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Abstract: Fluorescent nanodiamonds are frequently used as biolabels. They have also recently been
established for magnetic resonance and temperature sensing at the nanoscale level. To properly use
them in cell biology, we first have to understand their intracellular fate. Here, we investigated, for the
first time, what happens to diamond particles during and after cell division in yeast (Saccharomyces
cerevisiae) cells. More concretely, our goal was to answer the question of whether nanodiamonds
remain in the mother cells or end up in the daughter cells. Yeast cells are widely used as a model
organism in aging and biotechnology research, and they are particularly interesting because their
asymmetric cell division leads to morphologically different mother and daughter cells. Although
yeast cells have a mechanism to prevent potentially harmful substances from entering the daughter
cells, we found an increased number of diamond particles in daughter cells. Additionally, we
found substantial excretion of particles, which has not been reported for mammalian cells. We also
investigated what types of movement diamond particles undergo in the cells. Finally, we also
compared bare nanodiamonds with lipid-coated diamonds, and there were no significant differences
in respect to either movement or intracellular fate.
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1. Introduction

The fluorescent nanodiamonds (FNDs) are promising long-term biolabels due to their
unprecedented photostability [1–3]. They can host fluorescent defects such as the nitrogen vacancy (NV)
center. These centers can be excited with a green laser (532 nm) and emit red fluorescence (a broad peak
above 600 nm). NV centers occur naturally in nanodiamonds from high-pressure high-temperature
(HPHT) synthesis, but their numbers can be increased by irradiation in several different ways. These
increase the number of color centers and thus their fluorescence intensity [4]. Possibilities include
irradiation with silicon ions [5], helium ions [6], or electrons [7,8]. For biological applications, the
excellent biocompatibility of fluorescent nanodiamonds is also crucial [9]. In several previous studies,
FNDs are introduced in mammalian cells and have shown no negative effects [10–12]. From these
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studies, it is known that mammalian cells passively take up FNDs in different ways depending on the
cell type and exact conditions. The most reported uptake path is endocytosis. When nanodiamonds
are endocytosed they are engulfed in an endosome and eventually escape from it [13]. Besides, little is
known so far about the behavior of these FNDs after uptake or about what happens to them during
cell division. Although most studies are limited to short times where division does not occur, there is a
small number of articles on the behavior of FNDs during cell division in mammalian cells [14,15].

In this study, yeast cells were used as model organism. We have shown before that FNDs can be
brought inside these cells [16]. For yeast cells, the uptake mechanisms of nanoparticles are unknown.
As they are covered with a thick cell wall, the uptake is also a lot more artificial than in mammalian
cells and there is probably no natural mechanism that the uptake is comparable to. To achieve uptake,
two protocols have been established: One option is to permeabilize the cell wall, which allows the
diamond particles to enter. It has also been shown in a previous work that the cells could proliferate
after being treated with FNDs [16,17]. Another option, which we used here, is to remove the cell wall
entirely. This method allows the diamonds to enter and regrow the cell wall [18]. Here, we investigate
for the first time what happens during and after cell division in yeast. This is especially interesting for
yeast cells, because the division is asymmetric. Asymmetric division can manifest itself in different
ways, for instance, different cell content. In yeast cells, division results in differently sized mother
and daughter cells. Before cell division, a diffusion barrier keeps molecules (in this case, FNDs) in
the membrane of the mother and prevents them from entering the membrane of daughter cell. In the
FNDs, other particles or molecules only leak into the daughter cells if they detach from the membrane
in the mother cells or if the diffusion barrier becomes permeable [19]. This mechanism is in place to
protect daughter cells from harmful substances like aging factors [20].

Compared to other organisms, yeast cells have several advantages for this kind of research. They
are a relevant model to study the aging process, and they are widely used in biosynthesis and in food
industry [21–23]. They are undemanding in cultivation and allow for easy genetic and molecular
modifications [21].

Cell division is a very important step in the aging process of yeast cells. When investigating the
transfer of FNDs during cell division, in principle, there are four possible outcomes after cell division:

1. FNDs could remain (preferentially) with the mother, for example, because they are regarded as
harmful by the cell (see Figure 1a).

2. FNDs might (preferentially) move into the daughter cells (see Figure 1b).
3. FNDs might be excreted (see Figure 1c).
4. FNDs might end up randomly distributed between both mother and daughter cells (see Figure 1d).
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Figure 1. In asymmetric cell division, a yeast cell produces a smaller daughter cell. Except for the size,
the daughter cells are similar to the mother cells. Both of them have nuclei (red), a vacuole (green), and
other organelles (gray). When fluorescent nanodiamonds (FNDs) (purple) are inside the cells during
division, they can (a) stay in the mother cell, (b) move to the daughter cell preferentially, (c) being
excreted by the cells, or (d) being equally distributed.
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The goal of this article is to determine which one of these possibilities is the case for nanodiamonds.
To answer this question, we used FNDs in yeast cells using the spheroplasting process [18,24] (i.e.,
removing the cell wall) and we followed them during cell division. We investigated here which of the
four possible outcomes occur and in what frequency.

2. Materials and Methods

2.1. Diamond Starting Material

2.1.1. Bare Particles

Throughout this article we used fluorescent diamonds with a hydrodynamic diameter of 70 nm
(FND70) from Adamas Nanotechnology (Raleigh, NC, USA). They have a relatively broad size
distribution and irregular shape [25]. According to the vendor, these particles are irradiated with
an electron beam at 3 MeV to 5 × 1019 e/cm2 fluence followed by high temperature annealing above
600 ◦C under vacuum for 2 h [26]. The NV content was measured by the manufacturer by electron
paramagnetic resonance to be approximately 2–2.5 ppm. This means each particle hosts approximately
300 nitrogen vacancy centers. We measured their fluorescence spectrum (see supplementary Figure S3)
on a Thermo Fisher Varioskan microplate reader, with excitation wavelength at 532 nm, and analyzed
it as shown by Fu et al. [27]. We found that the particles contain almost exclusively NV− centers,
which is also in line with what others found for similar particles [28]. With our homebuilt confocal
microscope we can detect ~1,000,000 counts per second for a single particle. This was determined in
previous works where we spread particles evenly on a surface (confirmed by SEM) and measured the
counts [25]. As they undergo a cleaning process in oxidizing acid, their surface is oxygen terminated
and electronegative with zeta potential of −16 ± 1 mV.

2.1.2. Coated Particles

For facilitating FNDs uptake in yeast cells, a liposome kit (Sigma, Zwijndrecht, The Netherlands)
has been used as coating material. This kit contains 63 µmol L-α-phosphatidylcholine and 18 µmol
stearylamine. After the coating process, the zeta potential value of FNDs becomes electropositive
(36 ± 3 mV) [18]. To prepare FNDs coated with lipids (FND-lip), 2 µg mL−1 of FND solution was added
into liposomes and was mixed by vortexing for 30 s.

2.1.3. Particle Characterization

Characterization of diamond and lipid-coated diamond particles (FND-lip) has been performed
in a previous study [18]. There we characterized several properties for these particles. The findings
are summarized here shortly. No significant differences in size between FND-lip and FNDs were
observed. There we found that both FND-lip and FNDs are colloidally stable in water (PdI < 1).
To further characterize the particles, we performed an analysis of the zeta potential. To this end,
4 µg/mL liposome-coated FNDs were diluted in sterile deionized water and 1 mL of the solution was
injected into the cuvette and 4 µg/mL FND70 was used as control. The measurements were performed
with a Malvern Zetasizer Nanosystem (Malvern, Cambridge, UK). All the measurements were set in
25 ◦C. Each measurement takes ~2 min. The zeta potential measurement showed that the 70 nm FNDs
were electronegative (−15.73 ± 0.89 mV). After adding liposome, the particles became electropositive
(35.67 ± 2.64 mV) [18]. Cryo TEM (recorded with Tecnai, Oregon, USA) revealed that the thickness
of the lipid layer on diamond particles was 4.8 ± 1.2 nm [18]. It is also apparent from this previous
study that the FNDs are actually coated by lipids. Performing optically detected magnetic resonance
measurements (as routinely used in the field) on FNDs and FND-lip did not reveal any significant
differences [18]. Although FNDs generally are known to have excellent biocompatibility [9,29], a very
small decrease in metabolic activity has been reported for yeast cells and FND-lip [18].
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2.2. Fluorescence Nanodiamond Particles Uptake

Saccharomyces cerevisiae BY4741 and HXT6-GFP strains were used as model organisms. According
to the Saccharomyces genome database, the wild type strain BY4741 was used as a parent strain for an
international systematic S. cerevisiae gene disruption project. Thus, it was chosen here for its broad
use. These wild type cells were used for tracking intracellular movement of FNDs. The HXT6-GFP
strain was used for quantifying FNDs. This modified strain expresses Hexose transporter 6 (glucose
transporter) with green fluorescent protein (GFP) in the cell membrane, thus allowing imaging of the
cell boundaries. Both cells were grown in synthetic dextrose (SD, Formedium, Norfolk, UK) complete
medium until midlog phase (OD600 = 1.05). The spheroplasting protocol was modified from Karas
et al. [24] and was performed to get the FNDs inside cells. The adaptation from the original protocol
was that after spheroplasting they put the spheroplast on specific medium and we did not do that.
In the spheroplast protocol, the cell wall is removed entirely from the yeast cells to create spheroplasts.
To obtain these spheroplasts, the cells were washed with sterile demineralized water and centrifuged for
5 min at 2500× g at 10 ◦C. The supernatant was discarded, and 20 mL of 1 M D-sorbitol was added to the
cells. The cells were again centrifuged for 5 min at 2500× g at 10 ◦C. After discarding the supernatant,
20 mL of SPEM (consisting of 1 M D-sorbitol, 10 mM EDTA, and 10 mM sodium phosphate) buffer
was added followed by 40 µL zymolyase 20 T (Amsbio, UK) and 30 µL β-mercaptoethanol (Sigma,
Zwijndrecht, The Netherlands). Cells were incubated at 30 ◦C while shaking at 75 rpm for 30 min.
Twenty milliliters of 1 M D-sorbitol was added to stop the spheroplasting process, and the cells were
centrifuged for 5 min at 1000× g at 10 ◦C. After the supernatant was discarded, 2 mL of STC (1 M
sorbitol, 10 mM TrisHCl, and 10 mM CaCl2 and 2.5mM MgCl2) buffer was added and the mixture was
incubated for 20 min at room temperature. In the end, 50 µL of 2 µg/mL FNDs at a size of 70 nm were
added to the 200 µL yeast spheroplast suspension, followed by 5 min incubation at room temperature.
Finally, the treated yeast cells were put in SD complete medium supplemented with 1 M D-sorbitol for
1 h at 30 ◦C to regrow their cell wall.

2.3. Immobilizing Yeast Cells

To monitor single cells during and after cell division they were immobilized using the following
protocol; glass-bottom dishes with 4 compartments were coated with 0.1 mg/mL concanavalin A
(Sigma, Zwijndrecht, The Netherlands). The coating process was followed by a washing step with
sterilized demineralized water and a drying step in a 37 ◦C incubator. After the coated dish dried,
300 µL SD medium and 4 µL of cell suspension (strain BY4741, approximately 2.4 × 107 cells/mL) with
internalized FNDs from the previous step were added in each compartment and the dish was sealed
by parafilm to avoid evaporation of the medium.

2.4. Equipment

Imaging was performed on a home-built confocal microscope operating with a 532 nm excitation
laser. The confocal microscope is similar to what is typically used in the diamond magnetometry
community [30,31]. Below we shortly describe the most important specifications. A detailed description
including a drawing (Figures S4 and S5) and a list with all the parts of our equipment can be found in
the supplementary material. We have a homebuilt system because it allows for flexibility to perform
diamond magnetometry. However, this functionality was not used in this article, and the measurements
could have also been performed on a commercial system with similar capabilities. For detection, our
instrument has an avalanche photodiode implemented for detection, which is capable of single photon
counting. The fluorescent counts we receive for 70 nm diamond particles are typically ~1,000,000 per
second for a single particle. These values are close to what we expect for this number of NV centers
per particle. The instrument has built-in microwaves (which we do not use in this article) and uses
sensitive detection with avalanche photodiodes. The set-up is equipped with a green laser at 532 nm,
and we have the ability to track particles in 3D. The sample stage is designed in a way that allows
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for standard glass-bottom petri dishes to be measured. For the measurement, the sample suspension
was dropped onto a microscope cover slide and evaporated at room temperature. The instrument
was set to −12 dBm of microwave power and 1 mW of laser power. One-hundred repetitions were
performed to obtain a sufficient signal-to-noise ratio [18]. To better identify the cells, the confocal
microscope is equipped with a bright-field microscope, which is used to collect images simultaneously.
Bright-field illumination is achieved with a 470 nm Fiber coupled LED supplied with T-Cube LED
Driver. The images are collected using a Compact USB 2.0 CMOS Camera from Thorlabs, and an
Olympus PLN 4x objective to focus the blue light with NA 0.1.

2.5. Tracking FND Movement during Cell Division

To separate the FND signal from other fluorescence, a 550 nm long-pass filter was used. A signal
above 550 nm was attributed to the FNDs. It is also possible to use a filter above 600 nm (or higher),
but there is a trade-off. If one uses a higher filter, the technique is more specific for ND. However, one
also loses part of the signal and thus sensitivity. Therefore, if the background is comparably low, it is
possible to choose a lower wavelength filter to gain sensitivity. We detect on average 90,000 ± 10,000
counts per second for the background of the cell, whereas the FNDs are 1,000,000 ± 500,000 counts per
second (for control images without particles see supplementary information Figure S6). A laser power
of 60 µW at the laser power output was chosen to limit potential damage to the cells from high laser
power. First, we scanned an area (50 × 50 µm field of view) with cells. Then, we identified diamonds by
observing stability of their fluorescence intensities, as diamonds are not bleaching. Usually, we observe
a particle for ~10 min. If the fluorescence does not drop, it is most likely a diamond. Images were
acquired every hour. Light intensity was measured using an Olympus UPLanSApo40x NA = 0.95
air objective and an Avalanche photodiode (SPCM-AQRF-15-FC) in single photon counting mode.
Simultaneously, bright-field time series images were recorded continuously to give a better view of cell
division. Confocal images were processed in FiJi software using specific plugins [31]. Deconvolution
was performed to get clearer particle locations and lower background using Diffraction point spread
function (PSF) 3D and Iterative deconvolve 3D plugins.

2.6. FND Quantification during Cell Division

While following the FNDs during cell division (using the above mentioned confocal microscope in
Figures S4 and S5), FND quantification was performed after re-growing the cell walls. Four microliters
of yeast spheroplast suspension contained approximately 9.6 × 104 cells (strain HXT6-GFP) that were
fixed using 1% paraformaldehyde in PBS buffer of pH 7.4. The cell suspension was put between a
glass slide and the cover glass and was imaged with Zeiss LSM 780 confocal laser scanning microscope
(Zeiss, Oberkochen, Germany). FNDs were imaged at excitation/emission wavelength 561/650 nm and
GFP was imaged at 488/525 nm. A homemade FiJi program was used for determine the number of
particles that have been ingested by the cells [16] before and after cell division. To this end, a specific,
custom-made FND quantification plugin was used to approximate the amount of internalized FNDs.
The analysis was divided into three phases: Cell Selection, Masking, and Particle Analysis. During the
first phase, images are visually inspected and random cells are selected. The images were composed
of several slices (Z-stacks), and the cellular region was defined in all the three dimensions. In the
horizontal plane, the selection considered an area containing only the cell of interest. In the height,
the first and last slices containing the cell were identified. As a result, the first phase defines a volume
that holds only the cell of interest. In the masking phase, that volume is molded to resemble the
shape of the cell. The GFP signal (staining the cell membrane) is converted to binary using the Isodata
algorithm to calculate the threshold [32], and the cell’s perimeter is detected in every slice. To avoid
counting particles on the surface, the program excludes the outer micrometer of the volume. (As a
result, the program slightly underestimates the real number of particles.) In the third step, a special
function of Fiji analyses the particles, which are found in a selected region. Applying this function to
the masked image, it is possible to directly obtain the number of objects (connected positive pixels)
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in the specified region. A threshold is used to separate the background light from the signal emitted
by the FNDs. Every pixel with intensity less than the threshold is assumed as background and set as
black, whereas every pixel with an intensity greater than or equal to the threshold is assumed as part of
a particle. To find an adequate value for this parameter, the image was visually inspected and different
values were probed. Finally, we chose the lowest possible value, which gives zero for a negative control
image. In the end, this method gives two important values: the number of objects and the number
of particles. An object here is defined as the amount of adjacent FND positive pixels. This means an
object can be composed of a single diamond or can be an aggregate of multiple diamond particles.
The difference between the number of objects and the number of particles reveals the aggregation
status of the sample in the intracellular environment (rather than in a test tube as in DLS for instance).

2.7. Single Particle Tracking

To better understand the intracellular processes a nanodiamond can be subjected to, we performed
single particle tracking. This was done for both uncoated (bare FNDs) and lipid-coated nanodiamonds
(FND-lip) to study the impact of enclosing nanodiamonds in liposome vesicles inside the cell.
As a liposome is larger (the thickness of liposome on FND surface was determined by TEM to be
4.8 ± 1.2 nm [18]) than an uncoated nanodiamond, we would expect it to move slower, according to
Fick’s laws. If the particle is, on the other hand, actively moved to a specific compartment, a directed
motion can be observed. Using a home-built confocal microscope (for details see supplementary
material Figures S4 and S5), the sample was excited with a 532 nm laser. Matching the confocal image
with a bright-field image was done to confirm if the diamond is inside the cell. After finding a particle,
it was tracked for ~45 min. The custom-made software recorded 2 × 2 µm images of the particles
throughout the tracks to make sure we are following the same particles. By applying a Gaussian fitting
of the intensity profiles, the software calculates the position of the particle center. Cells were put in the
coated glass-bottom dishes and, to keep the cells alive, we performed the experiments only for 45 min.
This time was chosen conservatively after several preliminary experiments were cells died after longer
exposure times. Temperature in the samples was ~25 degrees.

Recording images of a particle took 1.8 s per image. In total, we performed 1500 repetitions.
To interpret these trajectories, mean square displacement (MSD) curves [33] were used. This value
provides a measure on how far a particle travels within a certain time period (τ). These trajectories
were divided into subtracks using a rolling window (200 repetitions) to gain more information about
each segment of the trajectory.

The MSD curves were calculated from the coordinates of the recorded trajectories. The typical
logarithmic scaling of a graphical representation of the MSD versus the time interval allows
differentiating between three typical cases: purely random motion (diffusion), ballistic motion
overlaying random diffusion, and confined diffusion. For all three cases we have simulated trajectories
and calculated the corresponding MSD curves (see Figure 2), using Python.
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Figure 2. Three possible types of the particle movement generate three distinct trajectory types: random
(red), ballistic (blue), and confined (green). The trajectories (a) represent the movements a particle may
execute over 2000 steps: random (red), random diffusion with overlying ballistic motion (blue), and
confined (green), wherein the trajectory of the particle is limited by a predefined border (here: 30 by 30
microns) that reflects the particle. (b) The mean squared displacements of the trajectories.

For the simulated trajectories, a random generator drew 2000 displacements with varying step
length between −1 and 1. To better simulate the actual movement of the microscopic particles,
we assumed that we do not record every single displacement but only every third, by cumulating three
displacements into one. This also ensures that the distribution of step sizes and displacements follow a
normal distribution. For the ballistic motion, one additional drawing with a directed motion (only
positive values for x and y) was added to the three random displacements. A confined displacement
trajectory was generated like the random motion with an additional step: whenever the trajectory
of the particle left a predefined area (here: 30 by 30 microns), the particle was reflected into the
area—according to a particle hitting the wall of its confinement. However, this means that the particle
becomes faster when it is reflected from the border, which can be seen in the slightly higher slope
of the left side of the graph for confined motion in Figure 2 (green). The full Python script used
to generate the trajectories and to calculate the mean squared displacements can be found in the
supplementary material.

Simple diffusion is shown in red—the particle performs a random walk, slowly moving away from
the original position, and can theoretically explore every point of the volume. Similar behavior can be
observed for a particle floating in suspension. The green trajectory illustrates confined diffusion—the
particle is walking randomly within a certain limited volume (e.g., a vesicle, a cytoskeletal “cage”,
or even an entire cell) and cannot leave it, no matter how much time has passed. The blue trajectory
shows the case of simple diffusion combined with directional motion. The particle has a preferred
direction, in which it moves with a certain speed (e.g., being transported along the cytoskeleton by
molecular motors). At the same time, the diffusional component results in deviations from the shortest
straight line between the initial and the final positions.

At high τ, less data points contribute to the calculation, and thus the MSD calculation has a larger
statistical uncertainty. To compensate for this, we used only the first 75% of the resulting curves
for fitting.
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2.8. Statistical Analysis

All statistical analyses were performed with GraphPad prism with 95% confidence interval.
One-way analysis of variance (ANOVA) was performed to analyze significance between particle uptake
experiments. Correlation assessment was performed for comparing cell size and number of particles,
and the Student t-test was used to analyze single particle tracking parameters inside cells.

3. Results

3.1. FNDs Movement during Cell Division

The particles inside cells have been followed between 0 and 6 h after the particle uptake process.
These times were used because according to Broach et al. [34], yeast cells proliferate for about 6 h
in fermentable carbon sources (in this experiment, SD medium supplemented with 2% of glucose).
Hu et al. used the same time span [35]. The microscopic images resulting from this experiment are
shown in Figure 3. Observing the movement of FNDs in living cells during cell division, we found
three different cases of what the cell does with the particles. To display the different cases that we
differentiate, we show three cells that behave differently under the same conditions. There are several
possible explanations for the biological variety leading to these different behaviors. The most important
difference is probably that the cells are in different stages of their cell cycle when the experiment is
started. Additionally, there are genetic differences as well as differences in the metabolic state of cells.
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Figure 3. Different cases for particle fate during cell division. The red particles show the position of
the fluorescent nanodiamonds, whereas green color indicates the cell stained with GFP. The first row
shows images at 0 h while the second row shows the same cells at 6 h. In panels (a,b), the particles
have remained in the mother cells over time. In panels (c,d), the particle has moved to the daughter
cell. In panels (e,f), the particle that was in the cell at time zero has completely moved out of the cell
after 6 h. The scale bars are 2 micrometers long.

3.2. FND Quantification after Cell Division

As mentioned earlier, there exists biological variation between cells. Therefore, we measured
100 cells per condition to get a more complete picture of what happens and to obtain statistics.
To analyze the distribution of FNDs over mother and daughter cells, a particle counting protocol [16]
was performed before and after cell division (see Figure 4).
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Figure 4. Comparison of number of objects and particles in FND-lip and bare FND group before (a) and
after (b) cell division. The correlation between particle number and cell volume is shown in panel (c)
for FND-lip and in panel (d) for bare FNDs. The red line represents the cutting point between mother
and daughter cells. One-hundred cells have been used for these experiments, and error bars represent
standard deviation with significance level 0.05.

Comparing Figure 4a,b, we see that the overall number of particles/objects per cell is smaller after
division than before. Thus, we surmise that for both particle types a large proportion of diamond
particles is excreted from the cells. Excretion in yeast has been observed for diamond [17] as well as
for other materials. The process has been described to happen when the cells are not in a balanced
condition. This can be, for example, when the cells are transferred to a medium lacking a required
compound. As a consequence, they are producing unusually large amounts of amino acids [36].
We do not find a significant difference in the number of objects per cell and number of particles
per cell between FND-lip and bare FNDs. This is the case both before cell division and after cell
division (p value < 0.05). Correlation analysis was performed for both groups, and the results show no
correlation between cell size and number of particles in FND-lip (R2 = 0.0007) or FND (R2 = 0.0684).
This finding suggests that particles move randomly during cell division.

Based on Jorgensen et al. (2002) [37], the volume of mother cells in yeast is approximately
420–820 nm3. We categorized the cells based on the volume. Cells with a volume greater than 420 nm3

were assigned to the mother group, whereas cells with smaller size are counted in the daughter
group. Figure 5 shows the distribution of particles in mother and daughter during the measurement.
We divided groups based on cell volume and the number of particles the cells contain.
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3.3. Single Particle Tracking

In this study, we wanted to observe if the presence of liposomes has an effect on the particle
behavior inside living cells. A control experiment with FNDs has been performed as a comparison
with FND-lip. We compared the tracked pattern of particle movement in 3-dimensional trajectories
and mean square displacement for both FNDs (Figure 6) and FND-lip (Figure 7). Due to the small size
of yeast and the limited optical resolution, it is tricky to conclude whether a particle is inside or outside
of a cell. However, we also observed the movement of particles in the medium alone and in glycerol.
The medium alone is much less viscous than the cellular content, and the movement of the particles is
too rapid to be tracked with our set-up. FNDs moving freely in glycerol explore substantially larger
volumes than the particles tracked in the experiments with yeast cells (Supplementary Figure S1).
We observe the displacements of 102–103 µm2 and largely unconstrained (simple) diffusion, with the
values of α being 0.58 on average and not dropping below 0.32 (Supplementary Figure S2). Thus,
the confined movement we observe in this set of experiments is much more consistent with a movement
inside cells. For a comparison with the simulated data see supplementary information. The 3D
trajectories suggest that liposome coating has only little effect on the movement of the particles. Both
coated and uncoated particles were in a confined diffusion type of movement. Comparison of MSD
curves showed that the displacement area was not statistically different between the particles with and
without lipid coating.
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Figure 6. Movement of bare diamonds in cells. The mean square displacement (MSD) curves of bare
FNDs on top (A) show only confined diffusion. Panel (B) shows the complete three-dimensional
trajectory, showing the types of movement detected at each segment of the trajectory. The only types of
movement observed were confined diffusion (blue) and ultraconfined diffusion (magenta), for which
the calculated α approaches 0, and no displacement can be detected. The final part of the trajectory, for
which no analysis can be performed, is shown in black. The right lower panel (C) shows the values of
α observed at different segments of the trajectory.
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Figure 7. Movement of FND-lip in cells. (A) MSD curves of lipid-coated FNDs. MSD analysis reveals
that they only move in confined diffusion and ultraconfined diffusion modes. The image on the left
side of the bottom panel (B) is the three-dimensional trajectory, colored to show the modes of motion
that have been detected at different segments of the track. Just like in bare FNDs, no other types than
confined and ultraconfined diffusion were observed. The 3D trajectory on the right (C) shows the
fluctuations of estimated α, reflecting the degree of confinement. Note that the overall volume explored
by the particle is smaller, compared to the bare FNDs, resulting in lower α values.

A statistical analysis has been done to compare the displacement between bare and lipid-coated
diamonds. It indicates that there is no significant difference between the two groups with p-value
0.1131 (Figure 8a). Alpha indicates the how freely a particle moves. The higher the value of alpha,
the larger is the volume available to the particle. The results showed a significant difference in alpha
(p value 0.007) between the two groups (Figure 8b). The presence of liposomes surrounding FNDs
facilitates aggregate formation and thus results in change in the volume and limitation of the movement.
This difference is reflected in a lower alpha value in FNDs-lip (Figure 8b). The diffusion coefficient
Figure 8c shows no significant difference (p value 0.972) between uncoated and FND-lip.
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Figure 8. Statistical comparison between bare-FNDs and FNDs-liposome. Panel (a) compares the
displacement of each particle. Panel (b) is a comparison between alphas of each particle. A significant
decrease was found in the case of FND-lip. Panel (c) is a comparison between the diffusion coefficient.
All of these experiments have been done in triplicates, error bars represent standard deviation, and
statistical differences are tested at significance level 0.05. * indicates p ≤ 0.05.

4. Discussion and Conclusions

Here we provide the first analysis of the fate of FNDs during and after yeast cell division. We found
that there are multiple routes that the particles can take and in total we observed three different fates of
particles during cell division. For bare FNDs, 14.9% of particles stayed in the mother cell, compared to
21.6% for the FND-lip (Figure 3a). Twenty-one percent of the bare FNDs and 28.4% for the FND-lip
ended up in the daughter cells (Figure 3b). Finally, 98.35% of particles for FNDs and 98.38% of the
particles for FND-lip were most likely excreted from the cell (Figure 3c).

Surprisingly, the distribution of particles between mother and daughter cells (result in Figure 5)
shows that more daughter cells in both groups (both bare FND and FND-lip) contain more particles than
mother cells (Figure 5). There is a large body of literature available where nanoparticles interact with
yeast. However, these articles are almost exclusively concerned with the toxic effect that nanoparticles
could have on yeast. The distribution between mother and daughter cells is so far investigated
for heat-induced protein aggregates (80 nm) [38]. The size of FNDs used for this study (70 nm) is
comparable to these particles. However, in the case of FNDs, we did not observe more particles
being retained in the mother cells, which was typical for protein aggregates in dividing yeast cells.
This discrepancy can be explained in different ways.
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A first explanation is related to the size of the particles. For heat-induced protein aggregates,
passive aggregate formation, fusion, growth, and exclusion from the bud was observed [38]. As the
protein aggregates grow, they can reach sizes of 600 nm [39]. We do not see this for FNDs. In this case,
one might assume that nonaggregated FND particles are substantially smaller, thus it is easier for them
to cross the bud neck and end up in the daughter cell.

On the other hand, there are a number of models that suggest the impact of certain active control
mechanisms on the particle distribution in the dividing cells. The protein aggregates are thought to
be retained in mother cells due to their tethering to actin cables, retrogradely moving to the mother
cell [40], attachment to the nucleus and the vacuole [41], or to the surface of endoplasmic reticulum
and anchored mitochondria [42]. The first model suggests active transport of the aggregates out of the
bud, whereas the second and third models explain the asymmetric distribution of the aggregates by
general decrease in their mobility. If any of these models are true, it might mean that FNDs simply lack
certain features of protein aggregates and are thus “invisible” for those mechanisms of active control.
Molecules that are adsorbed on the diamond surface could also influence how they interact with the
cells. It has been shown for other nanoparticles that the protein corona can dictate the interaction with
cells. Drug-loaded nanodiamonds, on the other hand, behave more like bare diamond particles in
mammalian cells than drug molecules alone. The fact that FND and FND-lip behave similarly, despite
the different surface chemistry, indicates that here the behavior might also be dictated by the diamond
particle. It can be useful that both mother cells and daughter cells contain diamonds. This way it is
possible to observe and track both. Additionally, FNDs might also be considered “safe” for the cells
and are thus not actively hindered from entering daughter cells.

The spheroplasting process might also affect the fate of FNDs by giving a stress condition to the
cells after being treated by zymolyase affect cell wall integrity [43], which is used for intracellular
transport [44]. In this case, changing of cell wall components (especially actin) due to spheroplasting
process will affect particle movement during cell division. Both yeast and spheroplasts have a cell
membrane; in spheroplasts, only the cell wall is removed. When FND-lip (which have a positive
zeta potential) are taken up by the cells, they bind to negatively charged components of the plasma
membrane. Another study also showed that positively charged particles can be ingested by the cells
better than negatively charged particles [45].

Finally, we also observed and quantified movement of particles during cell division. We mainly
find confined diffusion for both coated and uncoated particles without showing significant differences
between displacement and diffusion coefficient. On the other hand, we have noticed a significant
difference in alpha. This is due to the fact that coated particles have the tendency to aggregate. Thus,
this movement is more confined.

The results from this study might in the future be useful for labeling yeasts with diamonds or
magnetometry in yeast cells. Additionally, this work might be interesting to compare with how other
nanoparticles behave during cell division.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/10/3/516/s1,
Figure S1: title, Table S1: title, Video S1: title.
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