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Biological membranes are composed of a wide variety of
lipids. Phosphoinositides (PIPns) in the membrane inner leaflet
only account for a small percentage of the total membrane
lipids but modulate the functions of various membrane
proteins, including ion channels, which play important roles in
cell signaling. KcsA, a prototypical K+ channel that is small,
simple, and easy to handle, has been broadly examined
regarding its crystallography, in silico molecular analysis, and
electrophysiology. It has been reported that KcsA activity is
regulated by membrane phospholipids, such as phosphatidyl-
glycerol. However, there has been no quantitative analysis of
the correlation between direct lipid binding and the functional
modification of KcsA, and it is unknown whether PIPns
modulate KcsA function. Here, using contact bubble bilayer
recording, we observed that the open probability of KcsA
increased significantly (from about 10% to 90%) when the
membrane inner leaflet contained only a small percentage of
PIPns. In addition, we found an increase in the electrophysi-
ological activity of KcsA correlated with a larger number of
negative charges on PIPns. We further analyzed the affinity of
the direct interaction between PIPns and KcsA using micro-
scale thermophoresis and observed a strong correlation be-
tween direct lipid binding and the functional modification of
KcsA. In conclusion, our approach was able to reconstruct the
direct modification of KcsA by PIPns, and we propose that it
can also be applied to elucidate the mechanism of modification
of other ion channels by PIPns.

Phosphoinositides (PIPns) are membrane lipids in the
cytoplasmic leaflet of the plasma membrane where they coexist
with a variety of membrane proteins, including receptors and
ion channels. PIPns are negatively charged lipids and are pre-
sent in only a few percent of mammalian biological membranes
(1–3). The level of PIPns in the plasma membrane is dynam-
ically modulated by phosphatases, kinases, and phospholipases
(4). These lipid signals play important roles in various aspects
of cell biology, including endosome dynamics (5), cell adhesion
(6), and oncogenesis (7). In addition, PIPns have been shown to
exert a modulatory effect on the activity of various ion chan-
nels (Fig. 1A) (8–10). For example, PI(4,5)P2 directly activates
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the inward rectifier K channel (Kir) (11–13), and insufficient
interaction between PI(4,5)P2 and Kir channels leads to
channelopathies (8, 14). PIPns also modulate the activity of
several channels including two pore domain K+ channels (15),
voltage-gated K+ channels (16–18), calcium-activated K+

channels (19), transient receptor potential channels (20),
hyperpolarization-activated and cyclic nucleotide–gated
channels (21, 22), epithelial Na+ channels (23), ATP receptor
(P2X) channels (24) and variety of transporters (9). As with
other membrane proteins, there are two possible modes of ion
channel modification by PIPns (9). Structural biology has
shown that some ion channels have binding pockets tailored to
PIPns and their activities are regulated by PIPns binding to the
pocket (25, 26), while other channels do not have clear binding
pockets and their activities are regulated through electrostatic
interactions with PIPns (24, 27). Although experiments with
mutants have been widely conducted to analyze the functional
modification by PIPns, to the best of our knowledge there has
been no direct physicochemical analysis of the molecular in-
teractions between PIPns and ion channel proteins.

Since mammalian ion channels are large and complex
structures, we used the small, simple, and easy-to-handle KcsA
in this study to analyze ion channel modification by PIPns.
KcsA is the K+ channel of Streptomyces lividans that has been
intensively studied both functionally and structurally (28–31).
Although small and simple, it shows gating and shares its
molecular structure with larger and more complex mamma-
lian ion channels, such as an ion selectivity filter, and it is
therefore being studied as a prototypical ion channel. KcsA
gates under acidic pH, and it is also known to be activated by
lipid modification and membrane stretch (32–34). Lipid-
bound conformations have been reported in crystal struc-
tures, and lipid interaction sites that modify the function of
KcsA have been predicted by mutation studies (35–37). In
particular, it has been reported that KcsA opens when the
cytoplasmic leaflet side of the lipid bilayer is formed with
negatively charged phospholipids such as 1-palmitoyl-2-
oleoylphosphatidylglycerol (POPG), and a sensor function for
anionic phospholipids has also been proposed (36, 38). How-
ever, due to the lack of methodology to analyze the direct
binding of lipids to ion channel membrane proteins,
quantitative analysis has not been sufficiently carried out. It is
also worth investigating research concerns such as the
concentration at which the ion channel function modifies and
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Figure 1. Schematic drawings of the PIPns physiology and contact
bubble bilayer analysis. A, the level of PIPns is dynamically modulated by
cellular enzymes, and some PIPns bind to ion channels and modify their
activity. B, the configuration of contact bubble bilayer recording. KcsA,
which is opened by intracellular acidification (pH 4.0), was recorded by
mixing PIPns with inner leaflets of lipid bilayers. C, lipid headgroup struc-
tures used in this study. P indicates negatively charged phosphate groups. R
indicates general acyl chain backbones. PI, phosphatidylinositol; PI(4)P,
phosphatidylinositol 4-phosphate; PI(3,4,5)P3, phosphatidylinositol 3,4,5-
trisphosphate; PI(3,4)P2, phosphatidylinositol 3,4-bisphosphate; PI(4,5)P2,
phosphatidylinositol 4,5-bisphosphate; PIPn, phosphoinositide; POPC,
1-palmitoyl-2-oleoylphosphatidylcholine; POPG, 1-palmitoyl-2-
oleoylphosphatidylglycerol.

Molecular and functional interactions between PIPns and KcsA
if the functional regulation of ion channels occurs through the
direct binding of lipid molecules to ion channels. These are
important questions to be addressed, based on the properties
of KcsA, a prototypic ion channel, when considering the
mechanism of functional regulation of ion channels by PIPns.
In the present study, we used electrophysiological and mo-
lecular interaction analysis of KcsA to elucidate the functional
coupling between phospholipids (Fig. 1C) and ion channels.
Results

We first investigated whether PIPns can functionally modify
KcsA using lipid bilayers, a pure reconstituted system in which
only lipids and channels are present. The contact bubble
bilayer (CBB) method, which is a new method for lipid bilayer
analysis, has developed in recent years (39, 40). Using this
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method, it is easy to control the lipid composition, and the
measurement technique can be adapted from the patch clamp
technique (39, 40) (Fig. 1B). It is much easier to prepare
asymmetric membranes using CBB than the conventional
planar bilayer method. We prepared an outer lipid membrane
bubble using 1-palmitoyl-2-oleoylphosphatidylcholine (POPC)
proteoliposomes containing purified KcsA E71A protein in a
pH 7.0 recording solution, and an inner lipid membrane
bubble using POPC liposomes containing phospholipids such
as PIPns in a weight % concentration in a pH 4.0 recording
solution (Fig. 1B). The two bubbles were attached to form a
CBB bilayer. This configuration allowed analysis of the elec-
trophysiological properties of KcsA gating under intracellular
acidic pH conditions and the functional modification of the
intracellular membrane by PIPns (Fig. 1B). To quantitatively
analyze the modification by PIPns, we used the E71A mutant
because it has a stable and high channel open probability due
to the lack of channel inactivation (41) while retaining other
native channel characteristics (42). The E71A mutant, whose
structure has also been analyzed and retains the basic skeleton
of the KcsA wildtype (WT) except for structural differences in
the selectivity filter (41, 43), has served as an alternative
channel in the analysis of many fundamental properties of
KcsA, including pH-dependent gating, lipid-mediated gating,
and the effects of inhibitors (36, 44–46), and also in membrane
reconstruction experiments using novel methods (47, 48).

Single-channel recordings measured in POPC membranes
mixed with 10% phospholipids are shown in Figure 2. KcsA
recorded from the control 100% POPC membrane showed a
low probability of opening with very short bursts (Fig. 2A, top).
The addition of 10% POPG increased the open probability (Po)
(Fig. 2A), which is consistent with previous reports for 100%
POPG under a planar bilayer (36). We found that the addition
of PIPns increased Po significantly (p < 0.001 compared with
POPC) (Fig. 2). Phosphatidylinositol 3,4-bisphosphate [PI(3,4)
P2], phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], and
phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] were
more effective than phosphatidylinositol (PI), phosphatidyli-
nositol 4-phosphate [PI(4)P], and POPG in increasing Po. The
Po of PI(3,4)P2, PI(4,5)P2, and PI(3,4,5)P3 were significantly
higher with each compared with the Po of PI, PI(4)P, and
POPG, respectively (p < 0.001; however, the significant dif-
ference between PI(3,4)P2 and PI was p = 0.026). The effect of
increasing the amplitude of the current was observed in POPG,
PI(4,5)P2, and PI(3,4,5)P3 [POPG: 15 ± 2.6 pA (n = 3); PI(4,5)
P2: 15 ± 3.5 pA (n = 3); PI(3,4,5)P3: 14 ± 3.2 pA (n = 4); p <
0.05 in all cases compared with POPC: 8.1 ± 3.8 pA (n = 6)],
while no significant differences were found for other PIPns [PI:
11 ± 1.7 pA (n = 3), PI(4)P: 12 ± 1.0 pA (n = 5), and PI(3,4)P2:
11 ± 1.7 pA (n = 4)] (Fig. 2A).

We observed that the addition of phospholipids resulted in a
difference in open channel noise. The zoomed-in current traces
are shown in Figure 3A, and the root-mean-squares of the
intraburst current amplitude are summarized in Figure 3B. The
open channel noise of KcsA recorded from the PI(3,4)P2, PI(4,5)
P2, and PI(3,4,5)P3 membranes was observed to be larger than
that of the others. In addition, a clear subconducting state was



Figure 2. Single-channel recording with increased open probability due
to PIPns. A, representative current traces of the single-channel recordings
of KcsA E71A at 100 mV in the presence of phospholipids mixed into the
lipid bilayer. The top row is a recording from a 100% POPC membrane; the
other recordings are from a 10% mixture of the indicated phospholipids
(e.g., POPG: 90% POPC + 10% POPG). Histograms of the amplitude are
shown on the right. An arrow indicates the open amplitude level in POPC. B,
comparison of the open probability among the phospholipids added.
Currents were recorded using the 100% POPC membrane or membranes
containing 10% of other lipids. All recorded data are divided into segments
of 1 s each for analysis, and the number of the data segments and recording
trials were 116 segments/3 recordings in POPC; 145/3 in POPG; 48/3 in PI;
223/5 in PI(4)P; 368/4 in PI(3,4)P2; 390/6 in PI(4,5)P2; and 280/4 in PI(3,4,5)P3.
All analyzed data of the open probability were plotted with colored dots,
and bars with errors indicate means ± SD. PI, phosphatidylinositol; PI(4)
P, phosphatidylinositol 4-phosphate; PI(3,4,5)P3, phosphatidylinositol
3,4,5-trisphosphate; PI(3,4)P2, phosphatidylinositol 3,4-bisphosphate;
PI(4,5)P2, phosphatidylinositol 4,5-bisphosphate; POPC, 1-palmitoyl-2-
oleoylphosphatidylcholine; POPG, 1-palmitoyl-2-oleoylphosphatidylglycerol.

Figure 3. Comparison of the open channel noise among the tested
phospholipids. A, representative current traces of the single-channel re-
cordings of KcsA E71A at 100 mV with the mixed phospholipids at 10% into
the POPC lipid bilayer. Arrows indicate subconducting states. B, comparison
of the open channel noise among phospholipids. All data of root-mean-
squares (RMS) were plotted, and bars with errors indicate means ± SD (n =
3–6). PI, phosphatidylinositol; PI(4)P, phosphatidylinositol 4-phosphate;
PI(3,4,5)P3, phosphatidylinositol 3,4,5-trisphosphate; PI(3,4)P2, phosphatidy-
linositol 3,4-bisphosphate; PI(4,5)P2, phosphatidylinositol 4,5-bisphosphate;
POPC, 1-palmitoyl-2-oleoylphosphatidylcholine; POPG, 1-palmitoyl-2-
oleoylphosphatidylglycerol.

Molecular and functional interactions between PIPns and KcsA
observed in the current traces of PI(3,4)P2 and PI(4,5)P2 (arrows
in Fig. 3A) but not in the current trace of PI(3,4,5)P3.

In a previous report, KcsA E71A showed an increase in Po
to approximately 0.9 when the cytoplasmic leaflet membrane
was 100% POPG (36). However, since the effect of POPG at
low content on Po had not been analyzed, the present study
analyzed the effect of lipids at low content and examined the
differences between lipids. In our recordings, we observed an
increase in Po of approximately 0.7, even at 10% POPG, and a
higher Po (approximately 0.9) was also observed for PI(3,4)P2,
PI(4,5)P2, and PI(3,4,5)P3 than for POPG (Fig. 2). We hy-
pothesized that this difference was due to differences in af-
finity, and we therefore analyzed the dose–response of
phospholipids on the function of KcsA (Fig. 4). Single-channel
recordings were performed under the conditions elucidated in
Figure 2 using various concentrations of POPG or PI(4,5)P2
(Fig. 4, A and B). As the concentration of POPG and PI(4,5)P2
decreased, the Po of both POPG and PI(4,5)P2 decreased,
approaching that of POPC (Po = 0.10 ± 0.26) (Fig. 4, A and B,
top traces). At 3% POPG the Po hardly increased (Po = 0.10 ±
0.23 in POPG) (Fig. 4A), while a marked increase in the Po was
observed at 3% PI(4,5)P2 (Po = 0.46 ± 0.33 in PI(4,5)P2; p <
0.001 compared with 100% POPC) (Fig. 4B). Concentration–
Po relationships are shown in Figure 4C, where the dose–
response curve for PI(4,5)P2, to the left of the POPG curve,
J. Biol. Chem. (2022) 298(8) 102257 3



Figure 4. Comparison of the dose–response relationship between POPG and PI(4,5)P2. A and B, representative current traces of single-channel re-
cordings of KcsA E71A from POPC membranes mixed with the indicated concentrations of POPG or PI(4,5)P2. The current trace of PI(4,5)P2 10% is the same
trace as PI(4,5)P2 in Figure 2A. C, concentration-open probability relationship for POPG and PI(4,5)P2. All data of the open probability at each concentration
were plotted as blue/red dots. Data are means ± SD. The number of the data segments and recording trials were 64 segments/3 recordings (1%), 154/3 (3%),
135/3 (10%), 74/3 (30%), 26/2 (50%), 181/3 (100%) in POPG; 20/2 (1%), 107/3 (3%), 533/5 (6%), 367/3 (10%), 169/2 (30%), 91/3 (50%) in PI(4,5)P2. The symbols
used are as indicated in the figure. PI(4,5)P2, phosphatidylinositol 4,5-bisphosphate; POPC, 1-palmitoyl-2-oleoylphosphatidylcholine; POPG, 1-palmitoyl-2-
oleoylphosphatidylglycerol.

Molecular and functional interactions between PIPns and KcsA
suggests a strong effect on the KcsA opening (EC50: PI(4,5)P2,
3.6%; POPG, 7.5%). The molecular weight of PI(4,5)P2 was
higher than that of POPG (POPC, 760.1; POPG, 771.0; and
PI(4,5)P2, 1074.2), and the EC50 value was underestimated for
PI(4,5)P2. The corrected EC50 value of PI(4,5)P2, calculated by
converting the dose–response curve with the molecular weight
of POPG, was 2.6%, which was approximately 2.9 times higher
than that of POPG. There is a previous study reporting the
dose–response of POPG content in bilayers on Po of KcsA
wildtype (WT) (38), and the EC50 was reported to be higher
than that found in the present study. This is probably due to
differences in the channel (WT vs. E71A) and in membrane
symmetry, with POPG present in the entire bilateral mem-
brane or only in the unilateral membrane.

It is worth investigating if the differential effect of phospho-
lipids on KcsA opening is due to differences in binding affinity.
There have been no reports on the direct analyses of the binding
affinities of ion channels to lipids and their correlation with
functional modifications. We used microscale thermophoresis
(MST) analysis (49, 50) to estimate the binding affinity between
KcsA and phospholipids. Phospholipid titration revealed
changes in theMST signals from fluorescent molecules attached
to the KcsA E71A protein (Fig. 5A). An increase in MST fluo-
rescence was observed when PI(4,5)P2 was titrated, whereas a
decrease was observed when POPG was titrated (Fig. 5A).
Representative dose–response relationships of the MST signals
were plotted (Fig. 5B), and the dissociation constants (Kd)
determined by fitting the accumulated data are summarized in
Figure 5C. POPC showed the lowest affinity, and PI(3,4)P2 and
PI(4,5)P2 showed the two with the highest affinity; the affinity of
POPG was weaker than that of PI(4,5)P2 and comparable with
that of PI (Fig. 5C). The Kd values of each phospholipid (PIPns
4 J. Biol. Chem. (2022) 298(8) 102257
and POPG) were significantly different from those of POPC.
POPG and PI(4,5)P2, which showed difference in EC50 (Fig. 4),
also showed statistically significant differences in Kd (p< 0.001).
The Kd values of PI(4,5)P2 also showed significant difference
from PI (p < 0.001), while they did not show significant differ-
ence from PI(4)P, PI(3,4)P2, and PI(3,4,5)P3. The Po values under
10% lipid mixture (Fig. 2B) were plotted against the Kd values,
and the correlation coefficient was calculated to be -0.84 (Fig. 6).
Overall, these results suggested a high correlation between PIPns
binding and KcsA modification.
Discussion

In the present study, we quantitatively analyzed the func-
tional regulation and binding of PIPns to the prototypical ion
channel KcsA to gain a general understanding of the modifi-
cation mechanism by PIPns, which is responsible for lipid
signaling in biological membranes and regulating the function
of many ion channels. For the first time, we quantitatively
demonstrated that phospholipids with stronger direct binding
affinity lead to stronger functional modifications of KcsA.

Several previous studies have been conducted on the
modification of KcsA by lipids. Anionic lipids, such as POPG,
have been reported to markedly increase the Po of KcsA (32,
38). Negatively charged lipids in the cytoplasmic leaflet are
reported to be a key factor in gating. From experiences with
mutants, it has been proposed that negatively charged lipids
interact with positively charged residues on the intracellular
M0 helix, located just upstream of the first transmembrane
helix (TM1), to stabilize the open structure (36). The present
study, which focused on the lipid composition of the inner
leaflet, may suggest a similar mechanism for the functional



Figure 5. KcsA–lipids interaction as elucidated by microscale thermophoresis analysis. A and B, the interaction of KcsA with phospholipids was
monitored by fluorescent-molecular signals labeled on KcsA. The representative fluorescent signal traces of phospholipid titration are shown. Fittings of the
change in fluorescence signal using Hill equation are also shown. C, comparison of Kd values among the phospholipids binding to KcsA. All data were
plotted, and bars with errors indicate means ± SD (n = 3–5). PI, phosphatidylinositol; PI(4)P, phosphatidylinositol 4-phosphate; PI(3,4,5)P3, phosphatidyli-
nositol 3,4,5-trisphosphate; PI(3,4)P2, phosphatidylinositol 3,4-bisphosphate; PI(4,5)P2, phosphatidylinositol 4,5-bisphosphate; POPC, 1-palmitoyl-2-
oleoylphosphatidylcholine; POPG, 1-palmitoyl-2-oleoylphosphatidylglycerol.

Molecular and functional interactions between PIPns and KcsA
modification exerted by PIPns on KcsA. In addition, recent
NMR-based binding study indicated that anionic lipids such as
DOPG bound to the K+ selectivity filter located on the outer
leaflet side (51). Although the location of the functional
binding site is still a matter of debate, we observed for the first
time the direct binding of KcsA to PIPns as well as a tendency
for the binding affinity to increase with the number of negative
charges (Fig. 5). PI(3,4)P2, PI(4,5)P2, and PI(3,4,5)P3, which
have three and four net negative charges, respectively, pro-
duced a stronger effect for the channel opening than POPG,
which has one negative charge (Figs. 1C, 2, and 4). It is also
worth noting that recordings from lipid membranes contain-
ing PI(3,4)P2, PI(4,5)P2, or PI(3,4,5)P3 showed a subconducting
state and a large open channel noise (Fig. 3). It can be assumed
that the presence of multiple negative charges causes insta-
bility in the interaction with their countercharges by charge
swapping, resulting in fluctuation of the open permeation
conformation; however, the details could not be explored. It
has also been reported by molecular dynamics that interaction
with lipids occurs when the activation gate opens at the C
terminus of the second transmembrane helix (TM2) (52), and
PIPns could be related to this mechanism. Recent NMR-based
binding study indicated that including anionic lipids such as
DOPG in proteoliposomes at acidic pH led to a weaker po-
tassium ion affinity at the selectivity filter (51). The details of
how the PIPns added to the inner leaflet in the present study
affected the selectivity filter are not clear, but this idea may
also explain the open channel noise. From another point of
view, it is possible that the gating of KcsA was caused by the
change in membrane tension due to the change in lipid
composition caused by the addition of PIPns, as previously
reported for membrane-stretch stimulation that changes the
burst duration of KcsA activity (34). However, the high
correlation with binding affinity (Fig. 6) suggests that the
gating modification by PIPns is most likely a direct effect
on the channel protein. As a similar phenomenon, the
mechanosensitivity of Mycobacterium tuberculosis MscL
(mechanosensitive channel of large conductance), a stretch-
J. Biol. Chem. (2022) 298(8) 102257 5



Figure 6. Open probability versus binding affinity. Correlations between
the open probabilities under 10% lipid mixture (Fig. 2B) and the Kd values
(Fig. 5C) were plotted. PI, phosphatidylinositol; PI(4)P, phosphatidylinositol
4-phosphate; PI(3,4)P2, phosphatidylinositol 3,4-bisphosphate; PI(4,5)P2,
phosphatidylinositol 4,5-bisphosphate; PIP3, phosphatidylinositol 3,4,5-
trisphosphate; POPC, 1-palmitoyl-2-oleoylphosphatidylcholine; POPG, 1-
palmitoyl-2-oleoylphosphatidylglycerol.

Molecular and functional interactions between PIPns and KcsA
activated channel, is also enhanced when phosphatidylinositol
is mixed into the lipid bilayer (53), and this mechanism may
also be elucidated by the present analysis.

In this study, we analyzed the functional interaction of KcsA
with PIPns and POPG. However, S. lividans, in which KcsA is
expressed, does not have PIPns in its lipid membrane. In
mammalian cells, on the other hand, PIPns is a major lipid
responsible for the lipid signaling via functional modifications to
ion channels. The significance of this study is that wewere able to
understand part of the molecular mechanism of functional
modification by PIPns of large and complex mammalian K+

channels using small, simple, and tractable KcsA channels. In
addition, ion channels (e.g., Kir channels) have evolved to acquire
specificity for different lipids, such as PIPns, and to exhibit
unique physiological functions for each channel (54). In
mammalian Kir and voltage-gated K+ channel (KCNQ), the
binding of PI(4,5)P2 has been investigated regarding structural
biology. In Kir, a binding pocket is formed in the region leading
from the TM2 to the intracellular pore (25), and in KCNQ, a
binding pocket is formed around the intracellular loop of the
voltage-sensing domain (26). In both cases, the positively
charged residues support the phosphate orientation. Interest-
ingly, PI(4,5)P2 regulates Kir gating not only through a rigid
binding pocket but also through electrostatic interactions with
positively charged residues in the intracellular region (27). In fact,
many mammalian ion channels have been reported to be
modified by PIPns, either by a rigid structural basis, such as a
binding pocket that recognizes the substrate, or by functional
modification through ambiguous electrostatic interactions of
substrate recognition (9, 23, 24). The present study using the
KcsAK+ channel probably fits well into the latter category, and it
is noteworthy that the functional modification of PIPns was
observed in the reconstituted experimental system. Although the
functional aspects of PI(4,5)P2-mediated regulation have been
extensively analyzed using the inside-out patch-clamp method
(17, 27), this is the first study to directly analyze intermolecular
interactions and link them to ion channel function. PIPns are
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lipids found in the cytoplasmic leaflets and are responsible for
signaling in biological membranes, with PI(4,5)P2 being the most
abundant (about 1–3%) (1–3). In the present study, we found
that even a concentration of 3% PI(4,5)P2 modified the activity of
KcsA (Fig. 4). This suggests that the binding and functional
modification mechanisms of PI(4,5)P2 identified here may also
occur physiologically. In the future, it will be important to apply
themethodused in the present study tomammalian ion channels
to clarify the modification mechanism of PIPns.

Experimental procedures

Reagents and chemicals

Lipids were purchased from Avanti Polar Lipids: 1-palmitoyl-
2-oleoylphosphatidylcholine (POPC), 1-palmitoyl-2-oleoylpho
sphatidylglycerol (POPG), 1-palmitoyl-2-oleoyl-sn-glycero-3-ph
osphoinositol (POPI, PI), 1,2-dioleoyl-sn-glycero-3-phospho-
(10-myo-inositol-40-phosphate) [PI(4)P], 1,2-dioleoyl-sn-glyce
ro-3-phospho-(10-myo-inositol-30,40-bisphosphate) [PI(3,4)P2],
1,2-dioleoyl-sn-glycero-3-phospho-(10-myo-inositol-40,50-bisp
hosphate) [PI(4,5)P2], 1,2-dioleoyl-sn-glycero-3-phospho-(10-
myo-inositol-30,40,50-trisphosphate) [PI(3,4,5)P3]. All other
reagents and chemicals, such as for recording solutions and cell
culture media, were purchased from FUJIFILM Wako Pure
Chemical or Nacalai Tesque.

Expression and purification of KcsA

The full-length KcsA gene (NCBI Accession No. P0A334)
was synthesized by GENEWIZ and inserted into the pQE-82L
vector (Qiagen) with a C-terminal 6 × His tag. The point
mutation at Glu71 to Ala (E71A) in KcsA was generated using
the PrimeSTAR Mutagenesis Basal Kit (Takara Bio).

KcsA was expressed in Escherichia coli BL21 (DE3) cells.
Cells were grown in 2 × YT medium with ampicillin until
absorbance at 600 nm (A600) = 0.5 to 0.6 at 37 �C. Then, protein
expression was induced by the addition of 0.5 mM isopropyl-β-
D-thiogalactopyranoside (IPTG) and followed by 2 to 3 h in-
cubation. Cells were harvested and suspended in sonication
buffer (20 mM Hepes [pH 7.2], 150 mM NaCl, 2 mM 2-
mercaptoethanol, and Complete protease inhibitor cocktail
tablets without EDTA) (Roche). Cells were lysed with an ul-
trasonic disruptor, and the membrane fractions were collected
by ultracentrifugation (30,000 rpm, 1 h). A solubilization buffer
(20 mM KPi pH 7.5, 200 mM KCl, 10 mM imidazole, 2 mM 2-
mercaptoethanol, and 1.0% n-dodecyl-β-D-maltoside [DDM])
was then added, and cells were incubated at room temperature
for 1 h. The supernatants were loaded onto Co2+-based affinity
resin (TALON Metal Affinity Resin, Takara Bio), and His-
tagged KcsA proteins were eluted with 200 mM imidazole.
The eluted proteins were concentrated by ultrafiltration
(Amicon Ultra-0.5, Merck KGaA). Protein purity was checked
by SDS-PAGE and Coomassie brilliant blue staining.

Purified channel proteins were reconstituted into liposomes
using the following method. Stock lipids in chloroform were
dried in a glass tube under a stream of nitrogen gas followed by
vacuum overnight. Dried POPC lipid films were suspended in
reconstitution buffer (20 mM Hepes, 200 mM KCl, pH 7.0) at
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a concentration of 2 mg/ml and bath-sonicated. Purified
channels were reconstituted into the POPC liposome solution
(protein:lipid = 1:1000, weight ratio) by at least 50 times
dilution and incubated for 30 min at room temperature. Pro-
teoliposomes were stored at −80 �C until use. To form
asymmetric lipid bilayers, empty liposomes consisting of
various lipid compositions without proteins were prepared
using the same procedure, except for the lipid suspension
buffer (20 mM citrate, 200 mM KCl, pH 4.0).
Electrophysiology

The CBB method (39, 40) was used for all recordings. Bo-
rosilicate capillary glass pipettes (Calibrated Pipet 75 μl;
Drummond Scientific) were used for bubble formation
through a micropipette puller (P-97; Sutter Instrument). The
tip of the pipette was broken and slightly polished using a
microforge (MF-830; Narishige). The pipettes were attached to
pipette holders and operated by a motor-driven micromanip-
ulator (MP-225; Sutter Instrument) and a manual microma-
nipulator (NMN-21; Narishige) on an inverted microscope
(IX-71; Olympus). The pressure in the pipettes was regulated
by a pneumatically operated microinjector (IM-11-2; Nar-
ishige). A few microliters of liposome solutions with or
without proteins (2 mg/ml) were added to the tips of the glass
pipettes by applying negative pressure. Two water bubbles
were formed on both sides of the glass pipettes by applying
positive pressure inside the pipettes in the oil phase (hex-
adecane) and maintained for a few minutes to stabilize the
bubbles. The bubbles contacted each other by pipette
manipulation to form the bilayer at the interface in the center.

Single-channel currents were recorded using an Axopatch
200B amplifier (Molecular Devices). The extracellular-side
solution contained 200 mM KCl and 20 mM Hepes (pH
7.0), and the intracellular-side solution contained 200 mM KCl
and 20 mM citric acid (pH 4.0). Stimulation, data acquisition,
and analysis were performed on a computer using a Digidata
1440A AD/DA converter and pClamp 10.3 or 10.7 (Molecular
Devices). The recorded currents were low-pass filtered at
5 kHz using a four-pole Bessel filter circuit built in the
amplifier, and the sampling frequency was 10 to 20 kHz. The
current traces were digitally filtered at 1 kHz. Recordings were
performed at room temperature. CBB measurements are
subject to variations in measurement time because of the
limited time that bubbles are in contact with each other, i.e.,
the time during which the bilayer is formed. Multiple mea-
surement trials were performed for each lipid, but simply
addition-averaging the Po of each trial did not yield an accu-
rate Po because of the different recording times (5 s to 271 s).
To calculate a more accurate Po, we calculated Po for every 1 s
segment of all current recordings; all Po values for every 1 s are
plotted and presented as mean ± standard deviation (SD)
(Figs. 2 and 4). This method allowed us to analyze the effect of
f ðcÞ¼ Funbound þðFbound − FunboundÞ ⋅
cþcta
each lipid on Po with less measurement bias. The number of
the data segments and the measurement trials for each lipid
were listed in the figure legends (Figs. 2 and 4). The total
number of events that crossed the threshold during single-
channel analysis were 4473 for 100% POPC, 13,553 for 10%
POPG, 1254 for 10% PI, 2342 for 10% PI(4)P, 78,371 for 10%
PI(3,4)P2, 28,651 for PI(4,5)P2, and 7889 for 10% PI(3,4,5)P3,
which were sufficient for analysis (Fig. 2). The single-channel
amplitude was estimated from the peak-to-peak amplitude of
the event histogram with a bin width of 0.5 pA (Fig. 2). Open
channel noise was estimated using the root-mean-squares of
the intraburst current amplitude during a measurement trial
(Fig. 3). All data obtained in the measurements are plotted and
shown as mean ± SD (Figs. 2B, 3B, and 4C). Data were
examined for significant differences between multiple groups
by one-way ANOVA with Tukey–Kramer test (Figs. 2 and 3).
Statistical tests between the two groups were performed using
the Student’s t test (Fig. 4). Data were analyzed using Excel
(Microsoft), SPSS (IBM), Clampfit (Molecular Devices), and
Igor Pro (WaveMetrics) software.
Protein–lipid interaction analysis

TheMST analysis for the interaction between KcsA and lipids
was performed using Monolith NT.115 (NanoTemper Tech-
nologies GmbH), following the standard assay protocols (49, 50).
KcsA was labeled using theMonolith His-Tag Labeling Kit RED-
tris-NTA 2nd Generation (NanoTemper Technologies GmbH)
according to the manufacturer’s protocol. KcsA proteins and
lipids were dissolved in the MST analysis buffer containing
150 mM KCl, 10 mMHepes (pH 7.0, adjusted with NaOH), and
0.1%Tween 20. The detergent was changed fromDDMtoTween
to prevent aggregation, in which concentrated 25 μM KcsA
protein dissolved in buffer containing 0.1% DDM was diluted
500-foldwith theMST analysis buffer to diluteDDMto below the
critical micelle concentration. KcsA was used as a binding target
forMST analysis at a concentration of 50 nM. Each lipid tested as
a ligand in theMST analysis was titrated into theKcsA solution in
a 1:1 dilution series over 0.25 to 0.0000153mM.KcsA and diluted
lipid samples were mixed and loaded into a Monolith premium
capillary (NanoTemper Technologies GmbH), and the MST
fluorescence was measured at 25 �C using the MO.Control
software bundled with Monolith NT.115, in which the excitation
power and the MST power were both set at 40%. Data were
analyzed using the MO.Affinity Analysis software (version 3.0.4,
NanoTemper Technologies GmbH) under standard and default
MST-on time conditions (4–5 s: gray area in Fig. 5A). Fnorm ‰ is
the thousandth fraction of the normalized value of MST fluo-
rescence before thermophoresis as 1. Ligand-dependent photo-
bleaching was detected at a high concentration range
(approximately 0.25–0.625 mM) in all lipids, and there data were
excluded from the analysis. Kd was estimated by fitting the data
with the following equation in the software:
rgetþKd−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
c−ctargetþKd

�2
−4 ⋅ c ⋅ ctarget

q

2 ⋅ ctarget
; (1)
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where f(c) is the fraction bound at a given ligand concentration c,
Funbound is the Fnorm signal of the target alone, Fbound is the Fnorm
signal of the complex, and Ctarget is the final concentration of the
target in the assay. Kd values were log-transformed and subjected
to the one-way ANOVA with Tukey–Kramer test to examine
significant differences between multiple groups. All Kd values
obtained in the measurements are plotted and shown as mean ±
SD (Fig. 5C). In Figure 6, Kd values were log-transformed and
correlations with Po were analyzed by linear regression. Data
were statistically analyzed using Excel (Microsoft) and SPSS
(IBM) software and plotted using Igor Pro software
(WaveMetrics).
Data availability

The authors confirm that the data supporting the findings of
this study are available within the article.
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