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Abstract Accurate identification of compound–protein interactions (CPIs) in silico may deepen

our understanding of the underlying mechanisms of drug action and thus remarkably facilitate drug

discovery and development. Conventional similarity- or docking-based computational methods for

predicting CPIs rarely exploit latent features from currently available large-scale unlabeled com-

pound and protein data and often limit their usage to relatively small-scale datasets. In the present

study, we propose DeepCPI, a novel general and scalable computational framework that combines

effective feature embedding (a technique of representation learning) with powerful deep learning

methods to accurately predict CPIs at a large scale. DeepCPI automatically learns the implicit

yet expressive low-dimensional features of compounds and proteins from a massive amount of unla-

beled data. Evaluations of the measured CPIs in large-scale databases, such as ChEMBL and Bind-

ingDB, as well as of the known drug–target interactions from DrugBank, demonstrated the

superior predictive performance of DeepCPI. Furthermore, several interactions among small-

molecule compounds and three G protein-coupled receptor targets (glucagon-like peptide-1 recep-

tor, glucagon receptor, and vasoactive intestinal peptide receptor) predicted using DeepCPI were

experimentally validated. The present study suggests that DeepCPI is a useful and powerful tool

for drug discovery and repositioning. The source code of DeepCPI can be downloaded from

https://github.com/FangpingWan/DeepCPI.

Introduction

Identification of compound–protein interactions (CPIs; or
drug–target interactions, DTIs) is crucial for drug discovery
and development and provides valuable insights into the

understanding of drug actions and off-target adverse events
[1,2]. Inspired by the concept of polypharmacology, i.e., a sin-
gle drug may interact with multiple targets [3], drug developers

are actively seeking novel ways to better characterize CPIs or
identify novel uses of the existing drugs (i.e., drug reposition-
ing or drug repurposing) [3,4] to markedly reduce the time

and cost required for drug development [5].
Numerous computational methods have been proposed to

predict potential CPIs in silico to narrow the large search space

of possible interacting compound–protein pairs and facilitate
drug discovery and development [6–12]. Although successful
results can be obtained using the existing prediction
approaches, several challenges remain unaddressed. First, most

of the conventional prediction methods only employ a simple
and direct representation of features from the labeled data
(e.g., established CPIs and available protein structure informa-

tion) to assess similarities among compounds and proteins and
infer unknown CPIs. For instance, a kernel describing the sim-
ilarities among drug–protein interaction profiles [8] and the

graph-based method SIMCOMP [13] were used to compare dif-
ferent drugs and compounds. In addition, the normalized
Smith–Waterman score [9] is typically applied to assess the sim-
ilarities among targets (proteins). Meanwhile, large amounts of

available unlabeled data of compounds and proteins enable an
implicit and useful representation of features that may effec-
tively be used to define their similarities. Such an implicit repre-

sentation of protein or compound features encoded by large-
scale unlabeled data is not exploited well by most of the existing
methods to predict new CPIs. Second, an increasing number of

established DTIs or compound–protein-binding affinities (e.g.,
1 million bioassays over 2 million compounds and 10,000 pro-
tein targets in PubChem [14]) raises serious scalability issues

concerning the conventional prediction methods. For instance,
many similarity-based methods [7,9] require the computation

of pairwise similarity scores between proteins, which is gener-

ally impractical in the setting of large-scale data. The aforemen-
tioned computational challenges highlight the need of more
efficient schemes to accurately capture the hidden features of
proteins and compounds from massive unlabeled data as well

as the need of more advanced and scalable learning models that
enable predictions from large-scale training datasets.

In machine learning communities, representation learning

and deep learning (DL) are the two popular methods at pre-

sent for efficiently extracting features and addressing the scal-

ability issues in large-scale data analyses. Representation

learning aims to automatically learn data representations (fea-

tures) from relatively raw data that can be more effectively and

easily exploited by the downstream machine learning models

to improve the learning performance [15,16]. Meanwhile, DL

aims to extract high-level feature abstractions from input data,

typically using several layers of non-linear transformations,

and is a dominant method used in numerous complex learning

tasks with large-scale samples in the data science field, such as

computer vision, speech recognition, natural language process-

ing (NLP), game playing, and bioinformatics [17–19].

Although several DL models have been used to address vari-

ous learning problems in drug discovery [20–22], they rarely

fully exploit the currently available large-scale protein and

compound data to predict CPI. For example, the computa-

tional approaches proposed in the literature [20,21] only use

the hand-designed features of compounds and do not take into

account the features of targets. Furthermore, these approaches

generally fail to predict potential interacting compounds for a

given novel target (i.e., without known interacting compounds

in the training data); this type of prediction is generally more

urgent than the prediction of novel compounds for targets with

known interacting compounds. Although a new approach—

AtomNet—has been developed [23] to overcome these limita-

tions, it can only be used to predict interacting drug partners

of targets with known structures, which is often not the case

in the clinical practice. In addition, despite the promising pre-

dictive performance of conventional approaches reported on

benchmark datasets [24–26], few efforts have been made to
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explore the extent to which these advanced learning techniques
can promote the efficiency in the real drug discovery scenario.

In this article, we propose DeepCPI, a novel framework

that combines unsupervised representation learning with pow-
erful DL techniques for predicting structure-free CPIs.
DeepCPI first uses the latent semantic analysis [27] and

Word2vec [16,28,29] methods to learn the feature embeddings
(i.e., low-dimensional feature representations) of compounds
and proteins in an unsupervised manner from large compound

and protein corpora, respectively. Subsequently, given a com-
pound–protein pair, the feature embeddings of both com-
pound and protein are fed into a multimodal deep neural
network (DNN) classifier to predict their interaction probabil-

ity. We tested DeepCPI on several benchmark datasets, includ-
ing the large-scale compound–protein affinity databases (e.g.,
ChEMBL and BindingDB), as well as the known DTIs from

DrugBank. Comparisons with several conventional methods
demonstrated the superior performance of DeepCPI in numer-
ous practical scenarios. Moreover, starting from the virtual

screening initialized by DeepCPI, we identified several novel
interactions of small-molecule compounds with various targets
in the G protein-coupled receptor (GPCR) family, including

glucagon-like peptide-1 receptor (GLP-1R), glucagon receptor
(GCGR), and vasoactive intestinal peptide receptor (VIPR).
Collectively, our computational test and laboratory experi-
mentation results demonstrate that DeepCPI is a useful and

powerful tool for the prediction of novel CPIs and can thus
aid in drug discovery and repositioning endeavors.

Results

DeepCPI framework

The DeepCPI framework comprises two main steps (Figure 1):
(1) representation learning for both compounds and proteins

and (2) predicting CPIs (or DTIs) through a multimodal
DNN. More specifically, in the first step, we use several NLP
techniques to extract the useful features of compounds and

proteins from the corresponding large-scale unlabeled corpora
(Figures S1 and S2; Materials and methods). Here, compounds
and their basic structures are regarded as ‘‘documents” and

‘‘words”, respectively, whereas protein sequences and all possi-
ble three non-overlapping amino acid residues are regarded as
‘‘sentences” and ‘‘words,” respectively. Subsequently, the fea-

ture embedding techniques, including latent semantic analysis
[27] and Word2vec [16,28], are applied to automatically learn
the implicit yet expressive low-dimensional representations
(i.e., vectors) of compound and protein features from the cor-

responding large-scale unlabeled corpora. In the second step,
the derived low-dimensional feature vectors of compounds
and proteins are fed into a multimodal DNN classifier to make

the predictions. Further details of the individual modules of
DeepCPI, including the extraction of compound and protein
features, DNN model, and implementation procedure, are

described in Materials and methods.

Predictive performance evaluation

We mainly evaluated DeepCPI using compound–protein pairs
extracted from the currently available databases, such as
ChEMBL [30] and BindingDB [31]. We first used the bioactiv-
ity data retrieved from ChEMBL [30] to assess the predictive

performance of DeepCPI. Specifically, the compound–protein
pairs with half maximal inhibitory concentrations (IC50) or
inhibition constants (Ki) � 1 lM were selected as positive

examples, whereas pairs with IC50 or Ki � 30 lM were used
as negative examples. This data preprocessing step yielded
360,867 positive examples and 93,925 negative examples. To

justify our criteria of selecting positive and negative examples,
we mapped the known interacting drug–target pairs extracted

Figure 1 Schematic of the DeepCPI workflow

First, motivated by the current NLP techniques, the unsupervised representation learning strategies (including latent semantic analysis and

Word2vec) are used to obtain low-dimensional representations of compound and protein features from massive unlabeled data.

Subsequently, these extracted low-dimensional feature representations of compounds and proteins are fed to a multimodal DNN to make

the prediction. NLP, natural language processing; DNN, deep neural network.
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from DrugBank [32] (released on November 11, 2015) to the
corresponding compound–protein pairs in ChEMBL (Materi-
als and methods). The binding affinities or potencies (mea-

sured by IC50 or Ki) of majority of the known interacting
drug–target pairs were � 1 lM (>60% and 70% pairs for
IC50 and Ki, respectively) (Figure S3). Reportedly, 1 lM is a

widely-used and good indicator of strong binding affinities
among compounds and proteins [33]. Therefore, we considered
IC50 or Ki � 1 lM as a reasonable criterion for selecting pos-

itive examples. There is no well-defined dichotomy between
high and low binding affinities; thus, we used a threshold of
� 30 lM (i.e., markedly higher than 1 lM) to select negative
examples, which is consistent with the method reported else-

where [23].
To evaluate the predictive performance of DeepCPI, we

considered several challenging and realistic scenarios. A com-

putational experiment was first conducted in which we ran-
domly selected 20% pairs from ChEMBL as the training
data and the remaining pairs as the test data. This scenario

mimicked a practical situation in which CPIs are relatively
sparsely labeled. ChEMBL may contain similar (redundant)
proteins and compounds, which may lead to over-optimistic

performance resulting from easy predictions. Therefore, we
minimized this effect by only retaining proteins whose
sequence identity scores were < 0:40 and compounds whose
chemical structure similarity scores were < 0:55 (as computed

based on the Jaccard similarity between their Morgan finger-
prints). More specifically, for each group of proteins or com-
pounds with sequence identity scores � 0:40 or chemical

structure similarity scores � 0:55, we only retained the protein
or compound having the highest number of interactions and
discarded the rest of the proteins or compounds in that group.

The basic statistics of the ChEMBL and BindingDB datasets
used in our performance evaluation are summarized in Tables
S1 and S2, respectively.

Conventional cross validation, particularly leave-one-out
cross validation (LOOCV), may not be an appropriate method
to evaluate the performance of a CPI prediction algorithm, if
the training data contain many compounds or proteins with

only one interaction [34]. In such a case, training methods
may learn to exploit the bias toward the proteins or compounds
with a single interaction to boost the performance of LOOCV.

Thus, separating the single interaction from other types of
interactions during cross validation is essential [34]. Given a
compound–protein interacting pair from a dataset, if the com-

pound or protein only appeared in this interaction, we consid-
ered this pair as unique (Materials and methods). In this test
scenario, we used non-unique examples as the training data
and tested the predictive performance on unique pairs.

In all computational tests, three baseline methods were used
for comparisons (Materials and methods). The first two were a
random forest and a single-layer neural network (SLNN) with

our feature extraction schemes. These were used to demon-
strate the need for the DNN model. The third one was a
DNN with conventional features (i.e., Morgan fingerprints

[35] with a radius of three for compounds and pairwise
Smith–Waterman scores for proteins in the training data),
which was used to demonstrate the need for our feature

embedding methods. Moreover, we compared DeepCPI with
two state-of-the-art network-based DTI prediction meth-
ods—DTINet [12] and NetLapRLS [10] (Materials and meth-
ods)—in a setting where redundant proteins and compounds

were removed; these two methods were not used in other sce-
narios (Figure S4) as the cubic time and quadratic space com-
plexities concerning the large number of compounds exceeded

the limit of our server. We observed that DeepCPI significantly
outperformed the network-based methods (Figure 2A–D).
Compared to these two network-based methods, DeepCPI

achieved better time and space complexities (Materials and
methods), demonstrating its superiority over network-based
frameworks when handling large-scale data. In addition,

DeepCPI outperformed the other three baseline methods (Fig-
ure 2A–D and Figure S4) and exhibited a better prediction
accuracy and generalization ability of the combination of
DL and our feature extraction schemes.

Furthermore, we conducted two supplementary tests to
assess the predictive performance of DeepCPI on BindingDB
(Tables S1 and S2). BindingDB stores the binding affinities

of proteins and drug-like small molecules [31] using the same
criteria (i.e., IC50 or Ki � 1 lM for positive examples and
� 30 lM for negative examples) to label compound–protein

pairs. The compound–protein pairs derived from ChEMBL
and BindingDB were employed as the training and test data,
respectively. Compound–protein pairs from BindingDB

exhibiting a compound chemical structure similarity score of
� 0:55 and a protein sequence identity score of � 0:40 com-
pared with any compound–protein pair from ChEMBL were
regarded as overlaps and removed from the test data. The eval-

uation results on the BindingDB dataset demonstrated that
DeepCPI outperformed all of the baseline methods (Figure 2E
and F; Figure S4). Collectively, these data support the strong

generalization ability of DeepCPI.
We subsequently investigated the extraction of high-level

feature abstractions from the input data using the DNN. We

applied T-distributed stochastic neighbor embedding (t-SNE)
[36] to visualize and compare the distributions of positive
and negative examples with their original 300-dimensional

input features and the latent features represented by the last
hidden layer in DNN. In this study, DNN was trained on
ChEMBL, and a combination of 5000 positive and 5000 neg-
ative examples randomly selected from BindingDB was used

as the test data. Visualization (Figure S5) showed that the test
data were better organized using DNN. Consequently, the
final output layer (which was simply a logistic regression clas-

sifier) can more easily exploit hidden features to yield better
classification results.

Finally, we compared the performance of DeepCPI with

those of the following two DL-based models: AtomNet (a
structure-based DL approach for predicting compound–pro-
tein binding potencies) [23] and DeepDTI [24] (a deep belief
network-based model with molecule fingerprints and protein

k-mer frequencies as input features) (Materials and methods).
Specifically, we compared DeepCPI with AtomNet in terms of
the directory of useful decoys from DUD-E [37]. DUD-E is a

widely used benchmark dataset for evaluating molecular dock-
ing programs and contains active compounds against 102 tar-
gets (Table S3). Each active compound in DUD-E is also

paired with several decoys that share similar physicochemical
properties but have dissimilar two-dimensional topologies,
under the assumption that such dissimilarity in the compound

structure results in different pharmacological activities with
high probability.

We adopted two test settings as reported previously [23] to
evaluate the performance of different prediction approaches
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using DUD-E. In the first setting, cross validation was per-
formed on 102 proteins, i.e., the data were separated according

to proteins. In the second setting, cross validation was per-
formed for all pairs, i.e., all compound–protein pairs were
divided into three groups for validation. In addition to Atom-
Net, we also compared our method with a random forest

model.
The tests on DUD-E showed that DeepCPI outperformed

both the random forest model and AtomNet in the aforemen-

tioned settings (Table S4). In addition, in the second setting,
our protein structure-free feature extraction schemes with the
random forest model also greatly outperformed AtomNet,

which requires protein structures and uses a convolutional
neural network classifier. These observations further demon-
strate the superiority of our feature extraction schemes.

DeepCPI achieved a significantly larger area under receiver
operating characteristic curve (AUROC) than the random for-
est model in the first test setting. The first setting was generally

more stringent than the second one as protein information was
not visible to classifiers during cross validation. Thus, this

result indicates that DeepCPI has better generalization ability
than the random forest model.

DeepDTI [24] requires high-dimensional features (14,564
features) as the input data; therefore, it can only be used for

analyzing small-scale datasets. Thus, we mainly compared
DeepCPI with DeepDTI using the 6262 DTIs provided by
the original DeepDTI article [24]. We applied the same evalu-

ation strategy as that applied in DeepDTI by randomly sam-
pling the same number (6262) of unknown DTIs as negative
examples and splitting the data into the training (60%), valida-

tion (20%), and test (20%) data. Our comparison showed that
even on this small-scale dataset, DeepCPI continued to achieve
a larger mean AUROC (0.9220) than DeepDTI (0.9158)

(Table S5). Therefore, we believe that DeepCPI is superior
to DeepDTI in terms of both predictive performance and scal-
ability to large-scale compound affinity data.

Training: 20% randomly 
selected pairs from ChEMBL

Training: Non-unique pairs 
from ChEMBL

Test: BindingDB (overlaps with
training data were removed)

NetLapRLS

DTINet SLNN

DNN with conventional features Random forest

DeepCPI

A B

C D

E F

AUROC AUPRC

Training: ChEMBL

Test: Unique pairs 
from ChEMBL

Test: The remaining pairs 
from ChEMBL

Figure 2 Performance evaluation of DeepCPI

Performance of DeepCPI was evaluated in terms of AUROC and AUPRC using different training dataset and test dataset in comparison

with other state-of-the-art methods. The methods for comparison include network-based NetLapRLS and DTINet, SLNN, DNN with

conventional features, and random forest. Comparison of AUROC (A) and AUPRC (B) across different methods that were trained on

20% randomly selected compound–protein pairs from ChEMBL and tested on the remaining pairs from ChEMBL. Comparison of

AUROC (C) and AUPRC (D) across different methods that were trained on non-unique pairs from ChEMBL and tested on unique pairs

from ChEMBL. Comparison of AUROC (E) and AUPRC (F) across different methods that were trained on ChEMBL data and tested on

BindingDB data (in which the overlapping compound–protein pairs were removed). In all cases, the redundant proteins and compounds

were removed. The results are summarized over 10 trials and expressed as means ± SD. SLNN, single-layer neural network; DNN, deep

neural network; AUROC, area under receiver operating characteristic curve; AUPRC, area under precision-recall curve.
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Novel interaction prediction

All known DTI data obtained from DrugBank [32] (released
on November 11, 2015) were used to train DeepCPI. The novel
prediction results on the missing interactions (i.e., the drug–

target pairs that did not have an established interaction record
in DrugBank) were then examined. Most of the top predictions
with the highest scores could be supported by the evidence
available in the literature. For example, among the list of the

top 100 predictions, 71 novel DTIs were consistent with those
reported in previous studies (Table S6). Figure 3 presents the
visualization of a DTI network comprising the top 200 predic-

tions using DeepCPI as well as the network of the 71 afore-
mentioned novel DTIs.

We describe several examples of these novel predictions

supported by the literature below (Table S6). Specifically, in

addition to the known DTIs recorded in DrugBank, DeepCPI

revealed several novel interactions in neural pharmacology.

These interactions may provide new direction to further deci-

pher the complex biological processes in the treatment of neu-

ral disorders. For instance, dopamine, a catecholamine

neurotransmitter with a high binding affinity for dopamine

receptors (DRs), was predicted by DeepCPI to also interact

with the a2 adrenergic receptor (ADRA2A). Such a prediction

representing a crosstalk within the evolutionally related cate-

cholaminergic systems is supported by the known function of

dopamine acting as a weak agonist of ADRA2A [38] as well

as the evidence from multiple previous animal studies [39,40].

Besides the intrinsic neurotransmitters, our prediction results

involved various interesting interactions between other types

of drugs and their novel binding partners. For instance,

amitriptyline, a dual inhibitor of norepinephrine and serotonin

reuptake, is commonly used to treat major depression and anx-

iety. Our predictions indicated that amitriptyline can also

interact with three DR isoforms, including DRD1, DRD2,

and DRD3. This result is supported by previous evidence, sug-

gesting that amitriptyline displays binding to all three DR iso-

forms at sub-micromolar potencies [41].

While these antagonist potencies are relatively weak com-

pared with those of other targets (e.g., solute carrier family
6 member 2 [14] and histamine H1 receptor [42]), this new
predicted interaction may offer expansion in the chemical
space of antipsychotics [41] and the treatment of autism

[43]. Moreover, DeepCPI predicted that oxazepam, an
intermediate-acting benzodiazepine widely used in the con-
trol of alcohol withdrawal symptoms, can also act on the

translocator protein, an important factor involved in intro-
mitochondrial cholesterol transfer. This prediction is also
supported by previous data from radioligand binding assays

[44] as well as by the observation that translocator protein is
responsible for the oxazepam-induced reduction of metham-
phetamine in rats [45].

In addition to providing novel indications in neural phar-

macology, our predictions showed that polythiazide, a com-
monly used diuretic, can act on carbonic anhydrases. This
predicted interaction, which may be related to the antihyper-

tensive function of polythiazide [38], is supported by the evi-
dence that polythiazide serves as a carbonic anhydrase
inhibitor in vivo [46]. Another important branch of novel inter-

action predictions exemplified by an enzyme–substrate interac-
tion between desipramine and cytochrome CYP2D6

highlighted a potential novel indication predicted by DeepCPI
from a pharmacokinetics perspective. Indeed, the predicted
interaction between desipramine and CYP2D6 is supported

by their established metabolic association [47,48], thus offering
important clinical implications in drug–drug interactions [49].
Overall, the novel DTIs predicted by DeepCPI and supported

by experimental or clinical evidence in the literature further
demonstrate the strong predictive performance of DeepCPI.

Validation by experimentation

As 30%–40% of the marketed drugs target GPCRs [50,51], we
applied DeepCPI to identify compounds acting on this class of

drug targets. In this experiment, we used positive and negative
examples from ChEMBL and BindingDB as well as the com-
pound–protein pairs with � 1 lM affinities in ZINC15 [52–
54] as the training data for DeepCPI. Briefly, we predicted

potential interacting compounds using a dataset obtained from
the Chinese National Compound Library (CNCL; http://www.
cncl.org.cn/, containing 758,723 small molecules) with three

class B GPCRs (GLP-1R, GCGR, and VIPR) involved in
metabolic disorders and hypertension [55,56]. These proteins
are challenging drug targets, particularly for the development

of small-molecule modulators. For each GPCR target, we
ran the trained DeepCPI model on the CNCL dataset and
selected the top 100 predictions with the highest confidence
scores for experimental validation as detailed below.

Pilot screening

We first conducted several pilot screening assays as an initial

experimental validation step to verify the top 100 compounds
that were predicted by DeepCPI to act on the aforementioned
three GPCRs. For GLP-1R, a whole-cell competitive binding
assay was used to examine the effects of potential positive

allosteric modulators (PAMs) (Figure 4A; Materials and meth-
ods). For GCGR and VIPR, a cAMP accumulation assay was
conducted to evaluate the agonistic and antagonistic activities

of the predicted compounds (Figure 4B–E). A total of six puta-
tive ligands showed a significant augmentation of radiolabeled
GLP-1 binding compared with DMSO control, i.e., within the

top 25% quantile of the maximum response (Figure 4A).
Moreover, we discovered putative small-molecule ligands act-
ing on GCGR and VIPR (Figure 4B–E). Among these, nine
compounds exhibited significant antagonistic effects against

GCGR (with 7% cAMP inhibition; Figure 4C), while one
compound exhibited an obvious agonistic effect on VIPR (with
20% cAMP increase; Figure 4D). Thus, these hits were

selected for further validation.

Confirmation of PAMs of GLP-1R

The six putative hits were examined for their binding to GLP-

1R. Of these, three (JK0580-H009, CD3293-E005, and
CD3848-F005; Figure S6) showed significant enhancement of
GLP-1 binding to GLP-1R (Figure 5A). Their corresponding

dose–response curves exhibited obvious positive allosteric
effects, with half maximal effective concentration (EC50Þ val-
ues within the low micromolar range (< 10 lM; Figure 5B).

To test the specificity of the three compounds, we investigated
their binding ability to GCGR, a homolog of GLP-1R. These
compounds did not cross-react with GCGR (Figure 5C) but

substantially promoted intracellular cAMP accumulation in
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B  Network of DTIs predicted by DeepCPI with literature support

A  Network of DTIs predicted by DeepCPI

Target

Drug

Known interaction
in DrugBank

Novel interaction
predicted by 
DeepCPI

Figure 3 Network visualization of the novel DTIs predicted using DeepCPI

DeepCPI was trained on DrugBank data and used to predict novel DTIs (not recorded in DrugBank). A. A network comprising the top

200 novel DTI predictions. B. A network comprising 71 novel DTIs with literature support among the top 100 DTI predictions. Purple

and yellow circles represent targets and drugs, respectively. Gray lines represent the known interactions derived from DrugBank, and red

dashed lines represent the novel interactions predicted using DeepCPI. DTI, drug–target interaction.
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the presence of GLP-1 (Figure 5D). Collectively, these results
suggest that JK0580-H009, CD3293-E005, and CD3848-F005
are PAMs of GLP-1R.

To explore possible binding modes of these new PAMs, we

conducted molecular docking studies using AutoDock Vina
[57] based on the high-resolution three-dimensional active
structure of GLP-1R [58] (Figures 6 and Figure S6). We first

used NNC0640 (Figure S6), a negative allosteric modulator
of GLP-1R [59], as a control to demonstrate that our docking
approach could recover the experimentally solved complex

structure (Figure S7). Interestingly, our docking results indi-
cated that the binding pocket for the predicted PAMs are
located between transmembrane helix 5 (TM5) and TM6 of

GLP-1R, which are distinct from that of NNC0640 (Figure 6)
and consistent with the enlarged cavity in the active form of
GLP-1R (Figure S8). Additionally, the docking results suggest
that the binding sites of our predicted PAMs are located dee-

per inside the transmembrane domain of GLP-1R than that of
the known covalently bound PAMs, including Compound 2
[59] and 4-(3-(benzyloxy)phenyl)-2-ethylsulfinyl-6-(trifluorome

thyl)pyrimidine (BETP) [60,61] (Figures 6A and S7). These
findings reveal a novel route for discovering and designing

new PAMs of GLP-1R. To further analyze these docking
results, we produced four stable cell lines expressing mutant
GLP-1Rs (C347F, T149A, T355A, and I328N). As a control,
we first measured the activity of BETP, which is covalently

bonded to C347 in GLP-1R. Consistent with the previous find-
ings [59], T149A mutation diminished the binding between
125I-GLP-1 and GLP-1R, which could be restored by BETP

treatment (Figure 7). Meanwhile, C347F mutation eliminated
the covalent anchor of BETP and reduced its efficacy com-
pared with that of wild-type GLP-1R (Figure 7).

However, none of the three predicted compounds exhibited
binding to the T149A mutant, and their modulation behavior
on C347Fmutant generally aligned with that on wild-type, sup-

porting its non-covalent binding nature (Figure 7, Table S7).
These observations point to a divergent binding mode of the
predicted PAMs different from that of BETP. Intriguingly,
I328N mutation principally abolished the allosteric effects of

the compounds (Figure 7), probably due to a large steric crash,
as predicted by the docking study. In contrast, T355Amutation
located at the other side of TM6 (Figure 6) showed a negligible

impact on the PAM activities of the predicted compounds
(Figure 7 and Table S7). Collectively, our mutagenesis results

Figure 4 Pilot screening of the predicted compounds acting on GLP-1R, GCGR, and VIPR

A. A whole-cell competitive ligand binding assay was used to assess the effects of potential PAMs on GLP-1R. GLP-1R was stably

expressed in FlpIn-CHO cells, and the effects of the top 100 predicted compounds (10 mM) were studied using the binding assay.

Compared to DMSO, six compounds (indicated by arrows) showed obvious enhancement of radiolabeled GLP-1 binding to GLP-1R

(within the top 25% quantile of the maximum response). B. Agonist validation for GCGR. GCGR-expressing cells were exposed to 20 mM
compounds, and data were normalized with 10 nM glucagon (100%). C. Antagonist validation for GCGR. GCGR-expressing cells were

treated with 0.01 nM glucagon and 20 mM compounds, and data were normalized to the maximal response elicited by 0.01 nM glucagon.

Nine compounds (indicated by arrows) showed antagonist effects on cAMP accumulation (>7% inhibition). D. Agonist validation for

VIPR. CHO cells transfected with VIPR were incubated with 20 mM compounds for 40 min. Data were normalized to maximal response

elicited by 10 mM VIP. CD3349-F005 showed a visible agonist effect on cAMP accumulation (>20% increase). E. Antagonist validation

for VIPR. VIP and compounds were added at the concentration of 10 nM and 20 mM, respectively, and data were normalized to maximal

response elicited by 10 nM VIP. For all panels, the compounds selected for further validation are labeled with CNCL identification

numbers. GLP-1R, glucagon-like peptide-1 receptor; GCGR, glucagon receptor; VIP, vasoactive intestinal peptide receptor; VIPR, VIP

receptor; PAM, positive allosteric modulator; CNCL, Chinese National Compound Library.
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support the docking data, indicating that DeepCPI can dis-

cover potential PAMs of GLP-1R.

Validation of GCGR and VIPR modulators

Nine hits with antagonistic effects against GCGR (Figure 4C)

were identified in the pilot screening. Among these, CD3400-
G008 (Figure S6) was confirmed to stably decrease glucagon-
induced cAMP accumulation (Figure 8A). Subsequently, its

dose dependency and estimated IC50 value of antagonism
(22:6 lM) were determined (Figure 8B). In addition, this com-
pound led to a rightward shift of the glucagon dose–response

curve, as measured by the cAMP accumulation assay (Fig-
ure 8C). This shift corresponded to an increase in the EC50

value of glucagon from 23:9 pM to 5:56 pM, although it did
not affect forskolin-induced cAMP accumulation (Figure 8D),

ruling out the possibility that CD3400-G008 decreases cAMP
accumulation in a non-specific manner. Similarly, the agonistic
effect of the putative VIPR agonist CD3349-F005 (Figures 4

and S6) was dose-dependent (Figure 8E), while its agonism
specificity was confirmed using a phosphodiesterase (PDE)
inhibitor exclusion assay (Figure 8F). The results showed that

neither 25 lM nor 50 lM of CD3349-F005 affected forskolin-
induced cAMP accumulation.

Collectively, these data support the notion that DeepCPI

prediction can offer a promising starting point for small-
molecule drug discovery targeting GPCRs.

Discussion

In this article, we propose DeepCPI as a novel and scalable
framework that combines data-driven representation learning
with DL to predict novel CPIs (DTIs). By exploiting the

large-scale unlabeled data of compounds and proteins, the
employed representation learning schemes effectively extract
low-dimensional expressive features from raw data without
the requirement for information on protein structure or known

interactions.
The combination of the effective feature embedding strate-

gies and the powerful DL model is particularly useful for fully

exploiting the massive amount of compound–protein binding
data available from large-scale databases, such as PubChem
and ChEMBL. The effectiveness of our method was fully val-

idated using several large-scale compound–protein binding
datasets as well as the known interactions between Food and
Drug Administration (FDA)-approved drugs and targets.
Moreover, we experimentally validated several compounds

that were predicted to interact with GPCRs, which represent
the largest transmembrane receptor family and probably the
most important drug targets. This family constitutes >800

annotated and 150 ‘‘orphan” receptors. The latter are without
known endogenous ligands and/or functions. Target-based
drug discovery has been a focal point of research for decades.

However, the inefficiency of mass random bioactivity

A  Receptor binding B  Dose-response curve

C  Specificity validation D  cAMP accumulation
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Figure 5 Experimental validation of the putative PAMs of GLP-1R

A. A receptor binding assay was used to validate the six hit compounds shown in Figure 4A. JK0580-H009, CD3878-F005, and CD3293-

E005 displayed stable and significant enhancement of 125I-GLP-1 binding to GLP-1R (P < 0.0001). B. Dose–response characteristics of

JK0580-H009, CD3878-F005, and CD3293-E005 in terms of the binding of 125I labelled GLP-1 (40 pM) to GLP-1R. C. Validation of

specificity for compounds JK0580-H009, CD3878-F005, and CD3293-E005 using cells stably expressing GCGR. Compared to DMSO,

there was no significant effect of the putative ligands on 125I-glucagon binding to GCGR. D. Effects of compounds JK0580-H009,

CD3878-F005, and CD3293-E005 on cAMP accumulation. All compounds showed dose-dependent augmentation of intracellular cAMP

levels in the presence of GLP-1. All measurements were performed with at least three independent experiments, and data are shown as

mean ± SEM. ***, P < 0.0001 (one-way ANOVA followed by Dunnett’s post-test; in comparison to DMSO treatment).
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screening promotes the application of in silico prediction and
discovery of small-molecule ligands. Our DeepCPI model
establishes a new framework that effectively combines feature

embedding with DL for the prediction of CPIs at a large scale.
We conducted several functional assays to validate our pre-

diction results regarding the identification of small-molecule

modulators targeting several class B (i.e., the secretin-like fam-
ily) GPCRs. GLP-1R is an established drug target for type 2
diabetes and obesity, and several peptidic therapeutic agents
have been developed and marketed with combined annual

sales of billions of dollars. As most therapeutic peptides
require non-oral administration routes, discovery of orally
available small-molecule surrogates is highly desirable. To

the best of our knowledge, since the discovery of Boc5—the
first non-peptidic GLP-1R agonist—more than a decade ago
[62–64], little progress has been made in identifying ‘‘drug-

gable” small-molecule mimetics for GLP-1. In this study, we
identified three PAMs that were computationally predicted
by DeepCPI and experimentally confirmed with bioassays to

be specific to GLP-1R, thereby providing an alternative to dis-
cover non-peptidic modulators of GLP-1R.

The docking results of our predicted hits demonstrated that
they could be fitted to similar sites corresponding to the bind-

ing pockets for previously known PAMs at GLP-1R in its
active form. The experimental data generated by binding and
cAMP accumulation assays confirmed the positive allosteric

action of these hits. Overall, our modeling data, in conjunction

with those obtained from mutagenesis studies, revealed the
binding poses of the predicted interactions between these com-
pounds and GLP-1R. These results offer new insights into the

structural basis and underlying mechanisms of drug action.
Cross validation through different databases, supporting

evidence from the known DTIs in the literature, and labora-

tory experimentation indicate that DeepCPI can serve as a use-
ful tool for drug discovery and repositioning. In our follow-up
studies, we intend to combine DeepCPI with additional valida-
tion experiments for the discovery of drug leads against a wide

range of targets. Better prediction results may be achieved by
incorporating other available data, such as gene expression
and protein structures, into our DL model.

Materials and methods

DeepCPI

DeepCPI is an extension of our previously developed CPI pre-

diction model [65]. We describe the building blocks of
DeepCPI in the following three subsections.

Compound feature extraction

To learn good embeddings (i.e., low-dimensional feature
representations) of compounds, we used the latent semantic

Figure 6 Molecular docking results of the predicted PAMs of GLP-1R

A. Schematic display of receptor binding sites of different PAMs including BETP and the compounds predicted by DeepCPI in the current

study. T149, a key residue for GLP-1R allosteric modulation, is located on TM1 but not shown in this diagram. B. Docked poses for the

predicted interaction between GLP-1R and JK0580-H009 (shown in yellow). C. Docked poses for the predicted interaction between GLP-

1R and CD3878-F005 (shown in cyan) D. Docked poses for the predicted interaction between GLP-1R and CD3293-E005 (shown in

orange). GLP-1R is shown in its active form (pink, PDB ID: 5NX2). The binding modes of the three PAMs are compared with that of

NAM NNC0640 (light purple) adopted from PDB ID: 5VEX. Key residues for PAM and NAM binding, namely I328 and T355, are

shown in stick and colored by lemon. TM, transmembrane; NAM, negative allosteric modulator; BETP, 4-(3-(benzyloxy)phenyl)-2-

ethylsulfinyl-6-(trifluoromethyl)pyrimidine.
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analysis (also termed latent semantic indexing) technique
[27], which is probably one of the most effective methods
for document similarity analyses in the field of NLP. In

latent semantic analysis, each document is represented by
a vector storing the term frequency or term frequency-
inverse document frequency information (tf-idf). This is a

numerical statistic widely used in information retrieval to

describe the importance of a word in a document. Subse-
quently, a corpus (i.e., a collection of documents) can be
represented by a matrix, in which each column stores the

tf-idf scores of individual terms in a document. Subse-
quently, singular value decomposition (SVD) is applied to
obtain low-dimensional representations of features in

documents.

A  Whole-cell competitive ligand binding assay for PAM activities on wide-type and mutant GLP-1Rs

B  cAMP accumulation assay for PAM activities on wide-type and mutant GLP-1Rs
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Figure 7 Mutations in GLP-1R affect the activities of predicted PAMs

According to our docking results and previous reported binding sites for allosteric modulators, we established stable cell lines expressing

T149A, I328N, C347F or T355A to identify the binding pocket for predicted PAMs. A. PAM activities of the predicted compounds on

wild-type and mutant GLP-1 receptors, measured using a whole-cell competitive ligand binding assay at different concentrations. B. PAM

activities of the predicted compounds on the wild-type and mutant GLP-1 receptors, measured by cAMP accumulation assay. All

measurements were performed with at least three independent experiments. Data are shown as means ± SEM and fitted to a four-

parameter logistic regression model.
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In the context of compound feature extraction (Figure S1),
a compound and its substructures can be viewed as a docu-

ment and corresponding terms, respectively. Given a com-
pound set N, we use the Morgan fingerprints [35] with a
radius of one to scan every atom of each compound in N

and then generate the corresponding substructures. Let D
denote the set of substructures generated from all compounds

in N. We then employ a matrix M 2 R Dj j�jNj to store the word
count information for these compounds, where Mij represents

the tf-idf value of the ith substructure in the jth compound.
More specifically, Mij is defined as tf i; jð Þ � idf i;Nð Þ, where

tf i; jð Þ stands for the number of occurrences of the ith substruc-

ture in the jth compound, and idf i;Nð Þ ¼ log jNj
j j2D:tf i;jð Þ–0f gj. Here,

j 2 D : tf i; jð Þ–0f g represents the number of documents con-
taining the ith substructure. Basically, idf i;Nð Þ reweighs
tf i; jð Þ, resulting in lower weights for more common substruc-

tures and higher weights for less common substructures. This
is consistent with an observation in the information theory
that rarer events generally have higher entropy and are thus

more informative.
After M is constructed, it is then decomposed by SVD into

three matrices, U;R;V�, such that M ¼ URV�. Here, R is a

Dj j � jNj diagonal matrix with the eigenvalues of M on the

diagonal matrix, and U is a Dj j � jDj matrix in which each col-

umn Ui is an eigenvector of M corresponding to the ith eigen-

value Rii.

To embed the compounds into a low-dimensional space Rd,

where d < Dj j, we select the first d columns of U, which corre-

spond to the largest eigenvalues in R. Let bU> denote the matrix

with columns corresponding to these selected eigenvectors.

Subsequently, a low-dimensional embedding of M can be

obtained by cM = bU>M, where cM is a d� jNjmatrix, in which

the ith column corresponds to a d-dimensional embedding (or

embedded feature vector) of the ith compound.bU> can be pre-

computed and fixed after being trained from a compound cor-

pus. Given any new compound, its embedded low-dimensional

feature vector can be obtained by left multiplying its tf-idf by

bU> (Figure S1).

Our compound feature embedding framework used the
compounds retrieved from multiple sources, including all com-

pounds labeled as active in bioassays on PubChem [14], all
FDA-approved drugs in DrugBank [32], and all compounds
stored in ChEMBL [30]. Duplicate compounds were removed
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Figure 8 Experimental validation of the hit compounds acting on GCGR and VIPR

A. Validation of the nine putative modulators identified in Figure 4C using cAMP accumulation assay. CD3400-G008 displayed a stable

and remarkable antagonist effect on GCGR. B. Dose-dependent effect of CD3400-G008 on GCGR with respect to the inhibition of

cAMP accumulation. GCGR-expressing cells were incubated with 0.01 nM glucagon and treated with different concentrations of

CD3400-G008 to generate the dose–response curve (IC50 = 22.6 mM). C. Glucagon dose–response curves, in which its concentration was

gradually increased from 0.01 pM to 10 nM, whereas that of CD3400-G008 was set to 20 mM; DMSO was used as negative control. D.

Effect of CD3400-G008 on forskolin-induced cAMP accumulation. E. Dose–response curves of CD3349-F005 in CHO-K1 cells

overexpressing VIPR and in the parental CHO-K1 cells. CD3349-F005 concentration was gradually decreased from 100 mM to 0.78 mM.

F. PDE inhibitor exclusion assay was conducted using CHO-K1 cells to detect the agonist effects of CD3349-F005 on forskolin-induced

cAMP accumulation; a potent PDE inhibitor IBMX was used as positive control. All measurements were performed with at least three

independent experiments in quadruplicate. Data are shown as means ± SEM and fitted to a four-parameter logistic regression model.

Max, maximum response; PDE, phosphodiesterase; IBMX, 3-isobutyl-1-methylxanthine.
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according to their International Chemical Identifiers (InChIs).
The total number of final compounds in our compound feature
extraction module used to construct matrix M was 1,795,801.

The total number of different substructures generated from
the Morgan fingerprints with a radius of one was 18,868. We
set d ¼ 200, which is a recommended value in latent semantic

analysis [66].

Protein feature extraction

We applied Word2vec, a successful word-embedding technique
widely used in various NLP tasks [16,28], to learn the low-
dimensional representations of protein features. In particular,

we use the Skip-gram with a negative sampling method [28]
to train the word-embedding model and learn the context rela-
tions between words in sentences. We first introduce some nec-
essary notations. Suppose that we are given a set of sentences S

and a context window of size b. Given a sentence s 2 S that is

represented by a sequence of words ws
1;w

s
2; � � � ;ws

L

� �
, where L

is the length of s, the contexts of a wordws
i are defined as

ws
i�b; � � � ;ws

i�2;w
s
i�1;w

s
iþ1;w

s
iþ2; � � � ;ws

iþb. That is, all the words

appearing within the context window of size b and centered
at word w in the sentence are regarded as the contexts of w.
We further use W to denote the set of all words appearing in

S, and # w; cð Þ to denote the total number of occurrences of
word c 2 W appearing in the context window of the word
w 2 W in S. Since each word can play two roles (i.e., center
word and context word), the Skip-gram method equips every

word w 2 W with two d-dimensional vector representations

ew ;aw 2 Rd, where ew is used when w is a center word and aw
is used otherwise (both vectors are randomly initialized). Here,

ew or aw basically represents the coordinates of w in the lower
dimensional (i.e., d-dimensional) space after embedding. Sub-
sequently, our goal is to maximize the following objective

function:X
w2W

X
c2W

# w; cð Þ logr ew � awð Þ; ð1Þ

where r xð Þ ¼ 1
1þexp �xð Þ is the sigmoid function. Since the range

of the sigmoid function is 0; 1ð Þ, r ew � awð Þ can be interpreted as
the probability of word c being a context of word w, and Equa-

tion 1 can be viewed as the log-likelihood of a given sentence
set S.

One problem in this objective function (i.e., Equation 1) is
that it does not take into account any negative example. If we

arbitrarily assign any large positive values to ew and aw,
r ew � awð Þ would invariably be predicted as 1. In this case,
although Equation 1 is maximized, such embeddings are surely

useless. To tackle this problem, a Skip-gram model with nega-
tive sampling [28] has been proposed, in which ‘‘negative
examples” cns cnsð 2 W and cns–w) are drawn from a data dis-

tribution PD cnsð Þ ¼ #cns
M
, where M represents the total number

of words in S and #cns represents the total number of occur-
rences of word cns in S: Then, the new objective function can
be written as follows:P

w2W

P
c2W

# w; cð Þ logr ew � awð Þ þ kEcns�PD
log 1� r ew � awð Þð Þ½ 	

¼ P
w2W

P
c2W

# w; cð Þ logr ew � awð Þ þ kEcns�PD log r �ew � awð Þð Þ½ 	;

ð2Þ

where k is the number of ‘‘negative examples” to be sampled

for each observed word–context pair w; cð Þ during training.
Maximizing this objective function can be performed using
the stochastic gradient descent technique [16].

For each observed word–context pair w; cð Þ, Equation 2
aims to maximize its log-likelihood, while minimizing the
log-likelihood of k random pairs w; cnsð Þ under the assumption
that such random selections can well reflect the unobserved

word–context pairs (i.e., negative examples) representing the
background. In other words, the goal of this task is to distin-
guish the observed word–context pairs from the background

distribution.
As in other existing schemes for encoding the features of

genomic sequences [29], each protein sequence in our frame-

work is regarded as a ‘‘sentence” reading from its N-
terminus to C-terminus and every three non-overlapping
amino acid residues are viewed as a ‘‘word” (Figure S2). For
each protein sequence, we start from the first, second, and

third amino acid residues from the N-terminus sequentially
and then consider all possible ‘‘words” while discarding those
residues that cannot form a ‘‘word”.

After converting protein sequences to ‘‘sentences” and all
three non-overlapping amino acid residues to ‘‘words”, Skip-
gram with negative sampling is employed to learn the low-

dimensional embeddings of these ‘‘words”. Subsequently, the
learnt embeddings of ‘‘words” are fixed, and an embedding
of a new protein sequence is obtained by summing and averag-

ing the embeddings of all ‘‘words” in all three possible encoded
‘‘sentences” (Figure S2). Of note, a similar approach has been
successfully used to extract useful features for text classifica-
tion using Word2vec [67].

In our study, the protein sequences used for learning the
low-dimensional embeddings of protein features were retrieved
from several databases, including PubChem [14], DrugBank

[32], ChEMBL [30], Protein Data Bank [68] (www.rcsb.org),
and UniProt [38]. All duplicate sequences were removed, and
the final number of sequences for learning the protein features

during the embedding process was 464,122. We followed the
previously described principles [29] to select the hyper param-
eters of Skip-gram. More specifically, the embedding dimen-
sion was set to d ¼ 100, the size of the context window was

set to b ¼ 12, and the number of negative examples was set
to k ¼ 15.

Multimodal DNN

Suppose that we are given a training dataset of com-
pound–protein pairs ci; pið Þji ¼ 1; 2; :::; nf g and a corre-

sponding label set yiji ¼ 1; 2; :::; nf g, where n stands for
the total number of compound–protein pairs, yi ¼ 1 indi-
cates that compound ci and protein pi interact with each

other, and yi ¼ 0 otherwise. We first use the feature extrac-
tion schemes described earlier to derive the feature embed-
dings of individual compounds and proteins, and then feed
these two embeddings to a multimodal DNN to determine

whether the given compound–protein pair exhibits a true
interaction.

We first introduce a vanilla DNN and then describe its

multimodal variant. The basic DNN architecture comprises
an input layer L0, an output layer Lout, and H hidden layers
Lh (h 2 1; 2; :::;Hf g) between input and output layers. Each
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hidden layer Lh contains a set of units that can be represented

by a vector ah 2 RjLh j, where jLhj stands for the number of
units in Lh. Subsequently, each hidden layer Lh can be

parameterized by a weight matrix Wh 2 RjLh�1 j�jLh j, a bias vec-

tor bh 2 RjLh j, and an activation function f �ð Þ. More specifi-
cally, the units in Lh can be calculated by

ah ¼ f Whah�1 þ bhð Þ, where h ¼ 1; 2; :::;H, and the units a0
in the input layer L0 are the input features. We use the recti-
fied linear unit function f xð Þ ¼ max 0; xð Þ, which is a common
choice of activation function in DL, perhaps due to its spar-

sity property, high computational efficiency, and absence of
the gradient-vanishing effect during the back-propagation
training process [69].

The multimodal DNN differs from the vanilla DNN in
terms of the use of local hidden layers to distinguish different
input modalities (Figure 1). In our case, the low-dimensional

compound and protein embeddings are considered distinct
input modalities and separately fed to two different local hid-
den layers. Subsequently, these two types of local hidden layers
are concatenated and fed to joint hidden layers (Figure 1).

Here, the explicit partition of local hidden layers for distinct
input channels can better exploit the statistical properties of
different modalities [70].

After we calculate the aH for the final (joint) hidden layer,
the output layer Lout is simply a logistic regression model that

takes aH as its input and computes by ¼ r �woutaH þ boutð Þ,
where the output by is the confidence score for classification,

r is the sigmoid function, wout 2 RjLHj, and bout 2 R are the
parameters of the output layer Lout. Since the sigmoid function

has a range 0; 1ð Þ, by can also be interpreted as the interacting

probability of the given compound–protein pair.
To learn wout, bout, and all parameters Wh, bh in the hidden

layers from the training data set and the corresponding label

set, we need to minimize the following cross-entropy loss:

J ¼ � 1

N

XN
i¼1

yilogbyi þ 1� yið Þlog 1� byið Þ½ 	:

The aforementioned minimization problem can be solved
using the stochastic gradient descent and back-propagation

techniques [19]. In addition, we apply two popular strate-
gies in DL communities—dropout [71] and batch normal-
ization [72]—to further enhance the classification
performance of our DL model. In particular, dropout sets

the hidden units to zero with a certain probability, which
can effectively alleviate the potential overfitting problem
in DL [71]. The batch normalization scheme normalizes

the outputs of hidden units to zero mean and unit standard
deviation, which can accelerate the training process and act
as a regularizer [72].

Since positive and negative examples are possibly imbal-
anced, our classifier may learn a ‘‘lazy” solution. That is, in
such a skewed data distribution case, the classifier can rela-
tively easily predict the dominant class given any input. To

alleviate this problem, we downsample the examples from
the majority class in order for the numbers of positive and neg-
ative examples to be comparable during training. In our com-

putational tests, we implement an ensemble version of the
previously described DL model and use the average prediction
over 20 models to obtain relatively more stable classification

results.

Time and space complexities

Training

For compound feature extraction, given a compound, let g

denote the running time of generating its Morgan fingerprints
with a radius of one. The time complexity for extracting the
low-dimensional representations of compound features is

O Nj jgþ Nj j2 Dj j
� �

, where Nj j stands for the number of com-

pounds and Dj j stands for the total number of substructures
in all compounds. Here, O Nj jgð Þ is required for generating

the substructures of all compounds and O Nj j2 Dj j
� �

is required

for running SVD. The space complexity for the compound fea-
ture extraction module is O jDj � jNjð Þ. After training, we need

O jDjdcð Þ space to store the selected eigenvectors of M for
future inference, where dc stands for the dimension of com-
pound embedding.

For the protein feature extraction process, given a protein

corpus S, it takes O Wj j2b
� �

time and O Wj j2
� �

space to scan

and calculate the context information, where W and b stand

for the set of all possible three non-overlapping amino acid
residues and the context window size, respectively. Given a

word–context pair w; cð Þ 2 W�W, it takes O kþ 1ð Þdp
� �

time

to compute the objective function in Equation 2, where dp
stands for the dimension of a protein embedding and k stands
for the number of negative samples for each word–context
pair. Suppose that we perform q iterations of gradient descent,

then, the time complexity of the protein feature extraction

module is O q Wj j2 kþ 1ð Þdp
� �

. After training, we need

O jWjdp
� �

space to store the protein embeddings for future

inference.
For a neural network, let jLh�1j and jLhj denote the num-

bers of units in layers h� 1 and h, respectively. Suppose that
jLh�1j � jLhj is the largest value among all layers, then, the time
and space complexities for training our DL model are bounded

by O qnHjLh�1j Lhj jð Þ and O H Lh � 1j j Lhj jð Þ, respectively, where
n stands for the total number of training samples, H stands for
the number of hidden layers in the neural network, and q

stands for the number of training iterations.

Prediction

During the prediction stage, given a compound–protein pair,

we first compute the low-dimensional vector representations
of their features. This operation takes O gþ jDjdcð Þ time for

the compound and O rdp
� �

time for the protein, where r stands

for the length of the protein sequence. Then, these two low-
dimensional vector representations are fed to the deep multi-
modal neural network to make the prediction, which takes

O H Lh � 1j j Lhj jð Þ time. In our framework, we set Lh � 1j j=
1024 and Lhj j= 256, which are small and can be considered
constant (also see ‘‘Implementation of DeepCPI” below).

Mapping DrugBank data to ChEMBL

A known drug–target pair from DrugBank [32] is considered

to be in ChEMBL [30] if compound–target pairs with identical
InChIs for compounds or drugs and sequence identity scores
t � 0:40 for proteins are present in the latter dataset. Given

two protein sequences s and s’, their sequence identity score t
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is defined as t = SW s;s0ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SW s;sð Þ�SW s0 ;s0ð Þ

p , where SW �; �ð Þ stands for the
Smith–Waterman score [73].

Definition of unique compounds and proteins

Given a dataset, a compound is considered unique if its chem-
ical structure similarity score with any other compound is

<0.55, where the chemical structure similarity score is defined
as the Jaccard similarity between two Morgan fingerprints with
a radius of three of the corresponding compounds [35]. Simi-
larly, a protein is considered unique if its sequence similarity

score with any other protein is < 0.40.

DeepCPI implementation

The Morgan fingerprints of compounds were generated by
RDKit (https://github.com/rdkit/rdkit). Latent semantic anal-
ysis and Word2vec (Skip-gram with negative sampling) were

performed using Gensim [74], a Python library designed to
automatically extract semantic topics from documents. Our
DNN implementation was based on Keras (https://github.

com/keras-team/keras)—a highly modular DL library. For
all computational experiments, we used two local hidden layers
with 1024 and 256 units, respectively, for both compound and
protein input channels. The two local layers were then con-

nected to three joint hidden layers with 512, 128, and 32 units,
respectively. We set the dropout rate at 0.2. Batch normaliza-
tion was added to all hidden layers. During training, we

selected 20% of the training data as validation set to select
the optimal training epoch.

Baseline methods

When testing on ChEMBL [30] and BindingDB [31], we com-
pared our method with two network-based DTI prediction
methods, including DTINet [12] and NetLapRLS [10], as well

as with three constructed baseline methods as shown below.
For DTINet and NetLapRLS, Jaccard similarity between

the Morgan fingerprints of the corresponding compounds with

a radius of three and pairwise Smith–Waterman scores were
used to construct compound and protein similarity matrices
as required in both methods. The default hyperparameters of

both methods were used.
For random forest with our feature extraction schemes, we

set the tree number to 128 in all computational tests as previ-

ously recommended [75]. We randomly selected 20% of the
training data as validation set to select the optimal tree depth
from 1 to 30.

For SLNN with our feature extraction schemes, we used a

local hidden layer with 1024 units for both compound and pro-
tein input channels. The two local layers were then connected
and fed to a logistic layer to make the CPI prediction. We set

the dropout rate to 0.2 and batch normalization was added to
the hidden layer as in DeepCPI. We selected 20% of the train-
ing data as validation set to select the optimal training epoch.

For DNN with conventional features, instead of using our
feature extraction schemes, Morgan fingerprints with a radius
of three and pairwise Smith–Waterman scores were used as

compound and protein features, respectively. These features
were subsequently fed into the same multimodal neural

network as in DeepCPI. We selected 20% of the training data
as validation set to select the optimal training epoch.

We also compared our method DeepCPI with two other

DL-based models, namely AtomNet [23] and DeepDTI [24].
When comparing with AtomNet, we experienced difficulty

in reimplementing AtomNet. Therefore, we mainly compared

the performance of DeepCPI with that of AtomNet on the
same DUD-E dataset. For a fair comparison, we only used a
single DeepCPI model instead of an ensemble version.

We also compared the performance of DeepCPI to that of
DeepDTI on 6262 DTIs provided by the original DeepDTI
article [24]. DeepDTI conducted a grid search to determine
the hyper parameters of the model. Hence, for a fair compar-

ison, we followed the same strategy to determine the hyper
parameters of DeepCPI. Here, we reported the hyper parame-
ter space that we searched. In particular, we selected a batch

size from 32; 128; 512f g, dimensions of compound and protein
features from 50; 60; 70; 80; 90; 100; 200; 300f g, dropout rate
from 0:1; 0:2f g, and joint hidden layers with sizes from

512; 128; 32f g; 512; 64f gf g. We only used a single DeeCPI
model instead of an ensemble version for a fair comparison.

Molecular docking

Compounds were docked using AutoDock Vina [57]. The
GLP-1R model in its active form was extracted from a co-
crystal structure of full-length GLP-1R and a truncated pep-

tide agonist (PDB: 5NX2) [58]. The best docked poses were
selected based on the Vina-predicted energy values.

Experimental validation

Cell culture

Stable cell lines were established using FlpIn Chinese hamster
ovary (CHO) cells (Invitrogen, Carlsbad, CA) expressing
either GLP-1R or GCGR and cultured in Ham’s F12 nutrient

medium (F12) with 10% fetal bovine serum (FBS) and 800 lg/
ml hygromycin-B at 37 �C and 5% carbon dioxide (CO2).
Desired mutations were introduced to GLP-1R construct using
the Muta-directTM kit (Catalog No. SDM-15; Beijing SBS Gen-

etech, Beijing, China) and integrated into FlpIn-CHO cells.
VIPR overexpression was achieved through transient transfec-
tion using Lipofectamine 2000 (Invitrogen) in F12 medium

with 10% FBS. Cells were cultured for 24 h before being
seeded into microtiter plates.

Whole-cell competitive ligand binding assay

CHO cells stably expressing GLP-1R or GCGR were seeded
into 96-well plates at a density of 3 � 104 cells/well and incu-
bated overnight at 37 �C and 5% CO2. The radioligand bind-

ing assay was performed 24 h thereafter. For homogeneous
binding, cells were incubated in binding buffer with a constant
concentration of 125I-GLP-1 (40 pM, PerkinElmer, Boston,

MA) or 125I-glucagon (40 pM, PerkinElmer) and unlabeled
compounds at 4 �C overnight. Cells were washed three times
with ice-cold PBS and lysed using 50 ll lysis buffer (PBS sup-
plemented with 20 mM Tris–HCl and 1% Triton X-100, pH

7.4). Subsequently, the plates were counted for radioactivity
(counts per minute, CPM) in a scintillation counter
(MicroBeta2 Plate Counter, PerkinElmer) using a scintillation

cocktail (OptiPhase SuperMix; PerkinElmer).
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cAMP accumulation assay

All cells were seeded into 384-well culture plates (4000 cells/

well) and incubated for 24 h at 37 �C and 5% CO2. For the
agonist assay, after 24 h, the culture medium was discarded
and 5 ml cAMP stimulation buffer [calcium- and magnesium-

free Hanks’ balanced salt solution (HBSS) buffer with 5 mM
4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES),
0.1% bovine serum albumin (BSA), and 0.5 mM 3-isobutyl-

1-methylxanthine (IBMX)] was added to the cells. Subse-
quently, 5 ml compounds were introduced to simulate the
cAMP reaction. For the PAM or antagonist assay, each well
contained 2.5 ml cAMP stimulation buffer, 5 ml endogenous

ligand (GLP-1, glucagon, or VIP) at various concentrations,
and 2.5 ml testing compounds diluted in the cAMP assay buf-
fer. After 40-min incubation at room temperature, cAMP

levels were determined using the LANCE cAMP kit (Catalog
No. TRF0264; PerkinElmer).

Specificity verification and PDE inhibitor exclusion assay

Two experiments were performed using the cAMP accumula-
tion assay (antagonist mode) to study the specificity of the
hit compounds acting on GCGR or VIPR. In the case of

GCGR, glucagon was replaced by forskolin to investigate
whether CD3400-G008 affects forskolin-induced cAMP
accumulation. Forskolin concentration was gradually

increased from 1.28 nM to 100 mM, whereas CD3400-G008
concentration was kept unchanged (20 mM). The PDE inhi-
bitor exclusion assay was performed in CHO-K1 cells, in

which IBMX-free stimulation buffer (calcium- and
magnesium-free HBSS buffer with 5 mM HEPES and 0.1%
BSA) was used. Concentrations of both IBMX (PDE inhibi-
tor, positive control) and forskolin were gradually increased

from 1.28 nM to 100 mM, and the agonistic effect of
CD3349-F005 was examined at concentrations of 25 mM
and 50 mM, respectively.

Availability

The source code of DeepCPI can be downloaded from https://
github.com/FangpingWan/DeepCPI.
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[7] Martı́nez-Jiménez F, Marti-Renom MA. Ligand-target prediction

by structural network biology using nAnnoLyze. PLoS Comput

Biol 2015;11:e1004157.

[8] van Laarhoven T, Nabuurs SB, Marchiori E. Gaussian interaction

profile kernels for predicting drug–target interaction. Bioinfor-

matics 2011;27:3036–43.

[9] Bleakley K, Yamanishi Y. Supervised prediction of drug–target

interactions using bipartite local models. Bioinformatics

2009;25:2397–403.

[10] Xia Z, Wu LY, Zhou X, Wong ST. Semi-supervised drug-protein

interaction prediction from heterogeneous biological spaces. BMC

Syst Biol 2010;4:S6.

[11] Wang Y, Zeng J. Predicting drug-target interactions using

restricted Boltzmann machines. Bioinformatics 2013;29:i126–34.

[12] Luo Y, Zhao X, Zhou J, Yang J, Zhang Y, Kuang W, et al. A

network integration approach for drug-target interaction predic-

tion and computational drug repositioning from heterogeneous

information. Nat Commun 2017;8:573.

[13] Hattori M, Okuno Y, Goto S, Kanehisa M. Development of a

chemical structure comparison method for integrated analysis of

chemical and genomic information in the metabolic pathways. J

Am Chem Soc 2003;125:11853–65.

Wan F et al /DeepCPI: Deep Learning for Drug Screening 493

https://github.com/FangpingWan/DeepCPI
https://github.com/FangpingWan/DeepCPI
https://doi.org/10.1016/j.gpb.2019.04.003
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0005
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0005
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0005
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0010
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0010
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0010
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0015
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0015
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0015
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0020
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0020
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0020
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0025
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0025
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0025
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0030
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0030
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0030
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0035
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0035
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0035
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0040
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0040
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0040
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0045
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0045
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0045
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0050
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0050
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0050
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0055
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0055
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0060
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0060
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0060
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0060
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0065
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0065
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0065
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0065


[14] Wang Y, Suzek T, Zhang J, Wang J, He S, Cheng T, et al.

PubChem BioAssay: 2014 update. Nucleic Acids Res 2014;42:

D1075–82.

[15] Bengio Y, Courville A, Vincent P. Representation learning: a

review and new perspectives. IEEE Trans Pattern Anal Mach

Intell 2013;35:1798–828.

[16] Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of

word representations in vector space. arXiv 2013;1301.3781.

[17] Zhang S, Liang M, Zhou Z, Zhang C, Chen N, Chen T, et al.

Elastic restricted Boltzmann machines for cancer data analysis.

Quant Biol 2017;5:159–72.

[18] Hu H, Xiao A, Zhang S, Li Y, Shi X, Jiang T, et al. DeepHINT:

understanding HIV-1 integration via deep learning with attention.

Bioinformatics 2019;35:1660–7.

[19] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature

2015;521:436–44.

[20] Unterthiner T, Mayr A, Klambauer G, Steijaert M, Wegner JK,

Ceulemans H, et al. Deep learning as an opportunity in virtual

screening. Workshop Deep Learn Represent Learn 2014;27:1–9.

[21] Ramsundar B, Kearnes S, Riley P, Webster D, Konerding D,

Pande V. Massively multitask networks for drug discovery. arXiv

2015;1502.02072.

[22] Wan F, Hong L, Xiao A, Jiang T, Zeng J. NeoDTI: neural

integration of neighbor information from a heterogeneous

network for discovering new drug–target interactions. Bioinfor-

matics 2019;35:104–11.

[23] Wallach I, Dzamba M, Heifets A. AtomNet: a deep convolutional

neural network for bioactivity prediction in structure-based drug

discovery. arXiv 2015;1510.02855.

[24] Wen M, Zhang Z, Niu S, Sha H, Yang R, Yun Y, et al. Deep-

learning-based drug–target interaction prediction. J Proteome Res

2017;16:1401–9.

[25] Öztürk H, Özgür A, Ozkirimli E. DeepDTA: deep drug–target

binding affinity prediction. Bioinformatics 2018;34:i821–9.

[26] Tsubaki M, Tomii K, Sese J. Compound–protein interaction

prediction with end-to-end learning of neural networks for graphs

and sequences. Bioinformatics 2019;35:309–18.

[27] Deerwester S, Dumais ST, Furnas GW, Landauer TK, Harshman

R. Indexing by latent semantic analysis. J Am Soc Inf Sci

1990;41:391–407.

[28] Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J.

Distributed representations of words and phrases and their

compositionality. Adv Neural Inf Process Syst 2013;26:3111–9.

[29] Asgari E, Mofrad MR. Continuous distributed representation of

biological sequences for deep proteomics and genomics. PLoS

One 2015;10:e0141287.

[30] Bento AP, Gaulton A, Hersey A, Bellis LJ, Chambers J, Davies

M, et al. The ChEMBL bioactivity database: an update. Nucleic

Acids Res 2014;42:D1083–90.

[31] Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK. BindingDB: a

web-accessible database of experimentally determined protein-

ligand binding affinities. Nucleic Acids Res 2006;35:D198–201.

[32] Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M,

Stothard P, et al. DrugBank: a comprehensive resource for in

silico drug discovery and exploration. Nucleic Acids Res 2006;34:

D668–72.

[33] Salvat RS, Parker AS, Choi Y, Bailey-Kellogg C, Griswold KE.

Mapping the Pareto optimal design space for a functionally

deimmunized biotherapeutic candidate. PLoS Comput Biol

2015;11:e1003988.

[34] van Laarhoven T, Marchiori E. Biases of drug–target interaction

network data. IAPR Inter Conf Pattern Recogn Bioinformatics

2014:23–33.

[35] Rogers D, Hahn M. Extended-connectivity fingerprints. J Chem

Inf Model 2010;50:742–54.

[36] Lvd Maaten, Hinton G. Visualizing data using t-SNE. J Mach

Learn Res 2008;9:2579–625.

[37] Mysinger MM, Carchia M, Irwin JJ, Shoichet BK. Directory of

useful decoys, enhanced (DUD-E): better ligands and decoys for

better benchmarking. J Med Chem 2012;55:6582–94.

[38] UniProt Consortium. UniProt: a hub for protein information.

Nucleic Acids Res 2015;43:D204–12.

[39] Cornil CA, Ball GF. Interplay among catecholamine systems:

dopamine binds to a2-adrenergic receptors in birds and mammals.

J Comp Neurol 2008;511:610–27.

[40] Cornil CA, Castelino CB, Ball GF. Dopamine binds to a2-
adrenergic receptors in the song control system of zebra finches

(Taeniopygia guttata). J Chem Neuroanat 2008;35:202–15.

[41] Von Coburg Y, Kottke T, Weizel L, Ligneau X, Stark H.

Potential utility of histamine H3 receptor antagonist pharma-

cophore in antipsychotics. Bioorg Med Chem Lett

2009;19:538–42.

[42] Taylor JE, Richelson E. High affinity binding of tricyclic

antidepressants to histamine H1-receptors: fact and artifact. Eur

J Pharmacol 1980;67:41–6.

[43] Hellings JA, Arnold LE, Han JC. Dopamine antagonists for

treatment resistance in autism spectrum disorders: review and

focus on BDNF stimulators loxapine and amitriptyline. Expert

Opin Pharmacother 2017;18:581–8.

[44] Schmoutz CD, Guerin GF, Goeders NE. Role of GABA-active

neurosteroids in the efficacy of metyrapone against cocaine

addiction. Behav Brain Res 2014;271:269–76.

[45] Spence AL, Guerin GF, Goeders NE. The differential effects of

alprazolam and oxazepam on methamphetamine self-administra-

tion in rats. Drug Alcohol Depend 2016;166:209–17.

[46] Scriabine A, Korol B, Kondratas B, Yu M, P’an S, Schneider J.

Pharmacological studies with polythiazide, a new diuretic and

antihypertensive agent. Proc Soc Exp Biol Med 1961;107:864–72.

[47] Gueorguieva I, Jackson K, Wrighton SA, Sinha VP, Chien JY.

Desipramine, substrate for CYP2D6 activity: population phar-

macokinetic model and design elements of drug–drug interaction

trials. Br J Clin Pharmacol 2010;70:523–36.

[48] Spina E, Gitto C, Avenoso A, Campo G, Caputi A, Perucca E.

Relationship between plasma desipramine levels, CYP2D6 phe-

notype and clinical response to desipramine: a prospective study.

Eur J Clin Pharmacol 1997;51:395–8.

[49] Reese MJ, Wurm RM, Muir KT, Generaux GT, John-Williams

LS, Mcconn DJ. An in vitro mechanistic study to elucidate the

desipramine/bupropion clinical drug-drug interaction. Drug

Metab Dispos 2008;36:1198–201.

[50] Stevens RC, Cherezov V, Katritch V, Abagyan R, Kuhn P, Rosen

H, et al. The GPCR Network: a large-scale collaboration to

determine human GPCR structure and function. Nat Rev Drug

Discov 2013;12:25–34.

[51] Filmore D. It’s a GPCR world. Mod Drug Discovery 2004;7:24–8.

[52] Sterling T, Irwin JJ. ZINC 15–ligand discovery for everyone. J

Chem Inf Model 2015;55:2324–37.

[53] Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG.

ZINC: a free tool to discover chemistry for biology. J Chem Inf

Model 2012;52:1757–68.

[54] Irwin JJ, Shoichet BK. ZINC-a free database of commercially

available compounds for virtual screening. J Chem Inf Model

2005;45:177–82.

[55] Roth JD, Erickson MR, Chen S, Parkes DG. GLP-1R and amylin

agonism in metabolic disease: complementary mechanisms and

future opportunities. Br J Pharmacol 2012;166:121–36.

[56] Munro J, Skrobot O, Sanyoura M, Kay V, Susce MT, Glaser PE,

et al. Relaxin polymorphisms associated with metabolic distur-

bance in patients treated with antipsychotics. J Psychopharmacol

2012;26:374–9.

[57] Trott O, Olson AJ. AutoDock Vina: improving the speed and

accuracy of docking with a new scoring function, efficient

optimization, and multithreading. J Comput Chem

2010;31:455–61.

494 Genomics Proteomics Bioinformatics 17 (2019) 478–495

http://refhub.elsevier.com/S1672-0229(20)30004-8/h0070
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0070
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0070
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0075
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0075
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0075
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0085
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0085
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0085
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0090
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0090
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0090
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0095
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0095
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0100
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0100
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0100
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0110
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0110
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0110
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0110
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0120
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0120
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0120
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0125
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0125
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0130
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0130
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0130
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0135
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0135
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0135
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0140
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0140
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0140
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0145
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0145
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0145
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0150
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0150
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0150
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0155
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0155
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0155
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0160
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0160
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0160
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0160
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0165
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0165
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0165
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0165
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0170
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0170
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0170
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0175
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0175
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0180
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0180
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0185
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0185
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0185
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0190
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0190
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0195
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0195
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0195
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0200
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0200
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0200
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0205
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0205
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0205
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0205
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0210
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0210
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0210
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0215
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0215
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0215
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0215
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0220
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0220
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0220
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0225
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0225
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0225
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0230
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0230
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0230
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0235
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0235
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0235
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0235
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0240
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0240
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0240
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0240
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0245
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0245
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0245
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0245
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0250
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0250
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0250
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0250
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0255
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0260
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0260
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0265
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0265
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0265
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0270
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0270
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0270
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0275
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0275
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0275
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0280
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0280
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0280
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0280
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0285
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0285
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0285
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0285


[58] Jazayeri A, Rappas M, Brown AJ, Kean J, Errey JC, Robertson

NJ, et al. Crystal structure of the GLP-1 receptor bound to a

peptide agonist. Nature 2017;546:254–8.

[59] Song G, Yang D, Wang Y, de Graaf C, Zhou Q, Jiang S,

et al. Human GLP-1 receptor transmembrane domain struc-

ture in complex with allosteric modulators. Nature 2017;546:

312–5.

[60] Sloop KW, Willard FS, Brenner MB, Ficorilli J, Valasek K,

Showalter AD, et al. Novel small molecule glucagon-like peptide-

1 receptor agonist stimulates insulin secretion in rodents and from

human islets. Diabetes 2010;59:3099–107.

[61] Nolte WM, Fortin J-P, Stevens BD, Aspnes GE, Griffith DA,

Hoth LR, et al. A potentiator of orthosteric ligand activity at

GLP-1R acts via covalent modification. Nat Chem Biol

2014;10:629–31.

[62] Su H, He M, Li H, Liu Q, Wang J, Wang Y, et al. Boc5, a non-

peptidic glucagon-like peptide-1 receptor agonist, invokes sus-

tained glycemic control and weight loss in diabetic mice. PLoS

One 2008;3:e2892.

[63] He M, Su H, GaoW, Johansson SM, Liu Q, Wu X, et al. Reversal

of obesity and insulin resistance by a non-peptidic glucagon-like

peptide-1 receptor agonist in diet-induced obese mice. PLoS One

2010;5:e14205.

[64] He M, Guan N, Gao WW, Liu Q, Wu XY, Ma DW, et al. A

continued saga of Boc5, the first non-peptidic glucagon-like

peptide-1 receptor agonist with in vivo activities. Acta Pharmacol

Sin 2012;33:148–54.

[65] Wan F, Zeng J. Deep learning with feature embedding for

compound-protein interaction prediction. bioRxiv 2016;086033.

[66] Bradford RB. An empirical study of required dimensionality for

large-scale latent semantic indexing applications. Proc ACM Int

Conf Inf Knowl Manag 2008:153–62.

[67] Iyyer M, Manjunatha V, Boyd-Graber J, Daumé III H. Deep
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[68] Rose PW, Prlić A, Bi C, Bluhm WF, Christie CH, Dutta S, et al.

The RCSB Protein Data Bank: views of structural biology for

basic and applied research and education. Nucleic Acids Res

2015;43:D345–56.

[69] Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural

networks. Proc 14th Int Conf Artif Intell Stat 2011;15:315–23.

[70] Srivastava N, Salakhutdinov RR. Multimodal learning with deep

boltzmann machines. Adv Neural Inf Process Syst

2012;2:2222–30.

[71] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdi-

nov R. Dropout: a simple way to prevent neural networks from

overfitting. J Mach Learn Res 2014;15:1929–58.

[72] Ioffe S, Szegedy C. Batch normalization: accelerating deep

network training by reducing internal covariate shift. arXiv

2015;1502.03167.

[73] Smith TF, Waterman MS. Identification of common molecular

subsequences. J Mol Biol 1981;147:195–7.

[74] Rehurek R, Sojka P. Software framework for topic modelling

with large corpora. Proc LREC 2010 Workshop New Challenges

NLP Frameworks 2010.

[75] Oshiro TM, Perez PS, Baranauskas JA. How many trees in a

random forest? Int Workshop Mach Learn Data Mining Pattern

Recogn 2012:154–68.

Wan F et al /DeepCPI: Deep Learning for Drug Screening 495

http://refhub.elsevier.com/S1672-0229(20)30004-8/h0290
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0290
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0290
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0295
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0295
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0295
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0295
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0300
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0300
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0300
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0300
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0305
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0305
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0305
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0305
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0310
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0310
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0310
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0310
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0315
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0315
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0315
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0315
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0320
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0320
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0320
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0320
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0330
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0330
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0330
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0335
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0335
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0335
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0340
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0340
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0340
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0340
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0345
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0345
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0350
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0350
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0350
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0355
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0355
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0355
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0365
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0365
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0375
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0375
http://refhub.elsevier.com/S1672-0229(20)30004-8/h0375

	DeepCPI: A Deep Learning-based Framework�for Large-scale in silico Drug Screening
	Introduction
	Results
	DeepCPI framework
	Predictive performance evaluation
	Novel interaction prediction
	Validation by experimentation
	Pilot screening
	Confirmation of PAMs of GLP-1R
	Validation of GCGR and VIPR modulators


	Discussion
	Materials and methods
	DeepCPI
	Compound feature extraction
	Protein feature extraction
	Multimodal DNN
	Time and space complexities
	Training
	Prediction

	Mapping DrugBank data to ChEMBL
	Definition of unique compounds and proteins
	DeepCPI implementation
	Baseline methods
	Molecular docking
	Experimental validation
	Cell culture
	Whole-cell competitive ligand binding assay
	cAMP accumulation assay
	Specificity verification and PDE inhibitor exclusion assay


	Availability
	Authors’ contributions
	Competing interests
	Acknowledgments
	Supplementary material
	References


