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The brain continuously receives input from the internal and external environment. Using
this information, the brain exerts its influence on both itself and the body to facilitate
an appropriate response. The dynamic interplay between the brain and the heart and
how external conditions modulate this relationship deserves attention. In high-stress
situations, synchrony between various brain regions such as the prefrontal cortex and
the heart may alter. This flexibility is believed to facilitate transitions between functional
states related to cognitive, emotional, and especially autonomic activity. This study
examined the dynamic temporal functional association of heart rate variability (HRV)
with the interaction between three main canonical brain networks in 38 healthy male
subjects at rest and directly after a psychosocial stress task. A sliding window approach
was used to estimate the functional connectivity (FC) among the salience network (SN),
central executive network (CEN), and default mode network (DMN) in 60-s windows on
time series of blood-oxygen-level dependent (BOLD) signal. FC between brain networks
was calculated by Pearson correlation. A multilevel linear mixed model was conducted
to examine the window-by-window association between the root mean square of
successive differences between normal heartbeats (RMSSD) and FC of network-pairs
across sessions. Our findings showed that the minute-by-minute correlation between
the FC and RMSSD was significantly stronger between DMN and CEN than for SN
and CEN in the baseline session [b = 4.36, t(5025) = 3.20, p = 0.006]. Additionally,
this differential relationship between network pairs and RMSSD disappeared after the
stress task; FC between DMN and CEN showed a weaker correlation with RMSSD in
comparison to baseline [b = −3.35, t(5025) = −3.47, p = 0.006]. These results suggest
a dynamic functional interplay between HRV and the functional association between
brain networks that varies depending on the needs created by changing conditions.
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INTRODUCTION

The body and the brain are interconnected by dynamic structural
and functional networks. These networks provide multi-level
interactions and allow conscious and subconscious reactions to
constantly changing environmental conditions (McCraty et al.,
2009; Smith et al., 2017). Network physiology proposes a new
framework to understand the coordination and information
integration across different organ systems that give rise to
various physiologic states at organism level (Ivanov et al.,
2016). Interactions between the brain regions, organs, and organ
systems vary dynamically, allowing the same network structure
or subsections of the network to be associated with many
physiological and psychological states (Honey et al., 2007; Bashan
et al., 2012; Bartsch et al., 2015). Recent research on the dynamic
temporal interaction between the heart and the brain enriched
our understanding beyond the known anatomical connections
and physiological regulations (Bashan et al., 2012; Chang et al.,
2013; Bartsch et al., 2015; Faes et al., 2016; Young et al., 2017).

Interaction between the cardiovascular system and central
nervous system (CNS) is facilitated through reflex arches and
the modulatory action of the cortical networks upon them. The
central autonomic network (CAN; Benarroch, 1993) refers to
a functional unit of brain areas that modulate the autonomic
activity depending on the organism’s current and expected
needs. This network includes brainstem regions, such as dorsal
vagal motor nucleus or nucleus of the solitary tract, higher
subcortical regions (i.e., hypothalamus and amygdala), and
cortical regions [i.e., anterior cingulate cortex (ACC), insula,
and medial prefrontal cortex (mPFC)], and modulates the
balance between the activity of sympathetic and parasympathetic
systems (Benarroch, 1993; Beissner et al., 2013; Dampney, 2015;
Shoemaker and Goswami, 2015). Concurrent analyses of heart
rate (HR) or heart rate variability (HRV) and blood-oxygen-
level dependent (BOLD) signal at rest or during an emotional,
cognitive, or motor task indicated that some additional cortical
regions, such as dorsolateral PFC (dlPFC), exert influence on
HRV in coordination with CAN, although they are not closely
connected to the autonomic centers in the brain stem (Napadow
et al., 2008; Smith et al., 2014; Young et al., 2017). HRV
corresponds to the variation in the time interval between two
successive R waves and has been associated with the various
cognitive (Hansen et al., 2009; Dalise et al., 2020) and affective
functions (Melzig et al., 2009; Miller et al., 2019). Thayer and
Lane (2000) put forward the neurovisceral integration (NVI)
model centered on CAN regions and provided a framework
for understanding the integration of cognitive, affective, and
autonomic information. HRV was proposed as an index of
the degree to which flexible and adaptive interaction between
the human organism and the environment can be achieved
(Thayer and Lane, 2000, 2009; Thayer and Brosschot, 2005;
Thayer et al., 2012).

Smith et al. (2017) extended the NVI model and described
the roles in efferent and afferent information processing of
each brain region constituting the CAN. The lower levels
of hierarchy correspond to the information processing at the
level of the brainstem nuclei and subcortical regions that
integrate upcoming information from different bodily sources

(Smith et al., 2017). On the other hand, the core neural
networks, such as the Default Mode Network (DMN) and the
Salience Network (SN), constitute the higher levels of hierarchy,
where information in terms of exteroception, interoception,
and memory is integrated by taking into consideration not
only the present, but also the expected future metabolic needs,
which are related to long-term goals. The Central Executive
Network (CEN) processes goal-relevant information within a
circuit of highly connected hub regions that constitute SN
and DMN (Dehaene, 2014; Barrett, 2016; Smith et al., 2017).
The synchronous activity of these networks may provide a
“global workspace” that allows the emergence of conscious
representations that are significant to the goals or overall state
of the organism (Zylberberg et al., 2010, 2011; Dehaene and
Sigman, 2012). These three core brain networks, namely CEN,
SN, and DMN, have been identified by functional connectivity
(FC) analyses predominantly at resting state fMRI, while subjects
lie in the scanner and are not asked to engage in any
particular task. Since the ascending inputs from the visceral
organs continuously reach numerous cortical and subcortical
regions, many researchers claim that the visceral signals are
the continuous internal stimuli that contribute and shape the
spontaneous brain activity and intrinsic brain-networks (Azzalini
et al., 2019; Kim et al., 2019).

If HRV is an index of the flexible interaction between the
heart and the brain, the relationship between HRV and FC
patterns in the brain networks should vary across different
psychological and physiological states. Stress is a perturbed state
at the whole-body level induced by extrinsic or intrinsic stimuli
(Oken et al., 2015). Stress induction activates limbic regions
such as amygdala, which is also under influence of cortical
regions such as vmPFC; consequently, hypothalamic-pituitary-
adrenal axis and sympathetic nervous system are activated,
leading to increased cortisol levels and heart rate (Tafet and
Nemeroff, 2016). HRV as measured by the root mean square
of successive differences between normal heartbeats (RMSSD)
or high frequency (HF) power are suppressed as a reaction to
acute stress induction (Kim et al., 2018; Castaldo et al., 2019).
Three dominant brain networks, namely DMN, CEN, and SN,
are known to be modulated by acute stress (Hermans et al.,
2011; Vaisvaser et al., 2013; Maron-Katz et al., 2016; van Oort
et al., 2017). For example, during acute stress induction by
affective stimuli, the activation and functional connectivity of
SN as well as the activation in DMN regions increase, while
the activation in CEN remains unchanged (van Oort et al.,
2017). On the other hand, less consistent findings were reported
during acute stress induction by psychosocial stress tasks, while
the role of brain regions being part of CEN, SN, and DMN is
consistently reported during stress induction (van Oort et al.,
2017). Previous rs-fMRI studies indicated a carry-over effect of
acute psychosocial stress induction on these three intrinsic brain-
networks (Vaisvaser et al., 2013; Maron-Katz et al., 2016). An
increased functional connectivity between brain regions of the
SN and DMN was associated with the subjective stress levels
(Vaisvaser et al., 2013; Quaedflieg et al., 2015; Maron-Katz et al.,
2016). However, whether the association of HRV with the FC
between these three networks changes before and after stress
induction remains to be tested.
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More recent views of resting-state FC (rsFC) integrate both
static and dynamic components: the static component represents
stable dimensions of overall FC during the whole fMRI session,
and the dynamic component represents the processes by which
networks and subnetworks unite and dissolve over time (Chang
and Glover, 2010; Handwerker et al., 2012; Hutchison et al., 2013;
Kaiser et al., 2016). Indeed, dynamic FC (dFC) was shown to co-
fluctuate with HRV and arousal (Chang et al., 2013; Young et al.,
2017). By using a sliding window approach to calculate FC maps
and HRV, Chang et al. (2013) showed that FC between dorsal
ACC and precuneus was significantly associated with the HRV.
However, the association of HRV with the dynamic and static FC
between the three core brain networks remains to be elucidated.

Here, we investigated the temporal association between
RMSSD and FC between the three core brain networks – DMN,
SN, and CEN – at two different resting-state scan sessions:
baseline and just after a psychosocial stress task. In this study,
we hypothesized that RMSSD correlates with the FC between the
three network pairs (DMN-SN, DMN-CEN, and SN-CEN) at rest
and these patterns are altered by acute stress. Minute-by-minute
associations were assessed by the multilevel analysis instead of the
common summary-statistics model (Chang et al., 2013; Vaisvaser
et al., 2013; Young et al., 2017), in which first-level (e.g., subject or
time window) data are aggregated on group level and the variance
of first-level data cannot be taken into account. Moreover, this
is the first study to examine how the functional association of
HRV with FC between the core brain networks change after acute
stress induction.

MATERIALS AND METHODS

Sample
This study was part of a randomized, placebo-controlled, double-
blind, two-period crossover clinical trial (ClinicalTrials.gov
Identifier: NCT02602275). The Ethics Committee of the
Medical Faculty of the University of Magdeburg approved
the experimental protocol of the study and the study was
conducted in accordance with the Declaration of Helsinki
(World Medical Association, 2002). Participants provided written
informed consent prior to participation and received financial
compensation for their participation. Participants were screened
for MR compatibility and medical and psychiatric examination,
including a Structured Clinical Interview for DSM-IV Axis I,
(SCID) was performed. During the screening visit, the stress level
was assessed by means of the Perceived Stress Scale (PSS) and
Trier Inventory for Chronic Stress – Screening Scale for Chronic
Stress (TICS-SSCS). Subjects with low (PSS score = 9, TICS-
SSCS score < 9) and high (TICS-SSCS score > 36) levels of
chronic stress were not included in the study to ensure subject’s
susceptibility to the stress and to avoid a ceiling effect of the stress
sensitivity. Subjects were excluded if they were diagnosed with
any psychiatric or serious somatic disease or were not suitable
for MRI scanning.

A group of 40 healthy male subjects aged 31–59 years was
enrolled in the study. Since males and females showed distinct
stress responses modulated by the difference in hormonal levels

caused partly by menstrual cycle (Goldstein et al., 2010; Saladin
et al., 2015), only male participants were recruited for this
study to reduce the variability within stress responses. The
sequence of placebo or active compound was randomized. After
randomization, one subject was excluded because of an incidental
finding during the baseline MR measurement; therefore, 39
subjects (age = 43.7 ± 9.8) were included in this study. Nineteen
participants received a placebo and the remaining 20 participants
received the verum on the first measurement day. On the second
measurement day, after a wash out period (7–35 days after the
first measurement day), treatment was crossed-over.

Study Design
On both measurement days, Days 1 and 2, after an anatomy scan
and acquisition of 12-min baseline rs-fMRI (RS0), participants
received either placebo or verum [a herbal medicinal product,
Neurexan (Nx4)]. Subsequently, they performed two attention
tasks with simultaneous EEG acquisition outside the scanner
before entering another fMRI session. During that session,
participants underwent a psychosocial stress paradigm, which
was preceded by two emotion-related fMRI tasks reported in
separate publications. A 12 min resting-state sequence was
acquired before the fMRI tasks (RS1) as well as immediately after
the psychosocial stress induction (RS2) (see Figure 1). Here in the
current study, only RS0 (baseline) and RS2 (after stress induction)
scans of the day of placebo intake were analyzed. RS1 scans
were not included in the main analysis, but findings obtained
from the analysis of all three scanning time points are reported
in the Supplementary Results. The photoplethysmography
(PPG) signal was continuously monitored during all scans.
The PPG sensor was attached to the proximal phalanx of the
left index finger.

To induce psychosocial stress, we used a shortened version of
the ScanSTRESS task inside the scanner, which was previously
shown to induce stress-related changes in the brain, including
changes in physiological measures and hormone levels (Streit
et al., 2014, 2017; Dimitrov et al., 2018). During the task,
participants performed demanding arithmetic calculations and
mental rotations under time pressure and with feedback
regarding correctness and speed from a jury panel shown live on
the screen (stress blocks). As a control condition, the questions
of both types were easy and there was no time pressure or
evaluative feedback (control blocks). In total, each block of 40 s
(shortened version) was presented four times, with stress and
control blocks on an alternating basis. In the middle of the
experiment, participants received negative verbal feedback from
the panel to increase the stress level. The detailed description of
the task can be found in Streit et al. (2014).

The level of anxiety and nervousness was assessed using the
State-Trait Anxiety Inventory (STAI-X1) and a continuous visual
analog scale for nervousness (VAS-Nerv) at baseline as well
as before and after stress induction. Saliva samples for alpha-
amylase and cortisol measurements were collected at eight-time
points before and after the stress task via the saliva collection
device Salivette R© (Sarstedt, Germany) in addition to morning
cortisol samples. Salivary cortisol and alpha-amylase levels
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FIGURE 1 | The study design. (A) Participants received either Verum or Placebo on two measurement days. The treatment was cross-overed. (B) On both
measurement days, fMRI scans were acquired in two sessions. The first session began with an anatomical scan followed by a baseline resting-state measurement.
After intake of the Placebo/Verum treatment, EEG paradigms were performed outside the scanner. The second MRI session included the shortened ScanStress task
measurement following two other task measurements as well as two resting-state measurements before and after the tasks, respectively. In this publication, only the
analyses of RS0 and RS2 fMRI scans on the day of placebo intake were reported.

were analyzed using commercial enzyme-linked immunosorbent
assays according to the manufacturer’s instructions.

MRI Acquisition
All data (structural and functional MRI) were acquired on a
Philips 3T scanner in Magdeburg. First structural T1-weighted
images were measured using a TFE sequence with the following
parameters: 274 sagittal slices covering the whole brain, flip
angle = 8◦, 256 × 256 matrix, voxel size 0.7 × 0.7 × 0.7 mm3.
The functional MRI data were acquired using following scanner
settings: 34 axial slices covering the whole brain, TR = 2,000
ms, TE = 30 ms, flip angle = 90◦, 96 × 94 matrix, field of
view = 240 × 40 mm2, voxel size = 2.5 × 2.5 × 3 mm3. For
the resting-state sessions (before placebo administration, before
and after the tasks), 355 volumes of T2∗- weighted echo-planar
images (EPIs) were acquired for each session with the same
parameters. All subjects were instructed to keep their eyes closed,
to not think of anything specific, and to not fall asleep during the
resting-state measurements.

fMRI Preprocessing
Rs-fMRI-data were analyzed in MATLAB 2017 (The
Mathworks Inc., Natick, MA, United States) using the SPM12
(Wellcome Department of Imaging Neuroscience, London,
United Kingdom)1 and CONN toolboxes (Whitfield-Gabrieli
and Nieto-Castanon, 2012). Preprocessing of the rs-fMRI data
was performed using the adapted preprocessing pipeline in
CONN. The pipeline includes motion correction (realignment
and unwarping), slice-timing correction, automatic detection of
artifactual scans (ART-based scrubbing, Mazaika et al., 2005),
and normalization to MNI space. The CONN toolbox-featured
intermediate scrubbing parameters were used to compute head
motion in each session of each subject. In the next step, we
evaluated the sessions in which head motion exceeded the
threshold in more than 25% of volumes. This head motion

1http://www.fil.ion.ucl.ac.uk

criterion resulted in the exclusion of one subject’s RS0 and
one subject’s RS2 session. Single-subject linear regression
analyses were performed to remove effects of head motion (12
total motion covariates: six motion parameters plus temporal
derivatives), physiological artifacts [10 total eigenvariates
based on the anatomical component-based noise correction
method (aCompCor, Chai et al., 2012): five each from eroded
white matter (WM) and cerebrospinal fluid (CSF) masks], and
artifactual scans in each subject during denoising in CONN.
The resulting residual BOLD time series were band-pass filtered
(0.01–0.25 Hz) and spatially smoothed with a 6 mm Full-Width
at Half-Maximum (FWHM) Gaussian kernel. Finally, each time
series was normalized to zero mean and unit variance (z-value),
to reduce variance of non-neural origin (Huang et al., 2018). One
single subject was not preprocessed due to the corruption of the
data, therefore, in total 38 subjects (37 for each session) were
included in the analysis.

FC Between Network-Pairs
Key regions of three canonical brain networks were identified
following prior literature (Uddin et al., 2011). As shown in
Table 1, the resulting 10 region of interests (ROIs) were
constructed by drawing spheres of 5 mm radius around the
following key nodes: the DMN (vmPFC and PCC), SN [bilateral
fronto-insular cortex (FIC) and rostral ACC (rACC)], and CEN
(bilateral dlPFC and PCC) (Figure 2A).

A sliding-window approach was used to calculate the FC
between network-pairs (Figure 2B). The mean time course of
each brain network was extracted for the windows of 60 s
with a 50% overlap. The total number of windows for each
session was 23. Pearson-correlation was calculated for the FC
between network-pairs.

Physiological Recordings and HRV
Calculation
A finger PPG signal with a sampling rate of 500 Hz was acquired
using the scanner’s built-in equipment concurrently with fMRI.
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TABLE 1 | Composition of the canonical networks.

Network Region MNI coordinates (mm)

SN rFIC 39, 23, −4

lFIC −34, 20, −8

ACC 6, 24, 32

CEN rDLPFC 46, 20, 44

lDLPFC −46, 20, 44

rPPC 52, −52, 50

lPPC −40, −56, 44

DMN vmPFC −2, 38, −12

PCC −6, −44, 34

SN, salience network; DMN, default mode network; CEN, central executive
network; rFIC, right fronto-insular cortex; lFIC, left fronto-insular cortex; rDLPFC,
right dorsal lateral prefrontal cortex; lDLPFC, left dorsal lateral prefrontal cortex;
rPPC, right posterior parietal cortex; lPPC, left posterior parietal cortex; VMPFC,
ventrolateral prefrontal cortex; PCC, posterior cingulate cortex.

During data acquisition, local maxima of PPG signal were
automatically detected and timestamps of PPG peaks (P-peaks)
were recorded by the MR scanner. The inter-beat intervals
(IBIs) were calculated by extracting the time interval between
subsequent P-peaks. Prior to the calculation of the inter-beat
intervals, the quality of the peaks was manually inspected using
an in-house MATLAB script by overlapping scanner detected
P-peaks timestamps over PPG signal; missing peaks were added
manually. The intermittent errors in P-peaks due to the ectopic
beats or movement artifact were identified using percentage
filter (IBIs increase or decrease of more than 30% compared
to the previous interval) and subsequently interpolated (Salo
et al., 2001; Ramshur, 2010; Peltola, 2012; Choi and Shin, 2018).
RMSSD is the root mean square of the successive difference
in adjacent IBIs, which measures the short-term variations of
the IBI signal (Task Force of ESC and NASPE, 1996; Shaffer
and Ginsberg, 2017). RMSSD was calculated for each individual
sliding window of 60 s (Figure 2C).

Statistical Analyses
The data of the current study was comprised of two resting-state
sessions and 23 sliding window estimations for each subject. To
assess dynamical temporal associations, the multilevel analysis
was preferred over a summary-statistics model. A multilevel
mixed linear model (Figure 2D) was build using the fitlme
command of Statistics Toolbox in MATLAB. Window-by-
window FC between network-pairs was taken as the dependent
variable, while session (RS0 and RS2), network-pair (DMN-
CEN, DMN-SN, and SN-CEN) and window-by-window HRV
were added as regressors. The HRV values were centered
according to the subject level mean HRV values for each session
separately (Finch, n.d.). Fixed effects were calculated for the
regressors and their interaction terms. The random term was
defined as network-pairs nested under sessions and subjects. The
random intercept model with a diagonal covariance matrix was
chosen based on the Akaike Information Criterion (AIC) fit
index. Parameters were estimated using the restricted maximum
likelihood estimation (REML) method, which has been proven
to be more accurate than maximum likelihood estimation (MLE)

for estimating variance parameters (Kreft and De Leeuw, 1998;
Finch, n.d.). The normality of residuals and homoscedasticity
were investigated by plotting the normal probability of residuals
and of residuals vs. fitted values (Supplementary Figure S1).
Bonferroni adjustment was used for multiple comparison
correction in post-hoc analyses (in total six pair-wise comparisons
across the regression coefficients of each network-pair in each
session). Mean HRV and mean HR in each session were also
added separately to the above-specified model as second-level
variables. To investigate the effect of acute stress induction on
the temporal association of dFC between network-pairs, the
parameters related to stress response, such as the difference
between saliva alpha-amylase and cortisol levels before and after
stress induction, and the difference between HR and ratings of
VAS-Nerv, were added to the model on subject level. Age and
period of placebo intake (Day 1 or Day 2) were also controlled for.

The effect of acute stress induction on mean HR was examined
by one-way rmANOVA (Session: RS0, RS1, ScanSTRESS task
and RS2). Greenhouse-Geisser was used to adjust the degrees
of freedom for the averaged tests of significance. Additionally,
the carry-over effect of stress induction on subjective and
physiological measures was analyzed by conducting paired
sample t-tests between RS0 and RS2, using mean HR and mean
HRV during scans, saliva cortisol, and alpha-amylase levels, and
scores of STAI-XI and VAS-Nerv at the time of each scanning
time point as dependent variables. The statistical threshold was
set to α = 0.05.

RESULTS

The Carry-Over Effect of Acute Stress
Induction on Subjective and
Physiological Measures
To investigate the carry-over effect of acute stress induction
on subjective and physiological measures, paired sample t-tests
were performed across RS0 and RS2. As depicted in Figure 3, a
significant increase in nervouseness [t(37) = −2.44, p = 0.019]
and HR [t(37) = −5.78, p < 0.001] were observed. No significant
change was observed on the level of salivary cortisol and alpha-
amylase, and mean RMSSD.

The Dynamic Temporal Association of
HRV With FC Between Network-Pairs
Analysis using a multilevel linear mixed model was conducted
by taking window-by-window FC (dFC) between network-
pairs as the dependent variable and window-by-window HRV,
network-pairs and session as regressors, while subject level
random terms for each session were introduced. HRV was
significantly associated with dFC between DMN-CEN [b = 3.35,
t(5025) = 3.47, p < 0.006 (Bonferroni corrected)] in the baseline
condition (Table 2). As depicted in Figure 4A, this association
was significantly higher than that between SN-CEN dFC and
HRV [b = −4.36, t(5025) = −3.20, p < 0.006 (Bonferroni
corrected)] at baseline (Table 3).
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FIGURE 2 | A schematic illustration of the methods used for the calculation of the temporal relationship between heart rate variability (HRV) and functional
connectivity (FC) between network-pairs. (A) First, time series of mean BOLD signals in each network were extracted for each window (60 s) according to the
sliding-window analysis approach. (B) Pearson-correlation was performed for the calculation of FC between network-pairs. (C) RMSSD was calculated from the
inter-beat interval time series for each window (60 s) according to the sliding-window analysis approach. (D) The relationship between window-by-window RMSSD
and FC between network-pairs was analyzed using a multilevel linear mixed model.
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FIGURE 3 | Comparison of psychophysiological parameters between the two sessions. (A) Visual analog scale for nervousness (VAS-Nerv) (B) Mean heart rate (HR).
After the acute stress induction, a significant increase in the level of nervousness, and mean HR was found. The error bars represent standard error. ∗p < 0.05;
∗∗∗p < 0.001.

TABLE 2 | Correlation of RMSSD with dFC between network-pairs for each
session (RS0 and RS2).

Session FC Estimate SE T Adjusted P-value

RS0 DMN-SN 1.90 0.96 1.97 0.288

DMN-CEN 3.35 0.96 3.47 0.003**

SN-CEN −1.01 0.96 −1.05 1.000

RS2 DMN-SN 0.36 0.94 0.38 1.000

DMN-CEN −0.93 0.94 −0.99 1.914

SN-CEN 1.53 0.93 1.64 0.600

RMSSD = Root mean square of the successive difference in adjacent IBIs; dFC,
dynamic functional connectivity; RS0, Baseline session; RS2, After stress induction;
SN, Salience network; DMN, Default mode network; CEN, Central executive
network; Adjusted p-value, Bonferroni corrected p-values. Bold font represents
significant results; ** represents p < 0.01.

The relationship between HRV and DMN-CEN-dFC
significantly decreased after acute stress induction [b = −3.35,
t(5025) = −3.47, p < 0.006 (Bonferroni corrected)] (Figure 4B
and Table 4) and was not significant at the RS2.

These effects were also observed after controlling for age and
the period of placebo intake, as well as mean HR and mean HRV
during each session. Moreover, additional analyses including
the difference between saliva alpha-amylase and cortisol levels,
and the difference between ratings of VAS-Nerv parameters
before and after stress induction did not alter the above-
mentioned findings.

DISCUSSION

In this study, we examined the association of RMSSD with
dFC between brain networks at baseline and right after a

psychosocial stress task in a sample of 38 healthy male subjects.
By using multilevel regression analysis, we demonstrated that the
minute-by-minute association between the dFC and RMSSD was
significantly stronger for the interaction between DMN and CEN
than between SN and CEN in the baseline session. This difference
between dFC of network-pairs in terms of their association
with RMSSD disappeared after the stress task. Furthermore,
dFC between DMN and CEN showed a weaker correlation with
RMSSD after the stress task in comparison to baseline. Moreover,
these findings were replicated with one additional resting-state
scan (RS1), which was acquired after placebo intake and before
the stress induction (Supplementary Results). These results
indicate a dynamic functional relationship between HRV and
brain networks that varies depending on external conditions.
To the authors’ knowledge, this is the first report suggesting
the pattern of functional associations between HRV and the
interaction between different brain networks during resting state,
and how this changes immediately after acute stress induction.

The significant correlation between RMSSD and dFC of
DMN and CEN in the baseline session suggests that the CEN
nodes, such as dlPFC and posterior parietal cortex (PPC),
are functionally related to the rhythmic activity of the heart,
even though they are not part of the original definition of
CAN (Benarroch, 1993). The stronger functional association of
RMSSD with the interaction between CEN and DMN compared
with CEN and SN during the baseline session is in line with the
previously mentioned extended NVI model, in which the role
of CEN in vagal control was proposed (Smith et al., 2017). This
model describes that DMN plays a role in the conceptualization
of the visceral and somatic information, thereby representing the
conceptual significance of the overall situation of the organism
in a given context, while SN plays a regulatory role at the level
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FIGURE 4 | Differential temporal association between heart rate variability (HRV) and functional connectivity (FC) between network-pairs across sessions (RS0 and
RS2). (A) The multilevel linear mixed effect model showed a significant correlation between HRV and FC between DMN-SN, and DMN-CEN during baseline (RS0).
The strength of the association between HRV and FC was significantly stronger for DMN-CEN than for SN-CEN during baseline session (RS0). (B) The correlation
between HRV and FC between DMN-CEN was significantly weaker during the second session (RS2) in comparison to baseline. RS0, Baseline Session; RS2, After
stress induction; SN, Salience Network; DMN, Default Node Network; CEN, Central Executive Network. Shaded areas indicate standard error.

TABLE 3 | Within-session comparisons of correlation strengths between RMSSD
and network-pairs dFC.

Session Reference
NP

Target
NP

Estimate SE T Adjusted
P-value

RS0 DMN-SN SN-CEN −2.92 1.36 −2.13 0.192

DMN-CEN DMN-SN −1.45 1.36 −1.06 1.000

DMN-CEN SN-CEN −4.36 1.36 −3.20 0.006**

RS2 DMN-SN SN-CEN 1.18 1.32 0.89 1.000

DMN-CEN DMN-SN 1.28 1.32 0.97 1.000

DMN-CEN SN-CEN 2.47 1.32 1.87 0.372

RMSSD, Root mean square of the successive difference in adjacent IBIs; dFC,
dynamic functional connectivity; NP, Network-pair; RS0, Baseline session; RS2,
After stress induction; SN, Salience network; DMN, Default mode network; CEN,
Central executive network; Adjusted P-value, Bonferroni corrected p-values. Bold
font represents significant results; **p < 0.01.

TABLE 4 | Between-session comparisons of correlation strengths between
RMSSD and network-pairs dFC.

NP Reference
session

Target
session

Estimate SE T Adjusted
P-value

DMN-SN RS0 RS2 −1.54 1.34 −1.23 1.000

DMN-CEN RS0 RS2 −4.28 1.34 −3.18 0.006**

SN-CEN RS0 RS2 2.55 1.34 1.90 0.342

RMSSD, Root mean square of the successive difference in adjacent IBIs; dFC,
dynamic functional connectivity; NP, Network-pair; RS0, Baseline session; RS2,
After stress induction; SN, Salience network; DMN, Default mode network; CEN,
Central executive network; Adjusted P-value, Bonferroni corrected p-values. Bold
font represents significant results; **p < 0.01.

of perception (Barrett and Satpute, 2013; Smith et al., 2017).
The synchronous activity of SN and DMN with CEN enables
maintenance and further processing of relevant information
(Dehaene, 2014; Barrett, 2016; Smith et al., 2017). Activation

and FC of DMN regions are associated with spontaneous and
self-generated thoughts under resting conditions (Raichle et al.,
2001; Buckner et al., 2008; Buckner and DiNicola, 2019). On the
other hand, SN activation and FC are induced in response to
salient and affective stimuli and play a role in the allocation of
attention (Seeley et al., 2007; Hermans et al., 2011, 2014; Menon,
2011). Therefore, under resting conditions, the dominance of
DMN was expected. In this study, the static rsFC between CEN
and DMN is stronger than between CEN and SN at baseline
(Supplementary Results). Presumably, HRV is primarily related
to the currently dominant process across brain networks, which
is expected to mirror the needs of the body, while on the other
hand, HRV also reflects the processes in the brain invoked
in the frame of its relation to the body and environment
(McCraty and Childre, 2010).

Acute stress induction can induce a reorganization of
FC between brain networks to support a hypervigilant state
(Hermans et al., 2014). Since the stress response continues
directly after stress exposure (van Marle et al., 2010), a carry-over
effect of the stress task was expected during the following resting-
state scan. Indeed, even the effects of prior cognitive tasks are
carried over to the following post-task resting-state brain activity
(Albert et al., 2009; Lewis et al., 2009; Hartzell et al., 2015). In
this study, the association between HRV and dFC between CEN
and DMN was decreased directly after acute stress induction
when compared with the baseline session. An increase in FC and
activation of SN regions was reported after acute stress induction,
while DMN FC was decreased (van Marle et al., 2010; Vaisvaser
et al., 2013; Quaedflieg et al., 2015; van Oort et al., 2017). The
static rsFC findings of this study showed that rsFC between
DMN-CEN was reduced after acute stress induction, which might
explain the shift in the association of RMSSD with FC between
network-pair. Of note, the carry-over effect of stress induction
was observed regardless of the inclusion of mean values of HR,
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HRV, or nervousness ratings during each session. Participants
reacted to the acute stress induction with an increase in HR
during the task, which also did not explain the carry-over effect
of stress on the association between HRV and interaction between
intrinsic networks.

A point that needs to be taken into consideration is the usage
of Pearson correlation coefficient to estimate the strength of
FC between network-pairs. The Pearson correlation coefficient
does not imply causal relationship and might also reflect an
indirect influence by a third region (Wang et al., 2016). Therefore,
current findings cannot indicate the direction of an effect between
RMSSD and intrinsic brain networks. Even though HRV has
been mostly interpreted as an index of the modulatory effect of
the CAN on the cardiac activity, the CAN receives continuous
information from the cardiovascular system via the cardiac
afferent fibers and through blood vessels. Therefore, it is difficult
to identify causality for the heart-brain circuit. For this reason,
we chose to describe our observations as co-evolution of signals
instead of an effect of one on the other. Likewise, we avoided
limiting the association of RMSSD and functional association of
brain networks in a frame of parasympathetic activity. RMSSD
reflects predominantly parasympathetic rather than sympathetic
activity (Shaffer and Ginsberg, 2017). However, confidently
separating sympathetic and parasympathetic influences on the
heart-brain circuit is beyond this study due to the complexity of
the heart-brain circuit, which also involves interaction between
the branches of the autonomic nervous system (ANS) and
the non-linear interplay of all regulatory loops involving the
intracardiac nervous system and pacemaker cells in the heart,
especially when some of our ROIs are considered, which
are not primarily part of the CAN. Moreover, additional
analyses with other vagal HRV metrics, such as high-frequency
HRV, are required to indicate that the functional association
between the core brain regions and RMSSD was driven by
parasympathetic activity.

A limitation of the current study is the window size of the
60 s, which might not be the optimal time window to capture
the temporal dynamics of the interplay between RMSSD and
intrinsic brain networks. While the underlying temporal scale
of the reported effects has not been exhaustively assessed, the
60 s window size was used as a compromise between including
enough timepoints within a window to provide reliable measures
and capturing relatively short-lived effects (Hutchison et al.,
2013; Chen et al., 2017). In the current study, the selection
of a 60 s window and 50% overlap yielded 23 sliding-window
measurements per scan, 30 fMRI timepoints per window for
estimating FC and the association between dFC and RMSSD.
According to previous findings in the literature, functionally
relevant dFC patterns can be isolated from a window size of
60 s (Shirer et al., 2012; Gonzalez-Castillo et al., 2015; Leonardi
and Van De Ville, 2015; Liégeois et al., 2017). Furthermore, the
calculation of RMSSD from the signal acquired by means of
recordings of less than 1 min is still a matter of debate (Laborde
et al., 2017). This also corresponds to one of the reasons behind
our choice of RMSSD as an HRV index parameter.

Since ECG is more susceptible to radiofrequency artifacts
during fMRI scans and the magnetic field within the scanner,
the pulse oximetry is generally preferred in MRI settings (Chang

et al., 2013; Bellot et al., 2016; Kasper et al., 2017). Even though
the utility of the pulse oximeter in calculating HRV by peak
detection algorithms was demonstrated (Chang and Glover,
2009; Verstynen and Deshpande, 2011; Nilsson, 2013; Schäfer
and Vagedes, 2013; Caballero-Gaudes and Reynolds, 2017), pulse
oximeter measurements are delayed due to the pulse transit time.
However, in MRI settings pulse oximetry is still more favorable
than ECG because of its robustness to artifacts arising from
the setting itself.

The HRV signal has a complex structure and involves
superimposed oscillations (Ivanov et al., 1999; Pikkujämsä et al.,
1999). RMSSD is one of the most commonly used time-domain
measures of HRV; however, there are many other options to
calculate HRV, such as time-domain, frequency-domain, and
non-linear measurements (Shaffer and Ginsberg, 2017). Thus,
RMSSD parameter illuminates only a specific and small part
of HRV and cannot be considered a full representative of this
regulation. Because of the 60 s window size, the calculation of the
low-frequency domains is not appropriate from a signal analysis
perspective (Task Force of ESC and NASPE, 1996; Shaffer and
Ginsberg, 2017). Moreover, the frequency domain and also other
time-domain indices are more susceptible to the influence of
respiration, which was not controlled for in HRV calculation
because neither respiratory rate nor depth was recorded during
the scanning. Of note, the validity of ultra-short HRV features
(acquisition time less than 5 min) is still under debate (Shaffer
and Ginsberg, 2017; Castaldo et al., 2019); however, the use
of acquisition times of 60 s and below was also proposed
(Salahuddin et al., 2007; Esco and Flatt, 2014; Baek et al., 2015).
On the other hand, the conventional recording time of 5 min
would not be appropriate to examine the dynamic temporal
functional association between the rhythmic activity of the heart
and the FC of the core brain networks.

Physiological signals are generally regressed out during pre-
processing of fMRI data as respiration and the cardiac cycle
can result in neuronal and non-neuronal fluctuations in the
BOLD signal due to the systemic changes in arterial CO2
concentrations and blood flow (Birn et al., 2006; Shmueli et al.,
2007; Chang and Glover, 2009). In the current study, a CompCor
approach was used during pre-processing that extracts multiple
nuisance regressors from the voxels within WM and CSF via
principal component analysis (Behzadi et al., 2007; Muschelli
et al., 2014). A CompCor approach can account for physiological
noise (Behzadi et al., 2007) and head motion (Muschelli et al.,
2014). As our main interest was the interaction of cardiac
activity and inter-network FC, removing the physiological signals
from the imaging data further than regressing out the signal
intensity from WM and CSF might have resulted in a decrease
of the signal of interest (Khalili-Mahani et al., 2013; Zhang
et al., 2019). Nevertheless, considering the parallel change
between the results of static rsFC between the network-pairs
(Supplementary Results) and the dynamic association of HRV
and dFC between network-pairs, the findings of this study should
be interpreted with caution.

These findings, although preliminary, suggest that HRV co-
fluctuates with the core brain networks selectively depending
on the condition. This combination of findings provides some
support for the conceptual premise that the brain and the heart

Frontiers in Neuroscience | www.frontiersin.org 9 July 2020 | Volume 14 | Article 645

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00645 June 30, 2020 Time: 21:49 # 10

Chand et al. Heart Rate Variability and Brain Dynamics

function in a closely coordinated manner as a part of a bigger
psychophysiological system to maintain the homeostatic state of
the organism in a constantly changing environment.
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