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Abstract: Little is known about the impact of human colostrum on infant intestinal health following
digestion. The aim of this study was to compare the effect of digested versus undigested human
colostrum on inflammation and cytotoxicity in human intestinal epithelial cells (Caco2BBe) stimulated
with lipopolysaccharides (LPS) or tumor necrosis factor (TNF). Colostrum samples (days 2–8 postpar-
tum) from ten mothers of preterm infant were applied. Caco2BBe cells were pretreated by digested
or undigested colostrum before stimulation with LPS or TNF. The inflammatory response was
determined by measuring the production of interleukin-8 (IL-8) from cells using enzyme linked
immunosorbent assay (ELISA). Cytotoxicity was examined by measuring the release of lactate dehy-
drogenase (LDH) from the cells. Digested colostrum significantly reduced IL-8 production under
LPS and TNF stimulation compared with undigested colostrum. Individual colostrum samples
exhibited wide variance in the ability to suppress IL-8 production and cytotoxicity in Caco2BBe cells.
In vitro-digested human colostrum suppressed an inflammatory response more than undigested
human colostrum in an induced intestinal cell culture model.
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1. Introduction

Necrotizing enterocolitis (NEC) is a devastating gastrointestinal (GI) disease that af-
fects 5% to 10% premature infants, resulting in a mortality of 28% to 35% [1,2]. Infants
with NEC suffer from severe inflammatory responses that can lead to an intestinal bar-
rier breakdown, impaired mucosa, bacterial translocation, and systemic inflammatory
response [3]. The administration of human milk in preterm infants has been shown to
reduce the risk of NEC [4,5]. However, the bioactive functions of human milk in the context
of NEC mechanisms are not fully understood. Colostrum is the preferred first human milk
for feeding infants due to its high concentrations of bioactive components [6]. Since NEC
occurs at the distal small intestine where full digestion has occurred, it is imperative to
determine how digested colostrum impacts the small intestine for better translation to the
infant physiologic environment. Currently, most studies still use undigested human milk
or colostrum to identify their bioactive effects. The method of in vitro digestion provides a
powerful way to mimic the infant digestion process in vivo and enables the release of many
bioactive molecules, as well as circumventing ethical issues in research with infants [7,8].
Current literatures have majorly investigated the bioactive functions of individual human
milk factors [9–11]. To our knowledge, there is scarce evidence on the bioactive potency of
human colostrum from digestion. The aim of this study is to compare the effect of digested
human colostrum versus their undigested counterparts on inflammation and cytotoxicity
using the human intestinal epithelial cells.
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2. Materials and Methods
2.1. In Vitro Digestion of Colostrum Samples

Ten colostrum samples (days 2–8 postpartum) from different mothers of preterm
infants in a previous study were used for this work [12]. Human colostrum samples were
collected under an Institutional Review Board (IRB)-approved human milk repository
and immediately deidentified. Human colostrum samples were snap frozen in liquid
nitrogen once collected and stored at −80 ◦C before the experiments. Aliquots of each
colostrum sample were either subjected to an in vitro digestion that simulates the preterm
infant gastrointestinal environment or remained undigested. The digestion process has
been described in the previous study [12]. In brief, colostrum samples were diluted
to a concentration of 8.25% (v/v) before digestion with pepsin (≥250 units mg−1) with
hydrochloric acid (pH 4.0) at 37 ◦C for 30 min with agitation. The samples were kept
under 37 ◦C for another 30 min with sodium bicarbonate (pH 6.0). Then samples were
digested with pancreatin and bile salts (6.7 mM pancreatin, 29.4 mM bile salt, 0.01 M
sodium bicarbonate, pH 7.0) at 37 ◦C for 2 h. A final heat deactivation at 90 ◦C for 15 min
was applied. The final concentration of human colostrum was 6.36% (v/v).

2.2. Cell Culture

Human intestinal epithelial (Caco2BBe) cells (CRL-2102) were obtained from the
American Type Culture Collection (ATCC; Manassas, VA, USA) and cultured at 37 ◦C in an
atmosphere of 5% carbon dioxide (CO2) in Dulbecco’s Modified Eagle Medium (DMEM;
Gibco, Waltham, MA, USA) supplemented with 10% (v/v) fetal bovine serum (Gibco,
Waltham, MA, USA) and 1% (v/v) non-essential amino acids (Gibco, Waltham, MA, USA)
in T-25 flasks (Nunc, Waltham, MA, USA). The cell culture medium was changed every
48 h. Cells were passaged every 6 days with 0.25% trypsin-ethylenediaminetetraacetic
acid (EDTA) (Gibco, Waltham, MA, USA). For all experiments, cells were seeded with
the density of 4 × 104 cells cm−2, 500 µL per well on 48-well plates (Corning, New York,
NY, USA) coated with type I collagen (Millipore, Burlington, MA, USA). The plate culture
medium contained an additional 1% (v/v) penicillin-streptomycin (Gibco, Waltham, MA,
USA) to prevent contamination. After seven days, when 100% confluency was reached,
cells were cultured for another 21 days to reach full differentiation as to mimic properties
of fetal epithelial cells [13].

2.3. Colostrum Treatment and Stimulation

Cells from passage 7–9 were used for this experiment. On Day 21, the maintenance cell
culture medium was removed from the 48-well plates. Cells were pre-incubated with 2%
(v/v) digested or undigested colostrum in a fresh medium or left untreated (fresh medium
only) for one hour. Then 10 µL of lipopolysaccharides (LPS) from Escherichia coli O111:B4
(5 µg mL−1; Sigma Aldrich, St. Louis, MO, USA) or recombinant human tumor necrosis
factor (TNF) (100 ng mL−1; Peprotech, Cranbury, NJ, USA) was added to the culture for
overnight stimulation. The cells that remained untreated were set as controls.

2.4. Measurements of IL-8 and Cytotoxicity

Following overnight stimulation, the supernatant from each well was transferred
to microcentrifuge tubes and span at 1000× g for 10 min. Interleukin-8 (IL-8; marker
of inflammation) was measured using Enzyme Linked Immunosorbent Assay (ELISA;
Human IL-8/CXCL8 DuoSet; R&D Systems, Minneapolis, MN, USA) within the detection
range of 31.2 to 2000 pg mL−1. The absorbance of each well at 450 nm was measured by a
microplate reader (SpectraMax i3x, Molecular Devices, San Jose, CA, USA). Cytotoxicity
was examined by measuring the release of lactate dehydrogenase (LDH) from the cell
supernatants using the CyQUANTTM LDH Cytotoxicity Assay kit (Invitrogen, Waltham,
MA, USA). The absorbance of each well at 490 nm was measured. Percent cytotoxicity was
calculated as: (Treatment LDH activity − Control LDH activity)/(Maximum LDH activity
− Control LDH activity) × 100.
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2.5. Statistical Analysis

All analyses were performed with GraphPad Software Prism 9.3.1 (GraphPad Software,
Inc., San Diego, CA, USA). Results were shown as mean± standard error (SEM). Data were
analyzed through one-way analysis of variance (ANOVA) followed by Tukey’s multiple
comparisons. p-value of <0.05 was set as the significant cutoff.

3. Results
3.1. LPS and TNF Stimulation Induced IL-8 Production

LPS and TNF significantly induced IL-8 production compared with control (69.82 ± 2.44
vs. 39.99 ± 1.14 pg mL−1; p < 0.0001 and 170.7 ± 5.29 vs. 44.05 ± 2.11 pg mL−1; p < 0.0001,
respectively; Figure 1a,b). The amount of TNF-induced IL-8 was significantly higher than
that induced by LPS.
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Figure 1. Production of interleukin-8 in human intestinal epithelial (Caco2BBe) cells in response to
lipopolysaccharides (a) and tumor necrosis factor (b) stimulation after pretreatment with digested and
undigested colostrum. Data represented are mean ± standard error (SEM) from nine to ten human
colostrum samples (outliers removed). Data were analyzed through one-way analysis of variance
(ANOVA) followed by Tukey’s multiple comparisons. IL-8 = interleukin-8; LPS = lipopolysaccharides;
TNF = tumor necrosis factor.

3.2. Digested Colostrum Reduced IL-8 Production in Caco2BBe Cells under Both LPS and
TNF Stimulation

Without stimulation, pretreatment with digested colostrum showed no difference
compared with the undigested groups (p > 0.05 in all comparisons, Figure 1a,b). Cells
pretreated with both digested and undigested colostrum produced a higher amount of
IL-8 under LPS stimulation compared with their unstimulated counterparts (67.41 ± 3.45
vs. 46.51 ± 3.25 pg mL−1; p = 0.0098 and 95.18 ± 6.18 vs. 55.61 ± 5.99 pg mL−1; p < 0.0001,
respectively; Figure 1a). Similarly, under TNF stimulation, cells pretreated with digested
and undigested colostrum produced a higher level of IL-8 compared with their unstimu-
lated counterparts (p < 0.0001 in all comparisons, Figure 1b). Compared with undigested
groups, the digested colostrum significantly reduced IL-8 production under both LPS stim-
ulation (95.18 ± 6.18 vs. 67.41 ± 3.45 pg mL−1; p = 0.0002; Figure 1a) and TNF stimulation
(195.30 ± 17.36 vs. 155.50 ± 3.64 pg mL−1; p = 0.0102; Figure 1b).

3.3. The Inhibition Effects on IL-8 Production Varies among Individual Human Colostrum

Without stimulation, most digested colostrum samples reduced IL-8 production com-
pared with their undigested counterparts (Figure 2a). Under LPS stimulation, IL-8 produc-
tion was suppressed following pretreatment with nearly all digested colostrum samples
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(except sample 2 and 5), but not with undigested colostrum samples (Figure 2b). Under
TNF stimulation, variations were also observed among these samples; all but one digested
colostrum sample (sample 3) reduced IL-8 production. Undigested colostrum sample 4, 7, 9,
10 inhibited IL-8 production (Figure 2b). Among samples that suppressed IL-8 production,
the extent of suppression differed (Figure 2a,b).
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Figure 2. Interleukin-8 difference in individual digested and undigested human colostrum in response
to no stimulus (a) and stimuli (lipopolysaccharides or tumor necrosis factor) (b). Percent difference
was calculated to identify the change of IL-8 production in Caco2BBe cells pretreated with digested
or undigested colostrum against their unpretreated counterparts. It was calculated as: (Pretreated
IL-8 production−Unpretreated IL-8 production)/Unpretreated IL-8 production × 100. From left to
right: human colostrum sample 1–10. IL-8 = interleukin-8; LPS = lipopolysaccharides; TNF = tumor
necrosis factor.

3.4. Digested and Undigested Colostrum Did Not Affect Cytotoxicity in Caco2BBe Cells Overall

Neither digested nor undigested colostrum significantly affected cytotoxicity under
both LPS and TNF stimulation. There was no statistical difference between digested and
undigested groups on cytotoxicity levels (Figure 3a,b).
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Figure 3. Percent cytotoxicity in response to lipopolysaccharides (a) and tumor necrosis factor
(b) after pretreatment with digested and undigested colostrum. Percent cytotoxicity was examined
by the release of lactate dehydrogenase (LDH) calculated as: (Treatment LDH activity − Control
LDH activity)/(Maximum LDH activity − Control LDH activity) × 100. Data represented are
mean ± standard error (SEM) from nine to ten colostrum samples (outliers removed). Data were
analyzed through one-way analysis of variance (ANOVA) followed by Tukey’s multiple comparisons.
LPS = lipopolysaccharides; TNF = tumor necrosis factor.
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3.5. Individual Colostrum Affected Cytotoxicity Differently

As shown in Figure 4, the extent of cytotoxicity differed among colostrum samples.
Colostrum 2 and 8 induced cytotoxicity in all conditions; colostrum 3, 4, 7 and 10 reduced
cytotoxicity in all conditions (except for digested colostrum 3 under TNF stimulation);
colostrum 6 and 9 reduced cytotoxicity under LPS stimulation, but increased cytotoxicity
under TNF stimulation; colostrum 1 reduced cytotoxicity under TNF stimulation, but
increased cytotoxicity under LPS stimulation.
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4. Discussion

In this study, we compared the protective effects of digested colostrum versus undi-
gested colostrum against LPS- and TNF-stimulations. We found that pretreatment with
digested colostrum significantly reduced both LPS and TNF-induced inflammation in
human intestinal epithelial cells, while not affecting cytotoxicity. We also observed widely
variable differences in anti-inflammatory effects among individual colostrum samples.

In this work, we optimized the dose of LPS in Caco2BBe cells that would induce
a robust response to allow adequate margin for IL-8 reduction (data not shown). In
addition to the previous finding that digested colostrum suppressed TNF-induced IL-8
production [12], we found that it also suppressed IL-8 production after exposure to LPS. Its
significant anti-inflammatory effect suggests that the digestion process may have further
released additional bioactive components to exert anti-inflammatory effects on induced
cells compared with undigested colostrum. One major class of products released from
digestion are peptides with partially known bioactivities [14–18] (e.g., antimicrobial, anti-
inflammatory, angiotensin-converting-enzyme (ACE)-inhibitory), whereas when encrypted
as part of the intact milk proteins, such as the form found in the undigested milk, are
inactive [7,19]. This might explain why digested colostrum provided more protection
in this study. Our results suggest that potential bioactive peptides from the digestion
can protect the intestinal epithelial cells by reducing LPS-induced inflammation. As a
cell component of gram-negative bacteria, LPS can interact with the toll-like receptor 4
(TLR-4) from intestinal enterocytes, trigger cascades of signaling and inducing a severe
proinflammatory response, especially in premature infants with underdeveloped intestines
which can develop NEC [20]. Our results add insight into the protection of human milk
against NEC from the perspective of the digestion-released bioactive peptides, as they are
presumed to be functional during their passage through the infant GI tract [21], even at
the ileocecal region where NEC occurs. Although it remains unclear how human milk and
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colostrum-derived peptides affect the infant intestinal mucosa during their release along
the GI tract, new work is underway to further explore this area of research [22].

While not as robustly nor as consistently as digested colostrum, some undigested
samples did decrease IL-8 concentrations. This suggests that endogenous bioactive compo-
nents may inhibit inflammation [23–27]. This corresponds to the fact that human colostrum
originally contains a number of bioactive factors in higher amounts that can modulate the in-
flammatory response, such as anti-inflammatory cytokines (e.g., interleukin-10 (IL-10)) [26],
bioactive proteins (e.g., lactoferrin) [24], human milk oligosaccharides (HMOs) [25], im-
munoglobulins (e.g., secretory immunoglobulin-A (sIgA)) [23], as well as bioactive peptides
released from mammary gland digestion [27]. While most will end up being degraded,
some human milk factors remain intact during passage through the infant gut due to
their resistance toward digestion, the existence of anti-proteolytic enzymes in colostrum,
as well as the less developed digestion system in preterm infants [28–30]. Nonetheless,
we showed that digested colostrum suppressed IL-8 production significantly more than
undigested samples warranting future investigations to identify the differences in bioactive
constituents between the two.

Consistent with the previous work, we observed a wide variation on the extent to
which these colostrum samples exerted anti-inflammatory effects under all conditions. This
is expected as biologic differences (both nutritional [31,32] and immunological compo-
nents [33,34]) in human milk from different mothers have been widely reported. Yet, how
individual human milk variances affect the intestinal health of infants remains unknown.
However, as reported in NEC occurrence, some exclusively human milk fed infants can
still develop NEC [35]. This corroborates with our hypothesis that individual human milk
that harbors certain profile of bioactive components may possess higher potency to lower
the risk of intestinal inflammation and development of NEC while some may not.

To our knowledge, how human milk affects the cytotoxicity in human intestinal
epithelial cells is not fully described. Scarce evidence showed that storage conditions of
human milk at a donor, milk bank or research lab can cause initial or additional cytotoxicity.
The activity of lipase in milk which produces free fatty acids can also lead to increased
toxicity to epithelial cells [36]. In this study, the pooled data on digested and undigested
colostrum did not show a significant inducing or suppressing effect on cytotoxicity under
LPS and TNF stimulation. However, it is important to note that we optimized the dose of
LPS and TNF and stimulation time to best identify IL-8 production. Since cytotoxicity was
measured downstream from the LPS/TNF stimulation, it might not be optimal for detecting
LDH cytotoxicity in this study. However, while not statistically significant, the individual
colostrum samples exhibited large variations on cytotoxicity. This can still be attributed
to the biological difference among these individual colostrum samples. Future study is
necessary to further understand the impact of human milk components on cytotoxicity.

To our knowledge, this is the first study to compare the anti-inflammatory effects
of digested and undigested human colostrum from different mothers on induced human
intestinal epithelial cells. The digested colostrum shows its protection against inflammation,
which brings digestion-released bioactive components into focus. To further identify the
effects of these bioactive compounds, a more robust cellular model is needed to overcome
the limitation of using one single intestinal cell type in this work. Future study will
incorporate the enteroids model (a 3D cell culture that recapitulates the complexity of
in vivo intestinal epithelium and consists of all differentiated intestinal epithelial cell
types) [37]. Additionally, we will identify the anti-inflammatory fractions from individual
colostrum samples (such as specific bioactive peptides) and further characterize their
functions and underlying protecting mechanisms to develop a better understanding on
infant gastrointestinal health.

5. Conclusions

In this study, we identified the effect of digested colostrum versus undigested colostrum
on inflammation and cytotoxicity in human intestinal epithelial cells under LPS and TNF
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stimulation. Our primary finding is that in vitro-digested human colostrum suppressed
an inflammatory response more than undigested human colostrum. Our results add in-
sights into the bioactive potential of human milk following digestion on infant gut health.
Despite our findings, there are limitations in this study. Future work will overcome these
limitations by increasing the human milk sample size, incorporating advanced cell culture
models that recapitulate the gut environment, and adding measurements on a variety of
proinflammatory markers.
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