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Abstract
Non-human primates face major environmental changes due to increased human impacts

all over the world. Although some species are able to survive in certain landscapes with

anthropogenic impact, their long-term viability and fitness may be decreased due to chronic

stress. Here we assessed long-term stress levels through cortisol analysis in chimpanzee

hair obtained from sleeping nests in northwestern Uganda, in order to estimate welfare in

the context of ecotourism, forest fragmentation with human-wildlife conflicts, and illegal log-

ging with hunting activity (albeit not of primates), compared with a control without human

contact or conflict. Concerning methodological issues, season [F(2,129) = 37.4, p < 0.0001,

r2 = 0.18] and the age of nests [F(2,178) = 20.3, p < 0.0001, r2 = 0.11] significantly predicted

hair cortisol concentrations (HCC). With regard to effects of anthropogenic impacts, our

results neither showed elevation of HCC due to ecotourism, nor due to illegal logging com-

pared to their control groups. We did, however, find significantly increased HCC in the frag-

ment group compared to chimpanzees living in a nearby intact forest [F(1,88) = 5.0, p =

0.03, r2 = 0.20]. In conclusion, our results suggest that hair cortisol analysis is a powerful

tool that can help understanding the impact of anthropogenic disturbances on chimpanzee

well-being and could be applied to other great ape species.

Introduction
Today, non-human primates face anthropogenic impacts of various kinds and the question
how well and under which circumstances they can cope with human influence is of central
importance for conservation programs. Consequently, conservation research aims at identify-
ing the severity of anthropogenic impacts on primate behavior, health and physiology [1,2].
Concerning physiology, non-invasive stress monitoring through the endocrine stress marker
cortisol is increasingly recognized as an important tool for the estimation of animal well-being
and health on individual or population level [3]. In primates, the glucocorticoid hormone (GC)
cortisol is secreted into the blood stream in response to various physiological or psychological
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stressors and plays a crucial role in enhancing catabolism in order to increase energy availabil-
ity for the organism to cope with a stressor, while simultaneously decreasing anabolic pathways
that are not essential for the immediate survival [4]. Consequently, increased cortisol secretion
enables the organism to cope with short-term stressors. Unfortunately, elevated cortisol secre-
tion over prolonged periods of time severely reduces individual fitness due to decreased
immune response [5,6], the dysfunction of various organs [7,8], increased male and female
infertility [9,10], and reduced growth [11].

To date, GC levels in feces [3,12–14] or urine [15] have been studied as non-invasive indica-
tors of the severity of anthropogenic impacts on primates. However, for several reasons these
methods require that animals are fully habituated to being followed by human observers,
which severely limits their applicability: First, metabolite degradation within hours of defeca-
tion is an important confounder in these methods [14] requiring close proximity to the ani-
mals, and second, GC levels in urine and feces reflect only narrow time windows of hours or
days, respectively, and therefore, measuring long-term stress levels in these matrices require
repeated sampling of the same individual in order to even out short-term stress or biological
rhythms. Yet, habituation of chimpanzees is a long process that can take up to seven years [16]
and may have an impact on the animals itself [17,18]. Measuring long-term stress through cor-
tisol concentrations in hair could overcome these problems. Like other great apes, chimpanzees
build sleeping nests on a daily basis, which contain shed hair that can be gathered and analyzed
for GCs, regardless of the animals’ habituation status.

Hair cortisol concentrations (HCC) are increasingly recognized as an integrated measure of
the systemic cortisol secretion over several months. Many indirect validation studies [19–22]
and three studies showing significantly increased HCC in consequence of multiple weekly
ACTH injections [23–25] strongly suggest that HCC reflect the systemic cortisol secretion dur-
ing hair formation (reviewed in [26–28]). Nonetheless, methodological constraints of HCC
analysis arise from significant HCC differences across body regions [25,29–33] and waning
cortisol concentrations towards the distal end of hair. Although the waning effect was mainly
found in human hair [22,34–37], but not in animals [19,31], recent findings on chimpanzees
from several zoos and one Ugandan sanctuary also confirmed the waning effect in this species,
especially if animals were exposed to ambient weather conditions [29]. However, our investiga-
tions revealed that HCC waned along the hair shaft, while rank order was conserved across seg-
ments. Thus, we concluded that HCC measures from wild animals can still be used as long as
the investigated length of hair is kept constant (e.g. the 3 cm close to the root). Concerning the
body region effect, a confirmatory factor analysis verified that despite of differences in absolute
values, HCC across the investigated body regions were driven by one common factor, presum-
ably the systemic cortisol concentration, and HCCmeasures of all body regions provide similar
biological information. We therefore concluded that it is possible to use shed hair from nests,
which is a mixture of various body regions, albeit at the cost of a lower signal-to-noise-ratio.
Thus, under the assumption that the shedding of hair is random in chimpanzees, an increased
number of hairs found in the nest (e.g. 20 hairs per nest) will provide a stable mean of an indi-
vidual’s average HCC [29]. Despite these methodological limitations, we found strong correla-
tions between HCC and stress levels in these chimpanzees [38] as well as in European zoo
orang-utans [19]. All these investigations suggest that HCC analysis can be a suitable,
completely non-invasive tool to reflect the integrated stress level over a period of several
months, because short-term stress and biological rhythms are leveled out.

Tourism is often considered a useful conservation tool because it protects the habitat at the
same time as it promotes the local economy [39]. However, an increasing number of studies
suggest that tourism can have adverse effects on the animals that shall be protected, e.g.,
reduced breeding success [40,41], decreased feeding times due to increased vigilance [42]
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increased risk of pathogen transmission [43], and generally increased stress levels [howler
monkeys: [44,45], barbary macaques: [3], western lowland gorillas: [18], but see [46,47] for no
influence]. Physiological data about the effect of tourism on chimpanzees is still missing
although such information can contribute greatly to creating guidelines for truly non-invasive
ecotourism [48].

While the majority of studies present mainly negative effects of tourism on animals, under-
standing other anthropogenic impacts on primates have produced varying results: Howler
monkeys (hm) and spider monkeys (sm), for example, showed increased stress levels in the
context of forest fragmentation (hm: [44,45,49], sm: [50]) and high human presence (hm: [51])
in some studies, whereas others found no influence of human presence and fragmentation on
both species (hm: [50], sm: [51]). Similarly, research on different primate species in the same
habitat elicited higher stress levels in disturbed habitats in gray-cheeked mangabeys [15] but
not in two other ceropithecid species [52]. These ambiguous results illustrate that more
research is needed in order to understand the impacts of anthropogenic disturbances on pri-
mate stress levels.

Direct observations suggest that chimpanzees show considerable behavioral flexibility and
may be able to adjust to new environments and diets in human dominated landscapes [53–57],
but only if locals are willing and capable of sustaining coexistence [58,59]. For example, Hock-
ings and Sousa [60] suggested that traditional protection through folklore and religious prac-
tices towards chimpanzees can buffer adverse impacts of habitat destruction. However,
physiological data that inform about the endocrine consequences of anthropogenic impacts in
these contexts are still missing for chimpanzees.

The present study measured cortisol concentrations in shed hair from chimpanzee nests in
order to examine whether ecotourism, illegal logging and forest fragmentation with severe
human-wildlife conflicts resulted in increased long-term stress levels compared to chimpanzees
without human impacts.

Materials and Methods

Study sites and sample collection
Permission for this research was granted by Ugandan National Council for Science and Technol-
ogy (Ref.No.: NS 383) and the UgandaWildlife Authority (Ref.No.: UWA/TDO/33/02). Samples
were collected as naturally shed hair from chimpanzee sleeping nests in northwestern Uganda.
These nests were found during transect walks for population counts (D.C. Hänni, unpublished
data), through intensive search for nests, or in rare cases through following nest-building of
habituated individuals. Collection took place during several dry seasons between 2012 and 2013
(Table 1) from four different communities with varying anthropogenic influence.

Hair samples were gathered from two communities in Budongo Forest Reserve: (a) one
community without human impact (control group) and (b) the Kaniyo Pabidi chimpanzee
community (tourist group) that is being visited by tourists more regularly since 2006. Chim-
panzees were usually visited by tourists during two hours per day (one hour during morning
and afternoon) with the number of visitors fluctuating considerably between days and seasons
(own observations). If capacities were available, two tourist field guides would stay with the
chimpanzees for up to five hours per day for further habituation. During the time of sample
collection, the tourist community consisted of more than 90 identified individuals including
babies (tourist field guide Joshua Ezua, pers. comm.). Hair samples for the control and tourist
group were collected during two seasons, one season that reflects lower touristic activity in the
hair (season 1: between November and April) and one that includes the two months peak tour-
ist season (season 2: between June and September).
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Further samples were collected from (c) a small community (27 individuals including eight babies
and juveniles) next to Kasongoire village and approximately 15 km south of Budongo Forest Reserve.
These chimpanzees live in small riverine forest fragments inside the sugar cane plantation of Kinyara
Sugar Ltd. While fresh hair samples from known individuals were collected in September 2012 (rep-
resented time period in hair samples: March-May), the behavior of this group was observed between
April andMay 2012 during 175.5 h using 15min scan sampling with special focus on human-wild-
life interactions in order to identify whether the activity budged of Kasongoire chimpanzees differed
from that of wild habituated groups living in intact forests (Budongo Conservation Field Station—
BCFS unpublished report toWorldWide Fund for Nature—WWF,May 2012). Additional nest
samples were collected from chimpanzee nests in (d) Bugoma Forest Reserve where illegal logging
and hunting (though not of primates) takes place (D.C. Hänni, unpublished data). Bugoma hair
samples reflected similar periods of the year as the control and tourist groups (season 1: November-
March; season 2: July-October, see Table 1 for details on hair collection periods).

From each nest we collected at least 20 single hairs (preferably more than 25 hairs) longer
than 4 cm. Hair samples were picked with flamed tweezers and put into a dry envelope which
was then kept in a sealed plastic container with silica gel until sample preparation. For each
nest we recorded the GPS-coordinates, date of collection, nest height, tree species and nest age.
For nest age estimates, nests were divided into three categories: new nests (leaves mostly green
and flexible), recent nests (leaves green to brown and dry), old nests (leaves brown and partly
decaying). Nest characteristics for each group are listed in Table 1.

Hair cortisol analysis
From each hair, the proximal 0.3 cm of the hair shaft (including hair root for which genetic
analyses is planned) as well as the distal part of hair segments longer than 3.3 cm were cut off
and were excluded from hormone analysis. The remaining 3 cm long hair shafts were prepared

Table 1. Sample characteristics and descriptive statistics for hair cortisol concentrations of hair samples collected from chimpanzee sleeping
nests in Uganda.

Sample characteristics

Study groups Control Tourist Fragment Logging

Season Season 1 Season 2 Season 1 Season 2 Season 1 Season 1 Season 2

Forest Budongo Forest Reserve (FR, intact) Kasongoire (fragment) Bugoma FR (intact)

Sampling location (NE
limit; SW limit)

N1°55.931’E31°44.035’; N1°
55.604’E31°43.768’

N1°55.262’E31°43.276’; N1°
53.906’E31°42.089’

N1°33.898’E31°32.880’;
N1°33.564’E31°32.780’

N1°22.946’E31°04.745’; N1°
14.283’E31°02.385’

Collection period
(estimated time
represented by hair)

07–08.2013
(11–04.2013)

12.2013 (06–
09.2013)

08.2012 (01–
04.2013)

12.2013 (06–
09.2013)

09.2012 (03–05.2013) 07.2012 (11–
03.2012)

02–03.2012
(07–10.2011)

Human impact none (or minimal) Tourist low
season

Tourist high
season

human-wildlife conflict illegal logging + hunting (no
primates)

Number of nests (new
/recent/old)

49(7/21/21) 38(5/27/6) 29(14/11/4) 20(11/9/0) 14(14/0/0) 30(3/3/24) 15(2/6/7)

Nests assigned to
individuals (m/f)

4 (3/1) 20 (17/3) 14 (7/7)

Descriptive statistics

Mean HCC (pg/mg) 0.52 1.63 1.07 1.18 2.35 0.3 0.8

SD 0.55 1.69 0.90 0.87 1.03 0.6 0.9

Minimum 0.04 0.08 0.11 0.19 0.90 0.04 0.04

Maximum 2.63 6.32 4.31 3.21 4.12 1.79 3.48

doi:10.1371/journal.pone.0151870.t001
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for hormone analysis. If more than 60 hairs were available, hair shafts were segmented into
four 1-cm-segments prior to analysis.

The procedures for washing and steroid extraction followed the protocol described by Gao
and colleagues [61], who analyzed hair steroids with liquid chromatography tandemmass spec-
trometry (LC-MS/MS). One change was made to the protocol: The dry residue was resuspended
using 175μL distilled water. Afterwards 100μL, not 150 μL, of the medium were injected into a
Shimadzu HPLC system (Shimadzu, Canby, OR, USA) coupled to an AB Sciex API 5000 Turbo-
ion-spray1 triple quadrupole tandemmass spectrometer equipped with Atmospheric Pressure
Chemical Ionization (APCI) Source (AB Sciex, Foster City, CA, USA). The system was controlled
by AB Sciex Analyst1 software (version 1.5.1). The lower limit of detection was ~0.1pg/mg.
Intra- and inter-plate coefficients of variance ranged between 3.7–8.8%. All samples were pre-
pared and analyzed within the same time period in order to prevent batch effects.

Statistical analysis
HCC data were not normally distributed but approximated normal distribution with Box-Cox
transformation. Thus, transformed data were used for inferential statistics (transformation
coefficient λ = 1/7; [62]).

For methodological investigations, we explored whether the HCC waning effect was present
in chimpanzee shed hair from representative 12 nests and whether nest age had an effect on
HCC using a multilevel model for all i individuals (HCC1/7 = Segment + Individuali) and a
one-way ANCOVA with chimpanzee group as a covariate (HCC1/7 = Nest Age + Chimpanzee
Group), respectively. Throughout all subsequent analyses, nest age was used a covariate.

A two-way (chimpanzee group x season) ANCOVA was carried out to examine the effect of
tourism and logging. A one-way ANCOVA was employed to examine whether forest fragmen-
tation with human-wildlife conflicts increased HCC levels of Kasongoire chimpanzees com-
pared to HCC levels of the nearby Budongo chimpanzees that were sampled during
comparable time periods of the year (season 1 of control and tourist group). All analyses were
performed using R 3.1.3 [63] statistical software.

Results
Sample characteristics and descriptive statistics are presented in Table 1. For estimations on
time periods represented by each hair sample, we subtracted an estimated 10 weeks shedding
time after hair growth stops (on average 2–3 months in humans, [64]) and the estimated nest
age from the date of sample collection. All relevant data for this paper are provided in S1 Table.

Of the 195 nest samples, 48 (19 recent, 29 old nests) were below the detection limit. How-
ever, the following test statistics obtained the same results with or without these samples (data
not shown). Thus, we decided to include them because they still contained valuable informa-
tion (apparently low concentrations).

HCC was significantly different between segments [χ2(3) = 27.7, p< 0.0001, r2 = 0.07] with
HCC decreasing towards the distal end of the hair shaft (Fig 1A). Consequently, only the proxi-
mal three cm of hair were used for analysis in order to control for this waning effect. Further-
more, HCC decreased with increasing nest age [F(2,178) = 20.3, p< 0.0001, r2 = 0.11, Fig 1B].
Planned contrasts indicated that HCC was significantly higher in new vs. recent or old nests [t
(2) = 6.3, p< 0.0001, r2 = 0.95], whereas the difference in HCC was only borderline significant
between recent and old nests [t(2) = 1.85, p = 0.07, r2 = 0.63]. Thus, nest age was included as a
covariate in the following analyses.

The comparison of HCC between tourism and control chimpanzees revealed significantly
higher HCC in season 2 (June-October) in the control chimpanzees [F(3,132) = 32.6,
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p< 0.0001, r2 = 0.16]. Furthermore, a significant effect with small effect size was found for
chimpanzee group [F(3,132) = 4.7, p = 0.03, r2 = 0.05]. However, analyses also showed a signifi-
cant group x season interaction effect [F(3,132) = 11.2, p< 0.01, r2 = 0.05] as a result of ele-
vated HCC levels of the control group during season 2 (tourist high season for tourist group,
Fig 2A). All tests were significant at α = 0.05 with Holm-Bonferroni correction for family wise
error in multiple comparisons.

Comparisons between logging and control groups revealed significant main effects of group
[F(2,129) = 12.0, p< 0.001, r2 = 0.06] and seasonality [F(2,129) = 37.4, p< 0.0001, r2 = 0.18].

Investigations on the effect of forest fragmentation with human-wildlife conflicts between
chimpanzees from Budongo and Kasongoire forest fragment during comparable seasons
revealed significantly elevated HCC in chimpanzees from the fragment group [F(1,88) = 5.0,
p = 0.03, r2 = 0.20; Fig 2B]. The same result was obtained when only new nests were included
into the analysis [F(1,33) = 8.1, p< 0.01, r2 = 0.20].

Discussion
To our knowledge, this is the first study that uses hair cortisol concentrations from shed chim-
panzee hairs recovered from their nests to estimate long-term stress levels in response to
anthropogenic impacts in wild chimpanzees, considering habituated as well as unhabituated
animals. Our results show that HCC can be used to evaluate conservation threats and also per-
mit some methodological conclusions.

Methodological issues
Due to the fact that this is the first study that uses shed hair from sleeping nests, we need to
emphasize the methodological results of this study. HCC stability along the hair shaft revealed
waning cortisol concentrations towards the distal end of hair which resembles our results on

Fig 1. Illustration of (a) waning and (b) nest age effect on hair cortisol concentration. (a) Line plot illustrating hair cortisol concentrations (HCC) along
four consecutive 1-cm-segments. Data are shown for a representative subsample from 12 chimpanzee sleeping nests with different nest age classes. HCC
was significantly different between segments [χ2(3) = 27.7, p < 0.0001, r2 = 0.07] with HCC decreasing towards the distal end of the hair shaft. (b) Boxplots
with 1.5 IQR showing HCC from 181 sleeping nests depending on the age class of the nest during hair sampling. Planned contrasts indicated that HCC was
significantly higher in new vs. recent and old nests [t(2) = 6.3, p < 0.0001, r2 = 0.95] whereas HCC was only borderline significant between recent and old
nests [t(2) = 1.85, p = 0.07, r2 = 0.63].

doi:10.1371/journal.pone.0151870.g001
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semi-wild sanctuary chimpanzees [29] and is similar to results on human hair [28]. The pres-
ent data furthermore resemble our prior results on chimpanzees showing that HCC do not
decline towards zero but stabilizes towards an asymptotic concentration that depends on the
initial HCC. This indicates that we can limit the influence of this waning effect on our results
by using a fixed length of hair within and between samples, which is why we used the proximal
3 cm of hair throughout this study.

We also found a significant effect of nest age on HCC. Nest age and waning effects resemble
each other as HCC decrease with time. UV-irradiation and water are most frequently suggested
to cause the waning effect [22,29,30,65]. However, all hair samples were collected during dry
seasons (even though older nests may have experienced rain) and additionally, shed hairs in
nests were only seldom directly exposed to sunlight, especially in older nests where most hair
was found beneath the nest surface. Thus, it remains to be investigated whether the HCC
decrease in both effects are caused by the same or by different factors. Nevertheless, it is a
promising fact that comparing the fragment living chimpanzees with the Budongo chimpan-
zees we could explain the same amount of variance regardless of whether we used all nests and
controlled for nest age or whether we used new nests only (Fig 2). Consequently, we can use
hair from older nests, but we have to control for nest age.

A general concern about interpretations on group stress levels from GC hormones arises
from our finding that two out of three investigated groups showed significant seasonal differ-
ences besides the fact that our hair samples reflected a time interval of approximately three
months. Storage time cannot explain this effect because in the Bugoma samples (logging
group), earlier samples exhibited higher HCC, compared to the opposite effect in the control
group from Budongo forest, and no seasonal differences in the tourist group (Table 1).

Fig 2. Differences in hair cortisol concentrations between seasons and chimpanzee communities with diverse anthropogenic impacts.
Residualized mean hair cortisol concentrations (accounting for nest age effect) with 95% CI in different chimpanzee groups and seasons. (a) Chimpanzees
did not exhibit significantly more cortisol due to tourism or logging in comparison to the control group without human contacts. A significant effect of
seasonality [F(2,129) = 37.4, p < 0.0001, r2 = 0.18] was presumably unrelated to human impacts. (b) The comparison of hair cortisol concentration between
chimpanzees living in an intact forest and those in a forest fragment with severe human-wildlife conflicts revealed significantly elevated HCC in the latter
group [F(1,88) = 5.0, p = 0.03, r2 = 0.20].

doi:10.1371/journal.pone.0151870.g002
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Nutritional stress could be an explanation, although Newton-Fisher [66] found no seasonal
food scarcity in the nearby Sonso community. Despite this finding, forest guides at Kaniyo
Pabidi stated that July and August are associated with low fruit availability during which the
tourist chimpanzees, that are not food provisioned, move away from their core area into a for-
est–bush land mosaic where they have access to leguminous fruits. At the same time, it is
known from nest sightings that the unhabituated control community partly uses the core area
of the tourist community which is then not visited by tourists or guides (Joyse Tuhaise, pers.
comm.). While these indications are not enough to prove that the seasonality effect arises from
temporal nutritional stress, it highlights the jeopardy to over interpret group differences in GC
levels based on only one season, even though hair from chimpanzees represented a three
months time period.

One great advantage of monitoring long-term stress through cortisol concentration in shed
hair from chimpanzee nests is that it allows investigations on completely non-habituated chim-
panzees. However, this advantage comes with a lack in knowledge about the number of indi-
viduals that were sampled for most of our groups (except for the fragment community and the
tourist community in the second season, Table 1). In fact, it is likely that single individuals
were sampled more than once even though we tried to minimize this risk by avoiding the sam-
pling of neighboring nest groups with similar ages. Having no further information about the
animals may also be problematic because it does not allow to control for a potential effect of
higher HCC in males than in females that was found in semi-wild sanctuary chimpanzees [38],
although not for the seven male and seven female chimpanzees of the Kasongoire fragment
community in the present study (data not shown). One last inaccuracy of this method derives
from the fact that female chimpanzees can share their nests with their infants and juveniles up
to an age of seven years [67]. While it seems to be possible to recognize infant hairs that are
thinner, shorter and sometimes wavy (own observations) samples from females are likely to be
mixed with that of juveniles. However, because females are unlikely to be without a baby or
juvenile once they have reached sexual maturity, this inaccuracy should be equal across all
groups.

Conservation results
Our results suggest that chimpanzees which are regularly visited by tourists showed no sea-
sonal differences and were not more stressed than the non-habituated neighboring control
community. Instead, the significant interaction effect showed elevated HCC in the control
group during the high-tourist season, even though this control group had no contact to tourists
at any time. Thus, other group-associated stressors, for example temporary instability of hierar-
chy, might have a larger impact on chimpanzee group stress levels than tourism in Kaniyo
Pabidi. Regarding other great ape studies, Muehlenbein and colleagues [47] showed similar
results in two orang-utans, whereas Shutt and colleagues [18] found that western lowland goril-
las exhibited slightly increases GC levels in feces due to tourism even if animals were long-term
habituated. The same study also revealed that GC levels in the tourism group especially
increased if visitors violated the 7 m distance rule. Although systematic observations are miss-
ing in our study, our experience was that field guides in Kaniyo Pabidi ensured that visitors
would not get closer than 10 m to the chimpanzees as proposed by guidelines for “good eco-
tourism” [68]. On the other hand, the very conservative restrictions suggested by Williamson
and Macfie [68] were not met concerning the maximum number of tourists per group (2 x 6
instead of 4) and number of visits allowed per day (2 or more instead of 1). However, these
restrictions are not based on scientific evidence for chimpanzee needs and in addition, chim-
panzees may be generally more robust towards the presence of tourists than other great apes,
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because their fission-fusion-system [69] increases the likelihood that tourists do not always
encounter the same animals. Nonetheless, more investigations at different tourism sites and
more control groups are needed to draw final conclusions on the effect of ecotourism on
chimpanzees.

Our study revealed significantly increased HCC in the Kasongoire fragment community.
Activity budgets can be seen as a first indicator on whether or not groups can adjust to adverse
living conditions. For example, elevated fecal glucocorticoid levels in black howler monkeys liv-
ing in a forest fragment was associated with increased travel activity which was interpreted as a
reflection of suboptimal food resources [49]. In comparison, Kulp and Heymann [70] found
that the activity budget of titi monkeys living in secondary forests and along forest edges were
similar. Thus, the authors concluded that forest edges were unproblematic to the animals.

The activity budget of the Kasongoire fragment community (feeding—47%, resting—34%,
travelling—11%, grooming each other—3% or themselves—2%, drinking—~1%, playing—
~1%, within-group aggression ~0.4%, BCFS unpublished report to WWF, 2012) during the
time that is represented by our hair samples was highly comparable with that of other long-
studied chimpanzees in intact forests (Gombe: [71]; Taï: [72,73], Sonso-Budongo: BCFS
unpublished report to WWF, 2012). Thus, there was no indication of food scarcity or hierarchy
instability that could explain the elevated stress levels found in this group. However, unlike
chimpanzees in natural environments, the Kasongoire community was regularly observed crop
raiding on the sugar cane plantation of Kinyara Sugar Ltd. (21% of their time feeding) as well
as frequently raiding private homesteads. While chimpanzees were not charged feeding in the
sugar cane plantation, villagers were observed sending their dogs after the chimpanzees, shout-
ing or throwing stones at them. The report furthermore mentions that these chimpanzees have
occasionally attacked humans, especially children between 2009 and 2011. Thus, villagers were
negatively predisposed towards chimpanzee conservation in this area [BCFS unpublished
report to WWF, May 2012]. In sum, the BCFS report strongly support the assumption that the
increased stress levels in the Kasongoire community found in the present study may reflect
human-chimpanzee conflict, although more data is needed to draw final conclusions. This
shows the importance of physiological measures in addition to behavioral data as an indicator
of animal well-being.

Regarding the impact of logging activity on Bugoma chimpanzees, we found that these
chimpanzees exhibited significantly lower HCC than the control group in Budongo forest.
However, we should avoid over-interpreting this result because the actual effect was small and
future studies would need to include detailed spatial data on the severity of logging activity in
the different sampling areas.

Conclusion
In conclusion, this study shows that measuring cortisol concentrations from shed hair found in
nests is a powerful tool for the assessment of long-term stress levels in wild chimpanzees and
can help to understand the severity of anthropogenic impacts regardless of the animal’s habitu-
ation status if confounding effects on HCC are considered. Our results suggest that tourism in
Kaniyo Pabidi (Uganda) did not lead to significantly elevated stress levels in chimpanzees
whereas we found markedly increased HCC, indicating reduced welfare and potentially
reduced fitness, in a chimpanzee community that lived in a forest fragment with severe
human-wildlife conflicts. We recommend that future investigations always include data col-
lected in multiple seasons and attempt to sample multiple communities in both the treatment
and the control categories, so as to account for the currently poorly understood variation in
HCC across seasons and groups.
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