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Abstract: Aphrocallistes vastus lectin (AVL) is a C-type marine lectin produced by sponges. Our
previous study demonstrated that genes encoding AVL enhanced the cytotoxic effect of oncolytic
vaccinia virus (oncoVV) in a variety of cancer cells. In this study, the inhibitory effect of oncoVV-AVL
on Hela S3 cervical cancer cells, a cell line with spheroidizing ability, was explored. The results
showed that oncoVV-AVL could inhibit Hela S3 cells growth both in vivo and in vitro. Further
investigation revealed that AVL increased the virus replication, promote the expression of OASL
protein and stimulated the activation of Raf in Hela S3 cells. This study may provide insight into a
novel way for the utilization of lection AVL.

Keywords: Aphrocallistes vastus lectin; sphere formation assay; oncolytic vaccinia virus; Hela S3
cell line

1. Introduction

Vaccinia virus is a large, enveloped, double-stranded DNA virus with a linear genome
approximately 190 kb in length. It has been widely used in the eradication of smallpox [1].
Oncolytic vaccinia virus harboring therapeutic genes has been applied to lyse tumor cells
directly [2–4]. To date, several oncolytic vaccinia viruses derived from Wyeth, Western
Reserve, and Lister vaccinia strains are being used clinically [5–7]. The strategies to improve
the oncolytic efficacy of vaccinia vectors have become the focus of research.

In recent years, the role of the marine environment in the development of anticancer
drugs has been widely reviewed. The compounds derived from marine organisms may be
an inspiring tool to develop new anticancer agents [8]. Lectins are widely distributed in
marine bioresources, such as marine cyanobacteria, algae, invertebrate animals and fish.
Previous studies demonstrated that lectins had been developed by a variety of biological
techniques by binding with carbohydrates, such as lectin array, lectin blot and lectin-based
chromatography [9–13].

Aphrocallistes vastus lectin (AVL) is a Ca2+ dependent C-type lectin produced by
sponges [14]. In our previous study, a gene encoding AVL was carried by an oncolytic
vaccinia virus (oncoVV) vector, which is deficient of the TK gene for cancer specific repli-
cation, forming a recombinant virus oncoVV-AVL. We demonstrated that oncoVV-AVL
enhanced the inhibitory effect of oncolytic vaccinia virus in a variety of cancer cells, such
as colorectal cancer line HCT116, glioma cell line U251 and hepatocellular carcinoma cell
line BEL-7404 [15]. However, the role of oncolytic vaccinia virus oncoVV-AVL in cervical
cancer cells, especially the cells with stem characteristics, remains uncertain.

In this study, we investigated the inhibitory effect of oncoVV-AVL on cervical cancer
cell line Hela S3, a tumor cell with spheroidizing characteristics, and further analyzed the
underlying mechanism.
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2. Results
2.1. Tumorospheres Formation Assay

To compare the oncogenic property between Hela and Hela S3 cells, a tumor sphere
formation assay was performed. The results showed that Hela S3 cells continuously
formed spheres through several subsequent serial passages, whereas Hela cells did not
show the ability to form spheres (Figure 1a,b). Previous studies suggested that sphere-
forming activity represented the stemness of the cells to a certain extent [16,17]. Hela S3
cells exhibited the property of stemness in vitro. Thus, Hela S3 cells were studied in the
following study.
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three independent experiments (* p < 0.05).

2.2. The Cytotoxic Effect of OncoVV-AVL on Cervical Cancer Cell Line Hela S3

A MTT assay was performed to examine the cytotoxic effect of oncoVV-AVL on Hela
S3 and Hela cells. Cells were infected with oncoVV or oncoVV-AVL, and cell viability was
measured after 24, 48, 72 and 96 h, respectively (Figure 2a,b). The results indicated that
oncoVV-AVL elicited a significantly cytotoxic effect in dose and time dependent manners
as compared with oncoVV. These suggested that AVL could enhance the cytotoxic effect of
the oncolytic vaccinia virus.

To confirm the cytotoxic effect of oncoVV-AVL on Hela S3 cells, flow cytometry was
performed to detect the apoptotic/dead cells infected by oncoVV or oncoVV-AVL. As
shown in Figure 2c, compared with oncoVV and PBS controls, oncoVV-AVL induced a
significantly higher level of cytotoxicity. However, there was no significant difference in
the percentage of AnnexinV-FITC positive apoptotic cells among these groups, suggesting
that AVL promoted nonapoptotic cell death induced by the oncolytic vaccinia viruses.

2.3. OncoVV-AVL Inhibited the Growth of Tumorospheres in Hela S3 Cells

To further investigate the cytotoxic effect of oncoVV-AVL on tumor cells with stemness,
the spheres of Hela S3 cells were infected by oncoVV or oncoVV-AVL at the concentration
of 5 MOI. Seven days later, the morphology of tumorosphere was observed under micro-
scope. As shown in Figure 3a, the spheres in the oncoVV-AVL group became smaller, dark
and scattered as compared with the oncoVV group. Meanwhile, the number of tumoro-
spheres in the oncoVV-AVL group was dramatically lower than that in the oncoVV group
(Figure 3b). This demonstrated that oncoVV-AVL inhibited the growth of tumorospheres
of the Hela S3 cells.
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expressed as mean ± SEM from three independent experiments. (* p < 0.05). 
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Figure 2. The cytotoxic effect of oncoVV and oncoVV-AVL on Hela S3 and Hela cells. (a) Cell viability was measured by MTT
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± SEM from three independent experiments. (* p < 0.05).
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2.4. AVL Harboring Improved the Replication of Oncolytic Vaccinia Viruses in Hela S3 Cells

We further explored the underlying mechanisms of oncoVV-AVL killing Hela S3 cells.
Firstly, TCID50 method was used to test the replications of oncoVV-AVL and oncoVV in
Hela S3 cells at the time points of 0, 12, 24, 36 and 48 h, respectively. The results showed
that the reproductive number of oncoVV-AVL was significantly higher than that of oncoVV
(Figure 4a).
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Oligoadenylate synthase-like protein (OASL) is a member of OAS family proteins
without OAS enzyme activity. Previous studies reported that OASLs from different mam-
malian exhibited antiviral activity [18–20]. Ghosh’s study determined that OASL elevated
DNA virus replication, including herpes simplex virus (HSV), adenovirus and vaccinia
virus [21]. In this study, the expression of OASL in Hele S3 cells was detected using Western
blot. We found that OASL protein was obviously expressed in oncoVV or oncoVV-AVL
infected cells, but not in PBS treated cells. Furthermore, the level of OASL in oncoVV-AVL
group was much higher than that in oncoVV group. This suggested that AVL may enhance
the replication of oncolytic vaccinia virus by elevating the expression of the OASL protein.

2.5. OncoVV-AVL Infection Altered the Raf/ERK Signaling Pathway in Hela S3 Cells

The mitogen-activated protein kinase (MAPK) signaling pathway is ubiquitous in a
variety of biological cells and is activated in the majority of advanced tumors. Both Raf and
ERK (extracellular signal-regulated kinase) molecules belong to the MAPK pathway [22]. It
was reported that ERK was required for virus replication [23]. Our previous study indicated
that AVL enhanced virus replication by activating ERK in HCT116 cells [15]. Unexpectedly,
the present study showed that the level of phosphorylated ERK (p-ERK) in oncoVV-AVL
infected cells was lower than that in oncoVV infected cells (Figure 5a). Thus, the expression
of c-Raf was further detected in Hela S3 cells. As shown in Figure 5a, the expression of
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phosphorylated c-Raf (p-c-Raf) in oncoVV-AVL infected cells was significantly higher than
that in oncoVV infected cells.
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To further explore the underlying mechanism, a Raf inhibitor (Sorafenib) or an ERK
inhibitor (U0126) was combined with the oncolytic vaccinia virus to treat Hela S3 cells.
Subsequently, the virus replication was measured. The results indicated that sorafenib
supplementation significantly improved the replication ability of oncoVV-AVL but not
oncoVV (Figure 5b). We also found that the addition of U0126 could only slightly enhance
the virus replication (Figure 5c). These indicated that AVL harboring interfered with the
Raf/ERK pathway in Hela S3 cells, which was different from the general tumor cells
we studied before. Furthermore, according to the exhibition of AVL, Raf and Sorafenib,
we deduce that there may be a certain feedback regulation signal between the AVL and
Raf/ERK pathway.

2.6. OncoVV-AVL Inhibited Tumor Growth in Mice

To assess the antitumor effect of oncoVV-AVL on Hela S3 cells in vivo, xenograft
tumor models were established in Balb/c nude mice by subcutaneous injection of Hela S3
cells. Then oncoVV, or oncoVV-AVL, or the same volume of saline was injected intratu-
morally when tumor volume reached 100~200 mm3. As shown in Figure 6a,b, oncoVV-AVL
exhibited better antitumor effects than oncoVV.
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back, the mice were then injected with oncoVV, or oncoVV-AVL, or saline control intratumorally. The volume of tumor was
measured every 4 days; (b) ratio of tumor weight to mouse body; immunohistochemical analysis showed that oncoVV-AVL
enhanced the level of A27L (c) and OASL (d) in xenograft tumor of Hela S3 cells. Scale bars show 50 µm. Data were
presented as the mean ± SEM from at least three independent experiments. (* p < 0.05).

To demonstrate the distribution of viruses in vivo, immunohistochemistry was per-
formed by using a primary antibody against oncolytic vaccinia viruses (A27L). The result
showed that the tumor injected with oncoVV-AVL expressed a higher level of viral A27L
protein than NaCl and oncoVV controls (Figure 6c). These indicated that oncoVV-AVL had
a higher replication rate in xenograft tumors.

In addition, to further confirm the results of the in vitro experiment, OASL protein
was examined in xenograft tumors. Similar to A27L, the tumors infected with oncoVV-
AVL expressed a higher level of OASL than NaCl and oncoVV controls. Particularly, the
expression of OASL was detected at the cell membrane (Figure 6d). Therefore, we conclude
that AVL harboring may enhance the virus replication by stimulating the expression
of OASL.

3. Discussion

Traditionally, an in vitro cell-based assay is carried out using two-dimensional cell
culture. However, most tumor cells exist in a three-dimensional (3D) microenvironment.
The phenotype and function of cells are strongly dependent on the interactions with neigh-
boring cells when cultured in a 3D system [24]. Some characteristics of cells that are critical
for physiological cell-based assays could be recovered in a 3D culture system. Therefore,
cells are induced into free-floating spheroids to maintain the characteristics [25,26]. Initially,
the free-floating sphere was first described in a brain tumor [27]. In the ensuing years,
tumorospheres were developed from a wide range of tumors [28–30] under the assumption
that “sphere assays” enable measuring self-renewal capacity [26]. Here, we addressed
that AVL enhanced the killing efficiency of oncolytic vaccinia virus by enhancing virus
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replication in Hela S3 cells, a cell line capable of sphere formation. Therefore, we provide a
novel strategy for cancer therapy, especially for the tumor cells with stemness.

The MAPK signaling pathway regulates a variety of cellular functions that are impor-
tant for tumorigenesis, which consists of at least four main components, including Ras,
Raf, MEK and ERK [31]. Ras is a small GTPase that is held at the inner surface of the
plasma membrane, being functionally similar to the Gα subunit of the G protein. Raf is
the best characterized as a Ras effector. Following the activation of Ras, Raf is recruited
to the cell membrane. Raf activation stimulates a signaling cascade by phosphorylation
of downstream proteins, such as ERK1 and ERK2. Subsequently, ERKs phosphorylate
can activate a variety of nuclear transcription factors and kinases. In our research, AVL
harboring enhanced the level of p-c-Raf but decreased the expression of c-ERK. Further-
more, the supplementation of Raf inhibitors obviously enhanced the virus replication.
These suggested that AVL interfered with the Raf/ERK pathway through an unknown
relationship, which deserves further exploration.

The activation of the JAK/STAT pathway stimulates the formation of interferon
stimulated gene factor 3 (ISGF3). Subsequently, ISGF3 enters the nucleus and binds to
IFN stimulated response element (ISRE), which then initiates the expression of the IFN
stimulated genes (ISGs). The ISGs family includes many members, such as OASL. This
study showed that AVL harboring enhanced the expression of OASL and thus elevated
the replication of oncolytic vaccinia virus. Ghosh had reported that OASL inhibited IFN
induction both in vivo and in vitro during DNA virus infection, which was opposite to
its IFN-promoting antiviral activity against RNA virus infection [21]. Our results are
consistent with Ghosh’s study. Therefore, we summarize that AVL harboring enhanced
the antitumor effect of oncolytic vaccinia virus by promoting virus replication, which was
related to higher expression of OASL. OASL may work as a negative-feedback regulator to
inhibit IFN induction; in this study, this instead elevated the virus replication.

4. Materials and Methods
4.1. Cell Lines and Cell Culture

The human embryonic kidney cell line HEK293A, Human cervical cancer cell line
Hela and Hela S3 were preserved in the laboratory. Cells were cultured in DMEM medium
(Gibco, Thermo Fisher Scientific, Waltham, MA, USA) supplemented with 10% fetal
bovine serum (Hyclone Laboratories, Dunedin, Otago, New Zealand) and 1% Penicillin-
Streptomycin. The cells were grown at 37 ◦C in a humidified atmosphere containing
5% CO2.

For cell spheroidization, Hela and Hela S3 cells were cultured in serum free Advanced
DMEM/F12 medium supplemented with 20 ng/mL EGF, 40 ng/mL b-FGF (PeroTech,
Rocky Hill, NJ, USA), 2% B-27 and 1% N-2. The above reagents were purchased from
Gibco Company (Thermo Fisher Scientific, Waltham, MA, USA) if not specified. Cells were
seeded into 6-well ultra-low attachment plates (NEST) at the dose of 2 × 103 cells/well in
1 mL sphere media with replicates of 3 per dose. When the spheres were observed under
microscope, oncoVV or oncoVV-AVL (developed from vaccinia virus Western Reserve
strain) at the concentration of 5 MOI was added to the wells, respectively. After 5 days of
viral infection, the spheres with diameter ≥50 µm were counted.

4.2. Cell Proliferation and Cell Apoptosis Detection

Hela S3 cells (5 × 103 cells/well) were transferred in five replicates to 96-well plates in
100 µL medium. All the cells were incubated at 37 ◦C in 5% CO2 for 12 h to allow the cells
to attach to the bottom of the well. Serial dilution of oncoVV-AVL or oncoVV (1, 2, 5 and 10
MOI) was added and the control group was added with an equal dilution of PBS. At the
culture time of 24, 48, 72 and 96 h, cells viabilities were detected by MTT assay (Beyotime
Institute of Biotechnology, Shanghai, China). 20ul MTT (5 mg/mL) was added to wells and
incubated at 37 ◦C for 4 h, then the medium was carefully removed. Then 150 µL DMSO
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was added. Finally, the absorbance was determined using an Enzyme mark instrument at
the wavelength of 490 nm.

Flow cytometric analysis was used to detect apoptotic cells. Cells (4 × 105 cells/well)
were seeded into 6-well plates overnight to attach the bottom, then PBS, 5MOI oncoVV
or oncoVV-AVL was added. After treatment with virus or PBS, cells were collected and
stained with Annexin V-FITC and propidium iodide (PI) (BD Biosciences, San Jose, CA,
USA) following the manufacturer’s instruction. Subsequently, the cells were analyzed by
flow cytometry (AccuriC6, BD Biosciences, San Jose, CA, USA).

4.3. Virus Replication Assay

To measure the replication of the virus in Hela S3, cells (5 × 104/well) were plated in
24-well plates and incubated overnight to attach to the bottom of the wells. Subsequently, 5
MOI virus or equal dilution of PBS was added. At the treatment time of 0 h, 12 h, 24 h, 36 h
and 48 h, the cells and culture medium were collected and stored at −80 ◦C for the following
experiments. The viral titers were determined by TCID50 assay in HEK293A cells.

4.4. Western Blot Analysis

Hela S3 cells were harvested and resuspended in lysis buffer (Beyotime Institute of
Biotechnology, Shanghai, China). Samples of cytosolic proteins were separated by 10%
SDS-PAGE and then transferred to a PVDF membrane (Millipore, Bedford, MA, USA). Blots
were blocked with 5% non-fat milk at room temperature and then incubated with primary
antibodies (1:1000 dilution) at 4 ◦C for overnight. After washing, the blots were incubated
with secondary antibodies (1:5000 dilution) for 1 h at room temperature. The blots were
detected using Clinx 6000EXP chemiluminescence image system (Clinx, Shanghai, China).
The following antibodies were used: ERK, c-ERK, c-Raf, p-c-Raf and OASL, which were
purchased from Cell Signaling Technology.

4.5. Xenograft Tumor Model in Immunodeficient Mice

Female Balb/c nude mice, at the age of 5–6 weeks, were purchased from Slack Animal
Laboratory (Shanghai, China) and were housed (4 mice/cage) under standardized tempera-
ture (18–23 ◦C) with 50% humidity. The mice experiment was performed with the approval
of the Experimental Animal Committee of Zhejiang Sci-Tech University. Hela S3 cells were
injected into the back of mice subcutaneously at the dose of 5 × 106 cells/mouse. When
the tumors had grown to 100–200 mm3, the mice were randomly divided into 3 groups
(6–8 mice/group). Subsequently, 1 × 107 plaque-forming units (PFU) oncolytic vaccine
virus or saline control was injected into the mice intratumorally. The volume of the tumors
was measured every 4 days. The tumor volume was calculated according to the following
formula: V (mm3) = length (mm) × width (mm)2 × 0.5. 5 or 6 weeks later, mice were
sacrificed, and tumors were harvested and then fixed with 4% paraformaldehyde.

4.6. Immunohistochemistry

Paraffin-embedded tumor tissue slides were deparaffinized with xylene rehydrated in
grades alcohols for further immunohistochemistry staining. For antigen retrieval, slides
were boiled in citric acid buffer (pH6.0) for 15 min. Peroxidase was blocked by using
3% H2O2 for 10 min at room temperature. The slides were incubated overnight with
the primary antibody against OASL or A27L (1:150) at 4 ◦C. Subsequently, peroxidase
and hematoxylin were employed to visualize the staining. Negative control was used by
omitting the primary antibody.

4.7. Statistical Analysis

The unpaired t-test was performed using GraphPad Instat software. All results were
presented as means ± SEM, p < 0.05 was considered as statistically significant.
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5. Conclusions

Firstly, the present study compared the ability of sphere formation between Hela
and Hela S3 cells. It then demonstrated that a newly constructed oncoVV-AVL induced
Hela S3 cells death significantly both in vitro and in vivo. The antitumor mechanisms of
oncoVV-AVL may be related to the activation of the Ras/ERK pathway and the higher
expression of OASL. These findings may provide insight into oncolytic viral therapies
armed with AVL.
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