, δmin denotes the lower limit for the scaling factor, and T is the 
maximum number of iterations. Specifically, δmax is set to 10, and δmin to 9. Extending the concept presented in Eq. (11) to a k- 
dimensional space results in the following expression as in Equation (13). 

X∗
k =

UBk + LBk

2
+

UBk + LBk

2δ
−

Xk

δ
(13)  

3.3. Combination of sine and cosine perturbations 

The effectiveness and precision of the Salp swarm algorithm heavily depend on how the optimal individual’s position is updated. 
This significant reliance on the optimal individual can hinder the algorithm’s ability to find the global best solution, making it sus-
ceptible to local optima. To address this limitation, the paper introduces a combination of sine and cosine perturbations inspired by 
Ref. [38]. These perturbation factors are designed to enable the algorithm to escape local optima and enhance its ability to seek optimal 
solutions as shown in Equations (14) and (15): 

λ1 =1+
1

10000
×(sin (a× 4π × t)+ cos (a×6π × t)) × e

(
π

100 ×
T− t
4

)

(14)  

λ2 =1+
1

10000
×(cos (a×4π × t)+ sin (a×6π × t)) × e

(
π

100 ×
T− t
4

)

(15) 

The dynamic variations in sine and cosine disturbance factors introduce varying degrees of disruption to the position updates of 
salps, as illustrated in Fig. 3, allowing for a better exploration of the solution space. This expanded search scope enhances the algo-
rithm’s capacity to break free from the local optima. 

The position update procedures once the disturbance factor has been introduced are displayed in the following Equations (16) and 
(17). 

Xi− cos(t+1)= λ1 ×Xi(t)+ c3 × e− f∗best/fi × rand i ×
(
FQ×X∗

best − Xi(t)
)

(16)  

Xi− sin(t+1)= λ2 ×Xi(t)+ c3 × e− f∗best/fi × rand i ×
(
FQ×X∗

best − Xi(t)
)

(17)  

Where c3 is a random number generated within [0,1], f∗best denotes the fitness of the best salp, fi represents the fitness value of the 
current salp, X∗

best is the current position of the best salp while FQ is given in Equation (18): 

FQ= c1 × e(t− T)/T (18) 

This strategy is combined into the SCMSSA strategy to escape local optimum and enhance searchability, the original SSA procedure 
in Eq. (3) is updated in SCMSSA as expressed in Equation (19): 

Fig. 3. Sine-Cosine Perturbation [38].  
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xi
j =

1
2

(
xi

j− sin + xi
j− cos

)
(19)  

3.4. SCMSSA improvement validation 

Six distinct functions to assess the improvement of the SCMSSA algorithm are employed in this section. Notably, the selected 
functions consist of F1, F2, and F3, which can be categorized as single-peaked functions, and F4, F5, and F6, characterized as mul-
tipeaked functions are clearly detailed in Table 2 and graphically illustrated in Fig. 4, to show the complexity of each functions 
landscape. Furthermore, the SCMSSA algorithm was subjected to a comparative analysis alongside the Cuckoo Search(CS) [39], Grey 
Wolf Optimizer (GWO) [40], and SSA [41] with the primary aim of highlighting the search performance of the SCM algorithm. In order 
to ensure a fair and effective evaluation, both the maximum iteration number and the initial population size were consistently set at 
500 and 30 for all algorithms. The parameter of each optimizer is given in Table 3. 

The optimization performance of the algorithms is gauged using the average (AVG) and the Standard Deviation (STD) derived from 
30 optimization results. This data is illustrated in Table 4 and Fig. 5, which provide insight into the optimization outcomes and 
convergence accuracy. The findings reveal that, when applied to single-peaked functions F1, F2, and F3, the SCMSSA algorithm 
demonstrates a mean value matching the optimal solution, and it exhibits swifter convergence compared to the SSA, CS and GWO 
algorithms. In the case of multipeaked functions F4, F5, and F6, the SCMSSA algorithm exhibits remarkable optimization performance, 
achieving near-ideal solutions when compared to its counterparts. The convergence curves depicted in Fig. 5 for all four algorithms 
indicate that the SCMSSA algorithm converges faster and more accurately toward the ideal or near-ideal optimal solution. Moreover, 
when dealing with challenging landscapes characterized by numerous local optima, such as in F3, F4, and F6, the SCMSSA algorithm 
surpasses its counterpart in terms of function optimization performance, convergence speed, and accuracy. To better understand the 
statistical significance of the proposed method. Friedman test, which is a non-parametric statistical test used to compare three or more 
paired groups, is employed in this research. As seen in Table 4, it’s used to compare the performance of the four algorithms across all 
benchmark functions collectively rather than evaluating them separately on each function, unlike metrics like AVG and STD. These 
findings underscore the effectiveness of the algorithm enhancement discussed in this article. In Table 4, SCMSSA has the lowest 
Friedman rank sum (1.00), indicating it was the best performing algorithm across all benchmark functions on average, followed by 
GWO (2.33), SSA (3.00), and CS (3.67) being the least effective according to this test. The Friedman test is valuable because it provides 
a comprehensive statistical significance comparison across multiple test functions. 

4. Co2 prediction model based on SVR-SCMSSA 

4.1. Support vector regression (SVR) 

Vapnik proposed the support vector machine (SVM) in 1995 based on the statistical learning theory [42,43]. SVM generally aims to 
minimize classification error of test data. Because of this, SVM builds the best hyperplane for test data classification via the principle of 
structural minimization [43,44]. SVM can be divided into two classes: firstly, SVR, this type of support vector machine is a regression 
technique; secondly, support vector classification (SVC) which is a classification approach [45]. The SVR equation is seen in Equation 
(20): 

f(x)=w × φ(x) + b (20)  

φ, b, and w, represent the mapping function, the intercept, and the weighted feature vector, respectively, while x represents the input 
vector to estimate the best value for b and w in Eq. (20), Eq. (21) is minimized: 

φ(w, ε, ε∗)= 1
2
‖ w‖2 + C

∑1

i=1
(ε+ ε∗) (21) 

Table 2 
Benchmark functions.  

Function Range Dim Fmin 

f1(x) =
∑n

i=1 x2
i [-100,100] 50 0 

f2(x) =
∑n

fmin
|xi| +

∏n
i=1 |xi| [-10,10] 50 0 

f3(x) =
∑n

i=1

(∑i
j− 1 xj

)2 [-100,100] 50 0 

f4(x) =
∑n

i=1 − xi sin
( ̅̅̅̅̅̅̅

|xi|
√ )

[-500,500] 50 − 418.9892 x dim 

f5(x) = − 20 exp

(

− 0.2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
x2

i

√ )

− exp
(
(1 /n)

∑n
i=1 cos (2πxi)

)
+ 20+ e 

[-32,32] 50 0 

f6(x) = π/n
{∑n− 1

i=1
(
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Fig. 4. 3D graph of benchmark functions F1 to F6.  

Table 3 
Parameter of optimizers.  

Optimizer Settings 

CS Pa = 0.25, r = 0.05 
GWO a0 = 2 
SSA c1 = [2/e,2]
SCMSSA c1 = [2/e,2] , a = 0.05  

Fig. 5. Convergence curves of optimizers on benchmark functions F1 to F6.  
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ε, ε∗, and C respectively, depict two slack parameters and a penalty parameter. Based on the condition given in Eq. (22), Eq. (21) is 
minimized. 

{
yi − w ·φ(x) − b ≤ ε + εi εi ≥ 0
w ·φ(x) + b − yi ≤ ε + ε∗i ε∗i ≥ 0

(22)  

yi represents the actual output vector. The slack parameters, as seen in Eq. (22), measure the error of each equation as seen in Fig. 6, 
Eqs. (21) and (22) becomes an optimization problem. This problem can be solved by using the Lagrangian equation in Eq. (23): 

f(x)=
∑N

i=1

(
αi − α∗

i
)
K(x, xi) + b (23) 

K(x, xi) represents a kernel function, the Lagrangian multipliers are represented by α∗
i and αi. The Lagrangian multipliers and 

penalty are greater than 0. The kernel function is used to resolve the challenge of nonlinearity in the input data, the kernel function 
projects the input data to a feature space with high dimension [43,46]. There are many types of kernel functions Gaussian basis, 
sigmoid, linear, and radial basis. 

The Radial Basis is given in Equation (24): 

K(x, xi)= exp
(
− ‖ x− xi‖ /2σ2)= exp

(
− γ‖ x − xi ‖

2) (24) 

The Sigmoid is given in Equation (25): 

K(x, xi)= tanh (k(x.xi)+ v), k > 0, v< 0 (25) 

Gaussian Basis is given in Equation (26): 

K(x, xi)= (1 + x.xi)
d (26) 

Deciding the best kernel function and C are the important hyper-parameters that directly affect the performance of SVR. These 

Table 4 
Benchmark function results of SCMSSA, SSA, CS and GWO.   

CS GWO SSA SCMSSA 

F1 AVG 2.645E+2 2.343E-22 2.884E-3 0  
STD 7.438E+1 2.216E-22 2.421E-3 0 

F2 AVG 2.090E+1 1.016E-13 4.941 0  
STD 4.771 8.552E-14 2.391 0 

F3 AVG 1.273E+4 4.309 4.829E+3 0  
STD 2.706E+3 4.105 2.820E+3 0 

F4 AVG − 1.187E+4 − 8.943E+3 − 1.171E+4 ¡1.207Eþ4  
STD 1.385E+3 2.052E+3 8.746Eþ2 1.242E+3 

F5 AVG 6.905 2.410E-12 3.792 4.441E-16  
STD 7.541E-1 1.370E-12 1.026 0 

F6 AVG 8.386 1.303E-1 7.596 9.800E-6  
STD 1.496 9.249E-2 2.158 9.359E-6  
FRIEDMAN VALUE 3.67 2.33 3.00 1.00  
RANK 4 2 3 1  

Fig. 6. Support vector Regression Illustration.  
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parameters are the γ value in the radial basis kernel function K(x, xi) and the penalty parameter C. They are intimately tied to SVR’s 
predictive capabilities and its ability to generalize. Consequently, it becomes imperative to employ an optimization algorithm for fine- 
tuning SVR’s hyperparameters. The pseudo-code for SVR-SCMSSA is presented in Algorithm 2 in Table 5. 

4.2. Building CO2 prediction model 

Predicting CO2 levels represents a classic challenge characterized by high dimensionality and nonlinearity. The SVR approach 
leverages kernel functions to transform sample data from a lower-dimensional space to a higher-dimensional one, thereby facilitating 
finding the solution to this complex problem. The accuracy of CO2 prediction using SVR is notably influenced by the parameters C and 
K(x,xi), as outlined in Eqs. (21) and (23). SVR relies on these key components to achieve accurate predictions. One of these components 
is the Penalty C, this hyper-parameter dictates the trade-off between minimizing training error and reducing testing error. By adjusting 
C, one can control the width of the margin around the regression line. A small C value leads to a wider margin, potentially ignoring 
some training points and causing underfitting, characterized by high bias and low variance. Conversely, a large C tightens the margin, 
striving to fit the training data more closely but risking overfitting with low bias and high variance. Therefore, tuning the C parameter 
is vital to strike the right balance and enhance the model’s accuracy while ensuring it generalizes well to unseen data. Another critical 
element in SVR is the selection of the appropriate Kernel function K(x,xi), which maps input data from the original feature space to a 
higher-dimensional space, enabling effective regression. The choice of Kernel function, such as Linear, Radial Basis Function (RBF), or 
Polynomial, depends on the data’s inherent relationships and complexities. Each kernel has its associated hyperparameters (e.g., γ for 
RBF) that significantly affect the model’s accuracy. Therefore, careful consideration of both the Penalty C and the choice of Kernel 
function K(x, xi), along with their respective hyperparameters, is paramount for optimizing SVR and achieving precise predictions 
tailored to the specific problem at hand. To improve the predictive accuracy of the SVR model for CO2 prediction, this study employs 
the SCMSSA algorithm to determine optimal values for the hyper-parameters C and K(x,xi). The choice of Sine Cosine perturbation, 
Chaotic perturbation, and Mirror imaging strategy as enhancement mechanisms is grounded in their ability to address specific limi-
tations of the original Salp Swarm Algorithm (SSA) and to improve the overall performance of the Support Vector Regression (SVR) 
model for CO2 prediction. Sine Cosine Perturbation, The sine and cosine functions offer a mathematical model to diversify the tra-
jectory of the salps, allowing them to search in an oscillatory pattern, which is effective in navigating both local and global search 
spaces. In the Chaotic Perturbation, chaotic systems are sensitive to initial conditions and have been observed to exhibit non-repeating, 
complex patterns over time. Applying chaos theory to optimization, specifically through chaotic maps such as the logistic map, 

Table 5 
Algorithm 2: Pseudocode SVR-SCMSSA   

1 Input: Dataset, Maximum Number of Iterations, Number of Salps  
2 First Stage:  
3 Split data into two parts (training and testing)  
4 Initialize the population randomly.  
5 Compute the fitness of each individual in the population (SVR Fitness Function)  
6 Sort the fitness values and set FoodFitness as the best salp’s fitness and  
7 Food Position is set as the best salp’s position  
8 Second Stage:  
9 while t ≤ T do  
10 Compute r1 using Eq. (2)  
11 For (Each Salp):  
12 If i ≤ N/2 do  
13 Update each individual position using Eq. (1)  
14 Else  
15 /* Sin-Cosine Perturbation*/  
16 Update each individual position using Eq. (19)  
17 End if  
18 /* Chaotic Perturbation*/  
19 Generate new Salp position Xnew using Eq. (9)  
20 If fitness(Xnew) < Fitness(Xcurrentsalp):  
21 Xcurrentsalp = Xnew,  
22 End if  
23 /* Mirror Imaging Strategy*/  
24 Generate new Salp position Xnew using Eq. (13)  
25 If fitness(Xnew) < Fitness(Xcurrentsalp):  
26 Xcurrentsalp = Xnew,  
27 End if  
28 Update FoodFitness and FoodPosition  
29 End for  
30 End while Stop criteria satisfied.  
31 Return FoodPosition  
32 Third Stage:  
33 Use FoodPosition to Train the SVR model  
34 Test the SVR model with training data  
35 Evaluate the SVR model using different metrics  
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introduces controlled randomness that enhances the algorithm’s exploration capabilities. Mirror Imaging Strategy, this method is 
grounded in the concept of opposition-based learning, where considering opposite or complementary solutions can lead to faster 
convergence to the global optimum by simultaneously exploring and exploiting different regions of the search space. Fig. 7 illustrates 
the predictive process for CO2 using SVR-SCMSSA, and the following procedures:  

Step 1 Initiate by importing the input features associated with CO2 generation and the corresponding CO2 output. After normalizing 
the data, partition it into separate training and test sets.  

Step 2 Specify a parameter optimization range (C and K(x,xi)) for the SVR model. Proceed to train the SVR model using the provided 
training dataset.  

Step 3 Commence by initializing the parameters of the SCMSSA algorithm and generating the initial population of Salps within the 
predefined parameter range.  

Step 4 Determine the fitness value for each Salp through the SVR model, utilizing the Root Mean Square Error(RMSE) as the fitness 
function. Identify the most exceptional Salp as "FoodFitness" and document its position as "FoodPosition." 

Fig. 7. Flow chart of SVR-SCMSSA  

Step 8 Ascertain whether the present iteration reaches the maximum allowable iteration limit. If so, provide the best values for C and the kernel 
function obtained from the most exceptional salp. Alternatively, revert to step 4.  

Step 9 Construct the SVR-SCMSSA model using the optimal C and kernel function obtained by SCMSSA.  
Step 10 Validate the predictive model by testing it with the test dataset.  
Step 11 Assess the model’s performance utilizing a range of evaluation metrics. 
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Step 5 Calculate r1, and for each Salp, if the number of Salps is less than the population size divided by 2, update their positions 
employing the SSA operator expressed in Eq. (1). In cases where this condition doesn’t apply, make adjustments using Sine 
Cosine perturbation expressed in Eq. (19).  

Step 6 Create fresh positions for each Salp through Chaotic Perturbation as given in Eq. (9). Accept these newly generated positions 
only if their fitness is better than that of the current positions.  

Step 7 Employ a Mirror Imaging strategy to establish new positions for each Salp as given in Eq. (13). Keep these new positions if they 
yield superior fitness compared to the current ones. Update "FoodPosition" and "FoodFitness" accordingly. 

These stages delineate the process of utilizing the SCMSSA algorithm to enhance the SVR model for precise CO2 prediction, 
incorporating diverse strategies to ameliorate the model’s efficacy and predictive accuracy. 

4.3. Fitness function and evaluation metrics 

A collection of evaluation measures, including Mean Square Error (MSE), Mean Absolute Percentage Error (MAPE), Mean Absolute 
Error (MAE), Root Mean Square Error (RMSE), and the Coefficient of Determination (R2), are used in this article to evaluate the 
performance of the SVR models. The mathematical formulation of these metrics is given in Eq. 27–30. Every SVR model uses the RMSE 
metric as its fitness function to assess how well each algorithm performs. 

MAE=
1
n
∑n

i=1

⃒
⃒Y i − Y

∗

i

⃒
⃒ (27)  

MSE=
1
n
∑n

i=1

(
Y i − Y

∗

i

)2 (28)  

MAPE=
1
n
∑n

i=1

⃒
⃒
⃒
⃒
Y i − Y

∗

i
Y i

⃒
⃒
⃒
⃒ (29)  

R2 =1 −

∑n
i=1

(
Y i − Y

∗

i

)2

∑n
i=1 (Y i − y)2 (30)  

Where Y i represents the actual value of CO2, y represents the mean of the actual value of CO2, Y ∗
i represents the predicted value of 

CO2 and n is the number of data points in the dataset. 

5. Data description and processing 

This study utilizes data obtained from the U.S. Energy Information Administration, encompassing 605 data points gathered be-
tween January 1973 and May 2023, focusing on CO2 generation from energy consumption. To account for variations in the magnitudes 
of different factors, the sample data undergo normalization, thereby mitigating the influence of magnitudes across various factors. 
Subsequently, the sample data is partitioned into test and training samples, following a ratio of 3:7. A normalized mathematical 
representation is depicted in Eq. (31): 

xnewi =
xi − xmin

xmax − xmin
(31)  

xnewi represents the normalized figure, xi stands for the original value, while xmax and xmin indicate the highest and lowest values, 
respectively. The first 10 entries of the normalized dataset are illustrated in Table 6. Also, variables in Table 6 are CO2 (Carbon Di-
oxide), Fossil (Fossil Fuels: which include coal, oil, and natural gas), Nuclear (Nuclear Energy), Hydro (Hydroelectric Power: Energy 
generated from water), Geothermal (Geothermal Energy: Energy derived from the Earth’s internal heat), Wood (Energy from burning 
or converting wood), Waste (Waste-to-Energy: Energy generated from the incineration of waste materials), Biomass (Biomass Energy: 

Table 6 
Sample of normalized data.  

S/N Duration CO2 Fossil Nuclear Hydro Geothermal Wood Waste Biomass 

1 1973 January 0.653004 0.653683 0.036389 0.733678 0.033904 0.153554 0.091677 0.087484 
2 1973 February 0.505440 0.481460 0.015732 0.616859 0.000000 0.025820 0.078254 0.014859 
3 1973 March 0.474761 0.444577 0.061076 0.719518 0.013341 0.154853 0.109418 0.088322 
4 1973 April 0.308360 0.262757 0.012269 0.660545 0.071949 0.112162 0.107643 0.064073 
5 1973 May 0.342921 0.303953 0.000000 0.689614 0.045381 0.153495 0.136846 0.087745 
6 1973 June 0.271232 0.211663 0.069029 0.647522 0.097198 0.111889 0.109418 0.063929 
7 1973 July 0.315311 0.266687 0.079165 0.589947 0.119252 0.153417 0.104031 0.087484 
8 1973 August 0.383101 0.349227 0.123412 0.531443 0.096984 0.154569 0.116321 0.088211 
9 1973 September 0.277395 0.222050 0.127308 0.323109 0.034157 0.113585 0.111172 0.064909 
10 1973 October 0.383348 0.354649 0.109620 0.386706 0.096555 0.154911 0.129270 0.088499  
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Energy produced from organic materials like plant matter or agricultural waste). The correlation between features in the data can be 
seen in Fig. 8, the correlation between features in data" refers to how two or more variables relate to each other. It can be positive (both 
go up), negative (one goes up, the other down), or no correlation (no clear relationship). Understanding these relationships is essential 
for data analysis and modelling. 

6. Results and discussion 

The four SVR-based hybrid models, SVR and Extreme Learning Machine (ELM), in this study, are trained using the training dataset. 
Fig. 9 displays an analysis of the correlation between the predicted and actual values in the training dataset. It is evident that the hybrid 
models exhibit relatively favourable training performance, with the training data points closely distributed around the ideal fitting 
line, "actual value = predictive value." When considering the R2, the SVR-SCMSSA hybrid model stands out with a superior training 
performance, achieving an R2 value of 0.95862. In comparison, the training performance of the SVR-SSA hybrid model and SVR are 
slightly less, with R2 values of 0.91739 and 0.91585, respectively. Hybrid Models, such as SVR-SCMSSA, SVR-CS, and SVR-SSA, exhibit 
R2 values predominantly above 0.90 in Table 7. Notably, SVR-SCMSSA reaches an impressive 0.95865, underscoring the considerable 
training achievements of the hybrid model introduced in this research. 

Upon completing the model training, the four SVR-based hybrid models, the SVR and ELM model, undergo verification and 
evaluation using the testing dataset. In Fig. 10, the analysis of the correlation between predicted values and actual values in the testing 
dataset reveals that the testing data points also cluster around the ideal fitting line, "actual value = predictive value." Evaluating the 
prediction performance using the R2 score metric, the proposed SVR-SCMSSA hybrid model achieves a score of 0.95775. This indicates 
that the hybrid models demonstrate a significantly higher level of prediction accuracy in comparison to their counterparts, such as 
SVR-CS and SVR-SSA hybrid models, which exhibit prediction accuracies of 0.9291 and 0.92887, respectively in Table 8. The 
computational efficiency of an optimization algorithm like SCMSSA refers to its ability to find optimal or near-optimal solutions within 
a reasonable time frame and with minimal computational resource usage. This efficiency is crucial when dealing with large-scale 
datasets or models requiring extensive parameter tuning, such as SVR models for CO2 prediction. The SCMSSA algorithm improves 
computational efficiency through several key aspects. Firstly, by integrating Sine Cosine perturbation, Chaotic perturbation, and 
Mirror imaging strategy, SCMSSA is able to avoid premature convergence and explore the solution space more effectively. This reduces 
the number of iterations needed to reach an optimal solution, directly impacting the computational time positively as in Tables 7 and 8, 
SCMSSA achieved optimal results within specified iteration number compared to other models. Lastly, the strategic perturbations in 
SCMSSA minimize the need for extensive computations in each iteration by focusing the search around promising areas of the solution 
space. This approach requires fewer function evaluations compared to brute-force or exhaustive search methods, reducing the overall 
computational load. Furthermore, Scalability refers to the algorithm’s ability to maintain its performance and efficiency as the size of 
the dataset or the complexity of the problem increases. SCMSSA’s scalability is supported by several factors. (1) The adaptive nature of 
the perturbation mechanisms in SCMSSA allows the algorithm to adjust its search strategy based on the problem’s complexity. This 
adaptability ensures that SCMSSA can handle larger datasets or more complex prediction models without a significant increase in 
computational time or resource requirements. (2) The mirror imaging strategy and chaotic perturbation enhance the algorithm’s 
capability to navigate high-dimensional solution spaces effectively. This is particularly important for SVR models, which may involve 
multiple hyperparameters and complex feature interactions, ensuring SCMSSA’s scalability in these scenarios. 

To conduct a more in-depth comparison and assessment of the prediction capabilities of the hybrid models, the performance of each 
hybrid model is compiled in Tables 7 and 8 The analysis reveals that the SVR-SCMSSA hybrid model outperforms the other hybrid 
models and the standard SVR, both on the training dataset and the testing dataset. This observation indicates that the improvement 
techniques introduced in the SVR-SCMSSA hybrid model significantly enhance the optimization of the algorithm for tackling complex 
problems. Moreover, it exhibits swift convergence, high precision, and robust resistance to falling into local optima, all of which 

Fig. 8. Correlation Plot of data features.  
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Fig. 9. Training Actual vs Prediction of Optimizer tuned SVR models ELM model.  

Table 7 
Result of evaluation metrics for training.   

RMSE R2 MSE MAE MAPE 

SVR-GWO 0.00122 0.89657 0.00126 0.03081 0.50773 
SVR-SCMSSA 0.00079 0.95862 0.00055 0.01683 0.27855 
SVR-CS 0.00105 0.90531 0.00114 0.02567 0.42398 
SVR-SSA 0.00080 0.91739 0.00087 0.02090 0.34563 
SVR 0.00084 0.91585 0.00102 0.01951 0.32274 
ELM 0.04365 0.94768 0.00191 0.03212 0.70330  

Fig. 10. Testing Actual vs Prediction Optimizer tuned SVR models ELM model.  
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surpass the capabilities of the traditional SSA algorithm. Fig. 11 demonstrates a comparison between the predicted and actual values of 
the testing dataset using the SVR-SCMSSA hybrid model. The predictive values closely align with the actual values, underscoring the 
model’s superior learning and prediction prowess. Therefore, this paper recommends the utilization of the SVR-SCMSSA hybrid model 
researchers and Policy Makers for CO2 prediction. 

SCMSSA stands out due to its novel integration of enhancement mechanisms that address common optimization challenges such as 
premature convergence, the balance between exploration and exploitation, and navigating complex landscapes. Unlike traditional 
methods that might struggle with either becoming stuck in local optima or inefficiently searching the solution space in optimizing SVR 
for CO2 prediction, SCMSSA’s sine cosine perturbation allows for a fluid transition between exploration and exploitation, enhancing 
the search process. The addition of chaotic perturbation prevents premature convergence by introducing randomness, thereby aiding 
in navigating complex parameter spaces more effectively. 

6.1. Significance of study: insight into relative influence of features and limitations of study 

In this session, we embark on a comprehensive analysis to assess the relative importance of each feature within our dataset. The 
features used in this research were chosen by identifying potential predictors of CO2 emissions, including energy consumption types 
(Fossil, Nuclear, Hydro, Geothermal), renewable sources (Wood, Waste, Biomass), and other relevant environmental or economic 
factors. This process was guided by domain knowledge and a literature review to ensure all significant contributors to CO2 emissions 
were considered. The significance of this assessment cannot be overstated, as it plays a pivotal role in our pursuit of sustainability. The 
key technique we employed in this endeavour is SVR-SCMSSA, an optimization algorithm that fine-tunes the parameters of SVR. By 
optimizing these parameters, SVR can then learn to make more accurate predictions, particularly regarding CO2 emissions, making it 
an essential tool for sustainable decision-making. Understanding the relative influence of features on CO2 prediction is of paramount 
importance. This knowledge enables us to identify which variables have the most substantial impact on our predictions. For example, it 
might shed light on whether "Nuclear" or "Geothermal" energy sources have a more significant effect on CO2 predictions, offering 
crucial insights for energy and environmental policymakers. This information not only enhances our model’s performance but also 
holds the potential to drive data-driven decisions in the realm of sustainability. By pinpointing the most influential factors, we can 
develop more effective strategies for reducing carbon emissions, transitioning to cleaner energy sources, and ultimately contributing to 
a greener and more sustainable future. 

As depicted in Fig. 12, the analysis of variable importance concerning CO2 reveals that fossil fuels stand out as the most influential 
factor. The importance score, which is the permutation importance score assigned to each feature by the SVR-SCMSSA model assigned 
to fossil fuels, is impressively above 1.4, indicating a robust and strong impact on the prediction of CO2. This prominence can be 
attributed to the well-established fact that the combustion of fossil fuels is a primary source of CO2 emissions [47,48], making it a 
pivotal contributor. In addition to fossil fuels, Biomass, and Wood are other noteworthy variables displaying significant sensitivity. 
This result highlights the importance of Biomass and Wood as a factor impacting CO2 emissions. Other studies validate the positive and 
negative impact of Biomass on CO2 generation [49,50], which could be due to combustion processes involving Biomass fuels and 
Wood. Consequently, when constructing CO2 prediction models, it is imperative to place substantial emphasis on the role of fossil fuels. 
Their strong correlation and well-established connection to CO2 emissions underscore their critical importance. Moreover, the 
sensitivity of Biomass fuels, as indicated by its importance score also suggests that it should not be overlooked in the design of these 
models. Ultimately, these findings emphasize the necessity of considering these factors when aiming to develop accurate and effective 
CO2 prediction models, which are vital for addressing environmental sustainability and climate change mitigation. 

SVR-SCMSSA is tuned for the specific dataset in this study, and its effectiveness is intricately tied to the characteristics and dis-
tribution of the data. While it may yield promising results for the current dataset, it may not be a suitable choice for all scenarios. The 
model’s performance hinges on the underlying data and the hyperparameter of SVR-SCMSSA. As the relationships between the fea-
tures and the target variable change, such as the emergence of non-linear associations between certain features and CO2 levels, 
adapting the SVR-SCMSSA algorithm becomes necessary. In these cases, selecting a different kernel function or adjusting other hyper- 
parameters of the SVR model might be more appropriate. This necessitates an iterative process of fine-tuning to ensure the model can 
effectively capture the evolving data dynamics. It’s important to note that SVR-SCMSSA can be computationally demanding. The 
optimization process may require substantial computational resources, which can be a limitation, particularly for large datasets or in 
scenarios where computational efficiency is crucial. Based on our model’s findings, we suggest the following policy interventions and 
mitigation strategies. 

Table 8 
Result of evaluation metrics for testing.   

RMSE R2 MSE MAE MAPE 

SVR-GWO 0.00137 0.89660 0.00137 0.03237 0.53437 
SVR-SCMSSA 0.00056 0.95775 0.00056 0.01634 0.26985 
SVR-CS 0.00093 0.92961 0.00093 0.02247 0.37170 
SVR-SSA 0.00094 0.92887 0.00094 0.02171 0.35921 
SVR 0.00133 0.89983 0.00133 0.03154 0.52002 
ELM 0.04934 0.92862 0.00243 0.03520 0. 27657  
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1. Enhanced Renewable Energy Adoption: Given the substantial contribution of fossil fuel consumption to CO2 emissions, a key policy 
recommendation is to accelerate the transition towards renewable energy sources. Governments can support this transition through 
subsidies for renewable energy projects, tax incentives for clean energy investments, and stricter regulations on fossil fuel 
emissions.  

2. Energy Efficiency Improvements: Our model underscores the importance of energy efficiency in mitigating CO2 emissions, given 
that the most contributing factors are majorly energy sources. Policy measures could include setting higher energy efficiency 
standards for buildings and appliances, promoting energy-saving technologies, and implementing national energy efficiency 
awareness campaigns. 

3. Industrial Emission Controls: For industrial activities identified as major CO2 contributors, implementing stricter emission stan-
dards and investing in cleaner production technologies are critical. Policies could focus on carbon capture and storage (CCS) 
technologies, waste heat recovery systems, and the promotion of circular economy principles to reduce industrial carbon footprints.  

4. Carbon Pricing Mechanisms: Introducing or enhancing carbon pricing mechanisms, such as carbon taxes or cap-and-trade systems, 
can provide financial incentives for reducing CO2 emissions. These mechanisms make it more cost-effective for businesses and 
individuals to adopt lower-carbon practices.  

5. Afforestation and Reforestation Initiatives: Since forests play a crucial role in sequestering CO2, policies supporting afforestation 
and reforestation can contribute to offsetting emissions. This can include grants for tree planting projects, protection of existing 
forests, and sustainable land management practices. 

By integrating these policy interventions and mitigation strategies into national and international climate action plans, policy-
makers can leverage the insights provided by our model to make informed decisions aimed at reducing CO2 emissions and combating 
climate change. 

7. Conclusion 

In this study, we proposed an improved Salp Swarm Algorithm that utilizes three improvement mechanisms to enhance the 
convergence accuracy and speed by tackling limitations in the exploration and exploitation of the original SSA. The improved SCMSSA 

Fig. 11. Testing Actual vs Prediction.  

Fig. 12. Permutation Importance Score of the SVR-SCMSSA model.  
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algorithm was compared to other algorithms on six test functions to validate the improvement. The SCMSSA algorithm was then 
employed as an optimization strategy for the SVR model, the result demonstrates the efficacy of the SVR-SCMSSA hybrid model in 
optimizing SVR for CO2 prediction. The training and testing analyses revealed that SVR-SCMSSA outperforms other hybrid models and 
the standard SVR, achieving higher training and prediction accuracy. Its swift convergence, precision, and resistance to local optima 
make it a superior choice for tackling complex problems in CO2 prediction. Therefore, this paper recommends the utilization of the 
SVR-SCMSSA hybrid model for more accurate and reliable CO2 prediction, which is crucial for sustainability efforts. Additionally, the 
feature importance analysis provided valuable insights into the key contributors to CO2 prediction. These findings highlight the 
importance of certain key factors such as Fossil Fuel, Biomass, and Wood when developing CO2 prediction models, which is essential 
for addressing environmental sustainability and mitigating climate change. 

Future work in this research area will focus on enhancing the generalizability of the SVR-SCMSSA hybrid model, assessing its 
performance on diverse datasets to determine its broader applicability. Extending our research to include a wider range of datasets that 
encompass different environmental, economic, and social contexts. This expansion will enable us to assess the robustness of the SVR- 
SCMSSA hybrid model across various scenarios, further solidifying its applicability for CO2 prediction globally. Furthermore, research 
efforts will be directed towards addressing the adaptability of the model to dynamic feature relationships, particularly in the presence 
of non-linear associations, through dynamic kernel selection and automated hyper-parameter tuning. It is also crucial to explore 
methods for improving the computational efficiency of SVR-SCMSSA to make it more accessible for use on larger datasets, potentially 
through parallelization and more efficient optimization algorithms. Future work will also delve deeper into the parameter tuning 
aspect, providing detailed guidelines and recommendations for practitioners aiming to apply the SVR-SCMSSA model to varied 
datasets. By doing so, we aim to enhance the model’s adaptability and ease of use, further contributing to its practical application in the 
field of CO2 prediction and beyond. Additionally, investigating techniques to incorporate inter-feature dependencies into the opti-
mization process would be essential for capturing feature interactions and enhancing the model’s predictive capabilities. Furthermore, 
we will examine Model Adaptation for Long-Term Prediction, Scenario Analysis that evaluates the model’s performance under future 
emission scenarios, and a sensitivity analysis to identify which parameters and assumptions have the most significant impact on long- 
term CO2 predictions. In summary, future research should aim to make SVR-SCMSSA a more versatile and efficient tool for CO2 
prediction and feature importance analysis, broadening its applicability in a variety of scenarios. Finally, an open challenge in CO2 
prediction is the difficulty in accounting for unexpected emission sources and the rapid changes in environmental policies. These 
challenges underscore the complexity of accurately forecasting CO2 emissions, where unforeseen technological advancements, shifts 
in global energy markets, or sudden policy implementations can significantly alter emission trajectories. Addressing these challenges 
calls for dynamic models that can quickly adapt to new information and incorporate a broader range of predictive variables, including 
potential indicators of policy shifts and emerging emission sources. Future research could focus on developing more agile and adaptive 
modelling approaches, possibly leveraging real-time data streams and advanced machine learning techniques capable of updating 
predictions in response to new developments. 

The data obtained through the experiments are available upon request. 
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