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ABSTRACT Only one naturally occurring human antibody has been described thus
far that is capable of potently neutralizing all five ebolaviruses. Here we present two
crystal structures of this rare, pan-ebolavirus neutralizing human antibody in com-
plex with Ebola virus and Bundibugyo virus glycoproteins (GPs), respectively. The
structures delineate the key protein and glycan contacts for binding that are con-
served across the ebolaviruses, explain the antibody’s unique broad specificity and
neutralization activity, and reveal the likely mechanism behind a known escape mu-
tation in the fusion loop region of GP2. We found that the epitope of this antibody,
ADI-15878, extends along the hydrophobic paddle of the fusion loop and then dips
down into a highly conserved pocket beneath the N-terminal tail of GP2, a mode of
recognition unlike any other antibody elicited against Ebola virus, and likely critical
for its broad activity. The fold of Bundibugyo virus glycoprotein, not previously visu-
alized, is similar to the fold of Ebola virus GP, and ADI-15878 binds to each virus’s
GP with a similar strategy and angle of attack. These findings will be useful in de-
ployment of this antibody as a broad-spectrum therapeutic and in the design of im-
munogens that elicit the desired broadly neutralizing immune response against all
members of the ebolavirus genus and filovirus family.

IMPORTANCE There are five different members of the Ebolavirus genus. Provision
of vaccines and treatments able to protect against any of the five ebolaviruses is an
important goal of public health. Antibodies are a desired result of vaccines and can
be delivered directly as therapeutics. Most antibodies, however, are effective against
only one or two, not all, of these pathogens. Only one human antibody has been
thus far described to neutralize all five ebolaviruses, antibody ADI-15878. Here we
describe the molecular structure of ADI-15878 bound to the relevant target proteins
of Ebola virus and Bundibugyo virus. We explain how it achieves its rare breadth of
activity and propose strategies to design improved vaccines capable of eliciting
more antibodies like ADI-15878.
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The unexpected location and unprecedented scale of the 2013–2016 Ebola virus
pandemic underscored the need for provision of therapeutics and vaccines. A major

practical challenge, however, is that there are five antigenically distinct viruses in the
Ebolavirus genus. Four of the five viruses are known to cause severe disease in humans.
The first, Ebola virus (EBOV), was linked in 2014 to 2016 to a 28,000-person outbreak
with 41% lethality (1) and emerged again once in 2017 and twice in 2018 in the
Democratic Republic of the Congo. The second, Bundibugyo virus (BDBV), emerged in
2007 (2, 3) and again in 2012 (2, 3) with �25 to 50% lethality. The third, Sudan virus
(SUDV), has emerged at least six times among humans (4–6), typically with 50%
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lethality. The fourth, Taï Forest ebolavirus (TAFV), emerged in a veterinarian working in
West Africa in 1994 (7); it is unknown whether or where it might emerge again. The fifth,
Reston virus (RESTV), has not caused disease in the few humans exposed, but it is highly
lethal to nonhuman primates (8) and has emerged in multiple ranches of swine raised
for human food in China and the Philippines (9–11). Viruses of the Marburgvirus genus,
also members of the Filovirus family, cause human diseases resembling those of the
ebolaviruses (12, 13).

Antibody therapeutics are an attractive emergency postexposure treatment or
preexposure prophylaxis strategy for these viruses. An obstacle, however, is that the
five different ebolaviruses are antigenically distinct. The surface glycoprotein GP is up
to 59% different in amino acid sequence across the ebolaviruses, although some
functional domains of GP exhibit a higher degree of conservation. To date, only one
naturally occurring human antibody has been described that is able to neutralize all of
them. This antibody, termed ADI-15878, was identified in a human survivor of the
2013–2016 outbreak (14). ADI-15878 is escaped by point mutation G528E located on
the paddle of the Ebola virus GP fusion loop (15). A murine antibody, termed 6D6 (15,
16), and a macaque antibody, termed CA-45 (17), are also thought to bind the fusion
loop and achieve pan-ebolavirus reactivity by doing so. No structure is yet available for
Bundibugyo virus GP or any human pan-ebolavirus antibody. Therefore, it is unclear
how broad recognition and activity are achieved. It is also unclear precisely how
recognition by such a pan-ebolavirus antibody differs from recognition by competing,
monospecific antibodies that recognize overlapping epitopes, but which recognize
only Ebola virus or only Sudan virus.

All five ebolaviruses express a single glycoprotein on their surface, termed GP. In
producer cells, the GP precursor is cleaved by furin to yield two subunits: GP1, which
mediates receptor binding, and GP2, which mediates fusion (18–24). GP1 and GP2 are
linked by a disulfide bond, and the GP1-GP2 pair assembles into a trimer of GP1-GP2
heterodimers on the viral surface (25, 26). In the GP2 fusion subunit is an N-terminal tail
that docks along the side of GP after furin cleavage, an internal fusion loop, and two
heptad repeats. The fusion loop forms an antiparallel beta strand pair with a hydro-
phobic loop between the two beta strands (this forms a structure that looks like a
“paddle” in ribbon representations of GP) which packs into the neighboring monomer
in the assembled trimer (25–27). During viral entry, the fusion loop must unwrap from
its position in the assembled trimer to project into the target cell’s membrane. Nuclear
magnetic resonance (NMR) structures of the fusion loop suggest that during entry,
upon exposure to endosomal pH, the central loop changes conformation from an open
paddle to condense into a fist-like structure (18, 19). During the entry process, GP is
processed in the endosome by cathepsin enzymes (28–30) to delete a mucin-like
domain and glycan cap domain from the GP1 subunit (31, 32). The cleaved GP, termed
GPCL, is then potentiated for receptor binding and viral/endosomal membrane fusion
(22, 33–35). The five ebolavirus GPs are �41% identical overall and �68% identical in
the GPCL core outside the glycan cap and mucin-like domain. Of the five ebolaviruses,
structures are thus far available only for Ebola virus (22, 25, 26, 35–37) and Sudan virus
GPs (27, 38).

Here we describe crystal structures of ADI-15878 in complex with cleaved Ebola
virus and cleaved Bundibugyo virus GPs. The crystal structures reveal that ADI-15878
binds to the base of the glycoprotein spike. However, unlike other antibodies elicited
against Ebola virus, ADI-15878 achieves broad specificity by binding underneath the
N-terminal tail of the GP2 fusion subunit and into a cryptic hydrophobic pocket
underneath (N-terminal [N-term] pocket). The majority of its contacts are to conserved
residues of GP in and around this pocket, as well as a glycan linked to GP residue N563
nearby. The NXT sequon and presence of this glycan are completely conserved across
the Ebolavirus genus. The variable heavy (VH) chain of ADI-15878 is only �6% different
in primary sequence from the VH segment of its germ line precursor (VH3-23) (15). The
similarity to germ line and the moderate length of its complementarity-determining
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region (CDR) H3 (15 amino acids) suggest that ADI-15878 could be a prototype of other
broadly neutralizing antibodies which could be elicited by vaccination.

RESULTS

We determined the crystal structure of ADI-15878’s fragment antigen binding (Fab)
in complex first with Ebola virus (EBOV) GPCL and then again in complex with Bundibu-
gyo virus (BDBV) GPCL. The structure of the ADI-15878 –EBOV GPCL complex was
determined to 4.25-Å resolution, while the ADI-15878 –BDBV GPCL complex was deter-
mined to 4.75-Å resolution (Fig. 1). Each structure was solved by molecular replacement
using the previously published EBOV GPCL structure as a search model (Protein Data
Bank [PDB] 5HJ3) (35). The EBOV GPCL complex was refined to an Rwork/Rfree of
28%/32.3%, and the BDBV GPCL complex was refined to an Rwork/Rfree of 30.6%/31.1%
(see Table S1 in the supplemental material). BDBV and EBOV GPs share 64.7% sequence
identity overall; however, they are 88% identical in the GPCL core. Thus, it is not
surprising that the two trimeric structures align with a C� root mean square deviation
(RMSD) of 0.59 Å over 786 residues. Primary sequence differences between EBOV and
BDBV GPCL concentrate in the N-terminal tail of GP2 which is not visible in these
structures; however, upon comparison of surface electrostatics, an electronegative
trough is observed beneath the fusion loop of BDBV GP that is largely absent in EBOV
GP (see Fig. S1 in the supplemental material).

The ADI-15878 binding interface on both EBOV and BDBV GP is made up of
approximately 65% heavy-chain contacts and 35% light-chain contacts. Roughly 37% of
the overall binding interface involves complementarity-determining region (CDR) H3.
Binding of ADI-15878 buries 1,490 Å2 of surface area on GP. The Fab binds GP in an
orientation perpendicular to the viral membrane with the heavy chain proximal to the
viral membrane and the light chain above (Fig. 1). Alanine scanning of the ADI-15878
antibody indicates that CDR H3 residues D95 and W99 are critical for binding and
neutralization of each of EBOV, BDBV, Taï Forest ebolavirus (TAFV), Sudan virus (SUDV),
and Reston virus (RESTV) GP-bearing particles (15). Interestingly, CDR H3 residue D95 is
not involved in the binding interface, but instead appears to play a structural role in
CDR H3, forming a hydrogen bond to the backbone nitrogen of A33 of CDR H1 (Fig. S2).
CDR H3 residue W99, however, makes a direct contact to GP, packing between the base
of the completely conserved GP glycan at N563 and conserved Q560 in HR1A of GP2 in
both EBOV and BDBV structures (Fig. S2). Heavy-chain (HC) monoclonal antibody (MAb)
residues 27, 32, 100, 101, 102, 103, and 105 and light-chain (LC) residues 31, 32, 50, 51,
52, 53, 66, 67, and 71 also contact the N563 glycan. This glycan is present in both
structures and is clearly visible in the higher-resolution ADI-15878 –EBOV GP structure.
Recognition of glycan has been noted by numerous neutralizing antibodies against the
heavily glycosylated HIV-1 envelope (39–45). Here, although recognition of the N563
glycan spans several CDRs and buries �505 Å2, or �44% of the total buried surface
area, the glycan appears instead to be accommodated by ADI-15878, rather than
required by ADI-15878: the MAb exhibits improved activity against GPs from which this
glycan has been mutagenically deleted (15).

ADI-15878 targets a quaternary epitope that reaches from the base region of one
GP1/GP2 protomer to the fusion loop of a neighboring protomer within the GP trimer
(Fig. S3). In this interaction, CDR H2 contacts the �2 strand of GP1 and the HR1A helix
of GP2 in the base region of GP monomer A, CDR H3 contacts the top of HR1A and the
glycan at N563, and CDRs L1 and L3 bind the GP2 fusion loop of the neighboring GP
monomer B (Fig. S3). This quaternary mode of recognition is distinct from that of
monospecific antibodies KZ52 (25), 2G4, 4G7 (37), and 16F6 (27) which also bind the
base of GP but recognize only single GP monomers at a time. Instead, the footprint of
ADI-15878 more closely resembles that of Ebola virus-specific human survivor MAb100
(36) which also spans a quaternary epitope, bridging the base region of one monomer
to the fusion loop of a neighboring monomer (Fig. 2).

The key difference between the epitopes of monospecific MAb100 and pan-
ebolavirus ADI-15878, however, is that the footprint of MAb100 includes the N-terminal
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tail of GP2 (Fig. 2B). MAb100 binds directly to the tail, and in the complex, the tail is
tethered to the side of GP and bound into and covering the N-terminal (N-term) pocket
of GP (36). In contrast, ADI-15878 displaces the N-terminal tail of GP2 and instead binds
underneath and into the N-term pocket itself. Recognition of the pocket versus the tail

FIG 1 GP organization and ADI-15878 complexes. (A) Schematic comparing full-length GP and cleaved EBOV GP (GPCL), and crystal
structure of the ADI-15878 –EBOV GPCL complex. Components are indicated by different colors. GPCL is gray. The ADI-15878 light chain
is light blue, and the heavy chain is dark blue. Top and side views are shown. One monomer is shown in a ribbon format, and the other
two are shown as molecular surfaces. The buried surface contributed by each CDR is indicated in the table to the right. IFL, internal fusion
loop; HR1, heptad repeat 1. (B) Schematic of BDBV GP and GPCL and the ADI-15878 –BDBV GPCL crystal structure. BDBV GPCL is shown in
orange, with GP1 dark orange and GP2 light orange. The ADI-15878 light chain is light blue, and the heavy chain is dark blue. The values
for CDR buried surface area in the table differ significantly between EBOV and BDBV especially within CDRs H3 and L2 and framework
region L3. This difference is due to the lack of density for the GP2 glycan at position N563 in the lower-resolution ADI-15878 –BDBV GP
complex structure compared to the ADI-15878 –EBOV GP structure. CDR H3 makes extensive contacts with this glycan, and glycan contacts
account for all of the interactions between GP and CDR L2 as well as framework region L3.
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FIG 2 Comparison of the footprint of broadly neutralizing ADI-15878 with monospecific antibodies. In sequence alignments, footprint
residues are highlighted, residues that are not identical, but similar across the ebolaviruses are indicated by light gray arrowheads, and
residues that differ significantly across the ebolaviruses are indicated by blue arrowheads. (A) Footprint of ADI-15878 (light blue) on GP
(white). ADI-15878 recognizes only 100% conserved or highly similar residues among the ebolaviruses. (B) The footprint of MAb100 (orange),
like that of ADI-15878, is also a quaternary epitope; however, MAb100 binds to the top of the nonconserved GP2 N-terminal tail. (C) Footprint
of the SUDV-specific MAb 16F6 (green) in complex with SUDV GP (white). (D) Footprint of EBOV-specific MAb KZ52 (pink), which binds the
GP2 N-terminal peptide and the base of the GP complex.
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is likely key to its broad specificity: the N-term pocket is highly conserved, while the
N-term tail of GP2 is the most divergent region of GP2.

Indeed, the vast majority of the structurally characterized base-binding MAbs
against EBOV also interact with the tethered GP2 N-term tail, including the monospe-
cific KZ52 (25), c4G7, c2G4 (37), MAb100 (36), and bispecific (EBOV and BDBV) ADI-
15946 (46). The only exception is the monospecific SUDV MAb, 16F6 (27, 38). In
structures of MAb 16F6 bound to either SUDV Gulu or SUDV Boniface GPs, the SUDV
GP2 N-terminal tail is displaced and disordered and 16F6 binds into the N-term pocket
underneath it. It is unclear whether binding of MAb 16F6 displaces the tail from the
SUDV GP core or whether the N-terminal tail is normally untethered/disordered in
SUDV even without antibody binding. In EBOV, I504 of the tail binds into the hydro-
phobic pocket. SUDV, however, bears an Asn at this site that may prevent hydrophobic
interactions and may disallow or discourage tethering.

Although ADI-15878 is able to react with and neutralize particles bearing the GPs of
all known ebolaviruses, it is unable to bind or neutralize cuevaviruses or marburgvi-
ruses— other members of the Filovirus family (15). The ebolaviruses and cuevaviruses
are �52% identical in the GPCL core (outside the glycan cap and mucin-like domain)
and 58% identical and 21% similar within the ADI-15878 footprint. Although there is
not yet any structural information available for a cuevavirus GP, analysis of the primary
sequence suggests that the N-terminal tail of GP2 may be considerably different in
cuevaviruses versus ebolaviruses. Whereas the ebolaviruses have an eight-residue tail
between the conserved C511 and the furin cleavage site at R501, cuevaviruses have
�40 residues between these two landmarks (47). The exceptionally long N-term tail in
cuevaviruses may prevent ADI-15878 from accessing the N-term pocket and thereby
render it unable to bind or neutralize.

The ebolaviruses and marburgviruses are 35% identical in the GPCL core and 57%
identical and 29% similar within the ADI-15878 footprint (Fig. S4). We observe two
structural differences between the Ebolavirus and Marburgvirus (MARV) genera that may
account for the inability of ADI-15878 to function as a pan-filovirus, rather than
pan-ebolavirus antibody. The first site involves a Q560/R561 (EBOV/MARV) polymor-
phism in GP2 HR1. Q560 in both EBOV and BDBV contacts the essential residue W99 of
ADI-15878’s CDR H3. The second, starker difference lies in the N-term region of GP2. In
the ebolaviruses, the N-term tail of GP2 begins at the 100% conserved disulfide bond
between C511 and C556 and extends eight amino acids down along the side of GP,
packing into the N-term pocket formed by �2 of GP1 and HR1A of GP2 (Fig. 3A and B).
The marburgviruses, however, encode an additional region of GP2 called the wing
domain that begins at the conserved disulfide bond and then extends 20 amino acids
before it forms two beta strands to pack against the GP1 core in an equivalent position,
and perhaps equivalent role, to ebolavirus GP1 �1-�2 (Fig. 3C) (48). While the ebola-
viruses encode a free GP2 N terminus (the tail) that can both interact with the N-term
pocket and dissociate from it to enable ADI-15878 binding, the marburgviruses do not
have a free GP2 N terminus in the same place. Instead, in the marburgviruses, the
marburgvirus-specific wing domain is covalently linked to the corresponding disulfide,
and no free peptide can dissociate from the N-terminal pocket (Fig. 3D to F). Thus, the
marburgvirus wing domain likely acts as a steric hindrance to binding by ADI-15878.

In the ADI-15878 –GP complexes (with EBOV GP and with BDBV GP), the fusion loop
adopts a conformation that differs from that observed in all Ebola virus GP structures
determined thus far, whether free (26) or in complex with antibody (25, 35–37). In the
ADI-15878-bound conformation, the C� of GP2 residue G528 moves 5.2 Å in toward the
GP core, and the C� of I527 also shifts 4.7 Å from its unbound conformation (Fig. 4A and
B). This site is a known escape mutant of ADI-15878 (G528E) (15). Mutation of position
528 to any residue other than Gly may prevent antibody binding by disallowing the
conformational readjustments of the fusion loop required for ADI-15878 interaction. A
requirement for glycine-permitted flexibility at that site may constitute a vulnerability
for this antibody: modeling suggests that ADI-15878 cannot bind the fusion loop in its

West et al. ®

September/October 2018 Volume 9 Issue 5 e01674-18 mbio.asm.org 6

https://mbio.asm.org


typically observed conformation due to steric hindrance with fusion loop residue I527
(Fig. 4C and D).

DISCUSSION

Here we describe crystal structures of pan-ebolavirus human antibody ADI-15878 in
complex with both EBOV GP and BDBV GP. This work first reveals that BDBV and EBOV
GPs have similar folds and organization, with slight differences observed in the elec-
trostatics of the cavity beneath the GP2 fusion loop. Second, this work reveals that
ADI-15878 achieves its unique broad specificity and activity by binding into a con-
served hydrophobic pocket at the base of the GP structures. Although multiple other
monospecific antibodies have also been identified to bind the base region of Ebola
virus GP, all of these antibodies interact with the N-terminal polypeptide of the GP2
subunit that covers the pocket. The N-terminal peptide is the most divergent part of
GP2, while the hydrophobic pocket underneath is highly conserved. By binding under-
neath the peptide into the conserved pocket, ADI-15878 is able to bypass the species-
specific polymorphisms that limit reactivity of other antibodies.

Interestingly, so far only one other antibody has been reported to bind into this
pocket, 16F6 (27, 38). Yet 16F6 is specific for SUDV and does not bind EBOV or BDBV.
Modeling suggests that the limited reactivity of 16F6 may be due to SUDV-specific
differences in the flexibility of the N-terminal tail, particularly at positions 504 and 509.

FIG 3 Position of the GP2 N-terminal peptide and Marburg virus-specific wing relative to the ADI-15878 footprint.
(A) ADI-15878-bound EBOV GP, in which the N-terminal GP2 tail (pink) is lifted from the GP core and disordered
(broken line). The footprint of antibody ADI-15878 is indicated by the light blue line. GP1 is shown in gray, and GP2
is white. (B) In EBOV GP without bound receptor or antibody (26) (pictured; PDB 5JQ3) and all other EBOV
GP-antibody complexes, the N-term GP2 tail is visible (pink) and tethered along the GP core, occupying the lower
portion of the ADI-15878 footprint (blue). The GP glycan cap and HR2 are not shown for simplicity. (C) In Marburg
virus (MARV) GP (PDB 6BP2), a MARV-specific wing domain (also pink) hugs the GP core, also in the space that
would be occupied by the ADI-15878 footprint, with GP2 N-terminal tail (pink broken line) extending outward and
disordered. MARV GP1 is dark green, and GP2 is light green. (D) ADI-15878 residues L53 of CDR H2 and W99 of CDR
H3 bind the GP core in a site previously occupied by the lifted GP2 N-terminal peptide (pink). The bound ADI-15878
heavy chain is dark blue and the light chain is light blue. The glycan attached to N563 is shown as sticks. (E) The
standard position of the GP2 N-terminal peptide lining the outside of the GP core. GP2 I504 occupies the position
of ADI-15878’s L53. (F) The extensive MARV wing domain wraps about the outside of the MARV GP core in the site
that would be occupied by ADI-15878. The glycan equivalent to that of EBOV N563 (MARV N564) is illustrated in
green stick representation.
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At position 504, EBOV encodes an Ile which binds into the hydrophobic pocket, while
SUDV encodes instead a polar Asn. At position 509, EBOV encodes a Pro which limits
conformational mobility of the N-terminal peptide. SUDV instead encodes a Gly which
enhances conformational mobility of the peptide. The Pro-containing N-terminal tail of
EBOV may be unable to lift high enough or frequently enough to accommodate 16F6
binding. The specificity of 16F6 may also be the result of other epitope residue
differences such as D552N or Q44E in EBOV versus SUDV. It is also possible that there
are more global structural differences in the recognition of the epitopes due to
differences in the scaffolding of the paratopes in ADI-15878 versus 16F6.

The N-terminal tail of GP2 may play a role in regulation of membrane fusion. We
note that for EBOV, it is tacked down onto the GP core in all structures except in this
complex with ADI-15878 and a prior complex with its receptor NPC1 (22). Conforma-
tional changes transmitted in GP as a result of NPC1 binding may lift the N-terminal tail
and encourage the dissociation of the GP2 fusion loop from the GP1 core. KZ52 and
other base-binding antibodies lock down the GP2 N terminus and prevent it from
untethering. In contrast, ADI-15878 uses a strategy to bind underneath the GP2
N-terminal tail and replace the hydrophobic tail-pocket interactions with its own

FIG 4 The internal fusion loop of GP2 shifts inward when bound by ADI-15878. (A) EBOV GP1 and GP2 are dark
and light gray, respectively, with visible glycans illustrated in ball and stick. The fusion loop is illustrated in the
standard conformation (yellow) and ADI-15878-bound conformation (white). (B) The shift in position, particularly
at G528, is noted when looked at from the top of the spike down (a 90° rotation about the x axis) in the zoomed-in
view of the internal fusion loop. (C) Interaction of ADI-15878 with the fusion loop I527 (yellow dotted line) in the
standard conformation of the fusion loop sterically interferes with the bound conformation of the ADI-15878 light
chain. In the ADI-15878-bound conformation (white), the fusion loop is adjusted so that I527 is accommodated
between light chains (LC) (light blue) and heavy chains (HC) (dark blue). (D) Electrostatic surface of ADI-15878 with
a limit of 10 kbTec

�1 (kb is Boltzmann’s constant, T is temperature, and ec is the charge of an electron) indicated
in blue and red, respectively. The position of G528 is noted. Escape mutation G528E may introduce an unfavorable
charge clash with the somewhat acidic outer surface of the antibody. The basic charge in the nearby pit is buried.
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hydrophobic antibody-pocket interactions, potentially inhibiting any as yet undiscov-
ered downstream steps in the GP fusion pathway.

ADI-15878 likely neutralizes by anchoring the HR1 of GP2 to the GP core through
contacts between HR1 and CDR H3 and hydrophobic packing of CDR H2 into the �1-�2
N-term pocket. Additionally, contacts between CDRs H3/L3 and the paddle of the fusion
loop may prevent the fusion loop from unravelling from the GP core to seek the target
cell membrane.

Antibodies against Ebola virus have been previously categorized into “base-binding”
and fusion loop-binding epitope groups (14, 17, 25, 49, 50). The ADI-15878 –GPCL

complex and other new structures now make it clear that there is a continuum of
antibody epitopes from base binding to fusion loop sites and everywhere in between.
Within this spectrum along the “waist” of GP are ADI-15878-like footprints (site A,
epitopes that overlap with those of ADI-15878, MAb100, and perhaps KZ52), CA-45-like
footprints (17) (site B, epitopes that overlap with those of ADI-15878 and ADI-15946,
but not KZ52), ADI-15946-like footprints (46) (site C, epitopes that overlap with those of
ADI-15946 and perhaps KZ52), and KZ52-like footprints (25) (site D, epitopes that
overlap with those of ADI-15878, ADI-15946, and KZ52) (Fig. 5). Currently characterized
antibodies that interact with the GP2 N-terminal tail at site A or D are monospecific,
whereas those that instead avoid the N-terminal tail at sites A-C are more broadly
reactive. Future classification of base- and fusion loop-binding antibodies into waist-
binding groups using a competition assay based on these regions may help in the
selection of antibodies for immunotherapeutic cocktails. For example, structural evi-
dence suggests that ADI-15878 and ADI-15946 may not compete with each other even
though they have both been characterized to compete with KZ52 (see Fig. S5 in the
supplemental material) (15).

Binding of the conserved pocket underneath the GP2 tail (site A; ADI-15878) may be
a more broadly applicable strategy for identification of a pan-filovirus MAb that would
also cross-react to Marburg virus. An antibody against an ADI-15878-like epitope but
shifted slightly away from the Marburg virus-specific wing domain may be able to
achieve this broader specificity. Further, deletion of the GP2 N-terminal peptide from
immunogens may assist elicitation of more broadly reactive antibodies and may be a
useful strategy in designing broadly protective vaccines effective against any of the
ebolaviruses with outbreak potential.

MATERIALS AND METHODS
Protein expression and purification. Expression and purification of EBOV and BDBV GPCL was

performed as described previously (35). Briefly, Ebola virus and Bundibugyo virus GPs (lacking the mucin
domain residues 312 to 462) were produced by stable expression in Drosophila melanogaster S2 cells.

FIG 5 Continuum of antibody epitopes at the GP “waist.” Sites A to D are shown. (A) The approximate locations
of the various epitopes are shown mapped along the surface of GP in a side view. (B) A top-down view of the GP
trimer highlights the repeating nature of these epitopes around the circumference of GP.
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Effectene (Qiagen) was used to transfect S2 cells with a modified pMT-puro vector plasmid containing
the GP gene of interest, followed by stable selection of transfected cells with 6 �g/ml puromycin. Cells
were cultured at 27°C in complete Schneider’s medium for selection and then adapted to Insect Xpress
medium (Lonza) for large-scale expression in 2-liter Erlenmeyer flasks. Secreted GP ectodomain expres-
sion was induced with 0.5 mM CuSO4, and supernatant was harvested after 4 days. EBOV and BDBV GPs
were engineered with a double Strep-tag at the C terminus to facilitate purification using Strep-Tactin
resin (catalog no. 2-1201-010; Qiagen) and then further purified by Superdex 200 (GE) size exclusion
chromatography (SEC) in 10 mM Tris-buffered saline (TBS) (Tris-HCl [pH 7.5], 150 mM NaCl). EBOV and
BDBV GPCL were produced by incubation of 1 mg each GP with 0.02 mg thermolysin overnight at room
temperature in TBS containing 1 mM CaCl2 and purified using Superdex 200 SEC. Thermolysin cleavage
does not remove the GP2 N-terminal tail. This tail was visible in thermolysin-cleaved EBOV GPCL in
complex with KZ52 and ADI-15946 (35, 46).

ADI-15878 Fab used for crystallization experiments was cloned into a modified pMT-puro vector with
a heavy-chain C-terminal Strep-tag, and then expressed and purified according to the protocol for GPCL

with the exception that SEC was performed with a Superdex 75 column (GE) (35).
Crystallography and structure determination. Trimeric EBOV and BDBV GPCL were complexed with

ADI-15878 Fab fragments, and the resulting complex was then purified via SEC. The purified EBOV
GPCL–ADI-15878 Fab and BDBV GPCL–ADI-15878 Fab complexes were concentrated to an A280 of 6.4 in
TBS. The crystal drops consisted of a 1:1 ratio of protein-well solution. ADI-15878 –EBOV GP crystals grew
over the course of 3 weeks in 100 mM MgCl2, 100 mM HEPES pH 7.5, and 10% PEG 4000. ADI-15878 –
BDBV GP crystals grew over the course of 2 weeks in 2% Tacsimate (pH 8.0), 100 mM Tris (pH 8.5), and
16% polyethylene glycol 3350 (PEG 3350). Crystals from both conditions were cryoprotected with 15%
ethylene glycol and flash frozen in liquid nitrogen for storage and shipping. Diffraction data were
collected remotely on Advanced Photon Source (APS) beamline 23ID-B on a pilatus 6M detector (51–54).
Data were processed using XDS (55, 56), and the structure was determined using molecular replacement
with PHASER (57), within the CCP4 suite (58), using the structure of EBOV GPCL (PDB 5HJ3) as an initial
search model (35). Iterative rounds of model building were performed using Coot (35), and each round
was refined with Phenix (59). Five percent of the data were set aside prior to refinement for the Rfree

calculations for each data set (60). Side chains were built into observed density wherever possible. When
the map lacked density for complete side chains, side chains were modeled into any observable density
according to their most common rotamer while taking into account high-resolution structures of EBOV
GP. The statistics and stereochemistry of the crystal structure were checked using the MolProbity server
(60, 61). Structural figures were rendered using Open Source PyMOL (PyMOL Molecular Graphics System,
version 1.7.0.0; Schrödinger, LLC).

Alignment and visualization of filovirus sequences. Alignment was performed using clustalomega
on uniprot (62, 63) with the following virus protein sequences: Zaire ebolavirus, Q05320; Bundibugyo
ebolavirus, B8XCN0; Sudan ebolavirus, Q66814; Taï Forest ebolavirus, Q66810; Reston ebolavirus, Q66799;
Lake Victoria marburgvirus, Q1PDC7. Sequence conservation was numbered according to EBOV GP and
visualized using the Espript server (http://espript.ibcp.fr) and colored according to the percent equivalent
scoring function with a cutoff of 70% (64).

Accession number(s). Atomic coordinates and structure factors have been deposited into the
Protein Data Bank under accession numbers 6EA7 for the EBOV GPCL–ADI-15878 complex and 6EA5 for
the BDBV GPCL–ADI-15878 complex.

SUPPLEMENTAL MATERIAL
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