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Optimal Experimental Design for Filter Exchange
Imaging: Apparent Exchange Rate Measurements in the
Healthy Brain and in Intracranial Tumors

Bj€orn Lampinen,1* Filip Szczepankiewicz,1 Danielle van Westen,2,3 Elisabet Englund,4

Pia C Sundgren,2,3 Jimmy L€att,3 Freddy Ståhlberg,1,2 and Markus Nilsson5

Purpose: Filter exchange imaging (FEXI) is sensitive to the

rate of diffusional water exchange, which depends, eg, on the

cell membrane permeability. The aim was to optimize and ana-

lyze the ability of FEXI to infer differences in the apparent

exchange rate (AXR) in the brain between two populations.

Methods: A FEXI protocol was optimized for minimal mea-

surement variance in the AXR. The AXR variance was investi-

gated by test-retest acquisitions in six brain regions in 18

healthy volunteers. Preoperative FEXI data and postoperative

microphotos were obtained in six meningiomas and five

astrocytomas.

Results: Protocol optimization reduced the coefficient of varia-

tion of AXR by approximately 40%. Test-retest AXR values were

heterogeneous across normal brain regions, from 0.3 6 0.2 s�1

in the corpus callosum to 1.8 6 0.3 s�1 in the frontal white mat-

ter. According to analysis of statistical power, in all brain regions

except one, group differences of 0.3–0.5 s�1 in the AXR can be

inferred using 5 to 10 subjects per group. An AXR difference of

this magnitude was observed between meningiomas (0.6 6 0.1

s�1) and astrocytomas (1.0 6 0.3 s�1).

Conclusions: With the optimized protocol, FEXI has the ability

to infer relevant differences in the AXR between two popula-

tions for small group sizes. Magn Reson Med 77:1104–1114,
2017. VC 2016 The Authors Magnetic Resonance in Medi-

cine published by Wiley Periodicals, Inc. on behalf of Inter-

national Society for Magnetic Resonance in Medicine. This
is an open access article under the terms of the Creative
Commons Attribution-NonCommercial-NoDerivs License,
which permits use and distribution in any medium, pro-
vided the original work is properly cited, the use is non-
commercial and no modifications or adaptations are
made.
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INTRODUCTION

Diffusion-weighted imaging (DWI) probes tissue proper-
ties on the microscopic level (1). Physiologically impor-
tant parameters such as the density and diameter of
axons can be estimated by modeling the effect of the cel-
lular environment on diffusion-weighted data (2–5).
Such modeling generally assumes that water is confined
within intra- and extracellular compartments, separated
by cell membranes. However, water exchange takes place
between the compartments, either directly through the
lipid bilayer or facilitated through so-called aquaporins
(AQP) (6,7). The exchange rate is proportional to the cell
membrane permeability to water (8,9), which is impor-
tant for cell volume regulation (10) and for conditions
involving edema such as tumors, infection, and stroke
(11,12). In aggressive tumors, AQP upregulation has been
demonstrated (13–15). Quantification of exchange rates
by MRI may yield a biomarker that is sensitive to altera-
tions of cell membrane permeability, and offer improved
diagnostics and more adequate treatment.

Conventional DWI is based on the single-diffusion
encoding (SDE) experiment, and the data acquired are
typically analyzed by methods such as diffusion tensor
imaging (DTI) or diffusion kurtosis imaging (DKI), which
do not account for effects of exchange. It is possible to
estimate the exchange rate of water between compart-
ments using SDE by acquiring data using multiple diffu-
sion times and applying a modified K€arger model
(16–18). However, this approach has the limitation that
the effects from exchange and restricted diffusion are
entangled. With increased diffusion time, effects from
exchange increase the attenuation for high b-values,
whereas effects from restriction reduce it (18). For higher
specificity to exchange, a double-diffusion encoding
(DDE) sequence can be employed (9,19). Filter exchange
imaging (FEXI) is a DDE-based method implemented for
clinical use that yields the apparent exchange rate (AXR)

1Department of Clinical Sciences Lund, Medical Radiation Physics, Lund
University, Lund, Sweden.
2Department of Clinical Sciences Lund, Diagnostic Radiology, Lund Univer-
sity, Lund, Sweden.
3Department of Imaging and Function, Skåne University Healthcare, Lund,
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(20). The advantages of estimating AXR rather than using
the K€arger model were discussed previously (20).

The AXR is sensitive to changes in membrane perme-

ability (9,20), and has been measured in the healthy

human brain and a meningioma brain tumor (21). In

fixed monkey brain, a tensor-based AXR analysis has

been explored (22). Preliminary data showed that the

AXR is sensitive to altered gene expression of the urea

transporter (23). The FEXI method has also been applied

to investigate breast tumor cells (24). The FEXI method

has great promise, but its reproducibility in a clinical

setting has not yet been studied. In this study, we aimed

to optimize and analyze the ability of FEXI to infer dif-

ferences in the AXR in the brain between two popula-

tions in clinical studies. We took three steps to meet this

aim. First, we optimized a FEXI protocol for minimal

AXR variance caused by measurement noise. Second, we

investigated the AXR variance in the normal brain by

performing a test-retest study on healthy volunteers,

using the optimized protocol. Third, we obtained FEXI

data from patients with meningiomas and astrocytomas

to demonstrate that the AXR is sensitive to their micro-

structural differences (25).

THEORY

Filter Exchange Imaging

The FEXI pulse sequence is illustrated in Figure 1. It is

based on a stimulated-echo DDE sequence with two

pulsed gradient spin-echo (PGSE) blocks separated by a

mixing time (tm) and followed by an echo-planar imaging

(EPI) block. The diffusion weighting factor (b) of the

PGSE blocks is given by b¼ (ggd)2td, in which g is the

nuclear gyromagnetic ratio and td is the effective diffu-

sion time (td¼D – d/3) of the gradient pairs with ampli-

tude g, duration d, and separation between the leading

edges D, and correspondingly for the b-value of the first

block (bf).
To derive the FEXI model (20), we assume that water

exists in two compartments with approximately Gaus-

sian diffusion and equal longitudinal and transversal

relaxation rates, but different apparent diffusivities,

denoted as “slow” (Ds) and “fast” (Df), respectively.

Water molecules in the slow and fast compartments con-

tribute with equilibrium fractions of the MR signal (f
eq
s

and f
eq
f ), where f

eq
s þ f

eq
f ¼ 1. In the presence of diffusion-

encoding gradients, the signal attenuation in each com-

partment is determined by its apparent diffusion coeffi-

cient (ADC). In FEXI, the diffusion weighting of the first

PGSE block (the “filter block”) will therefore preferen-

tially attenuate, or “filter out,” the signal from the fast

compartment, which results in apparent signal fractions

that are perturbed from equilibrium (f
0
s > f

eq
s and f

0

f < f
eq
f ).

During the mixing time, exchange takes place between

the compartments, which at tm will have restored f
0

f

toward f
eq
f according to

f
0

f ðtmÞ ¼ f
eq
f � ½f

eq
f � f

0

f ð0Þ�expð�tm½ksf þ kfs�Þ; [1]

where ksf and kfs are the forward and reverse exchange

rates between the slow and the fast compartment, and

f
0

f (0) is the fast fraction immediately after the filter (9).

Due to mass balance, ksf and kfs are related to the frac-

tions according to fsksf¼ ffkfs. The durations of the

diffusion-encoding blocks are assumed to be short enough

for significant exchange to take place only during tm (9).

The diffusion weighting of the second PGSE block (the

“detection block”) is used to estimate the ADC, which

depends on the fractions, and thus tm, according to

ADC0ðtmÞ ¼ Ds½1� f
0

f ðtmÞ� þ Df f
0

f ðtmÞ: [2]

Rather than using the K€arger model to obtain Ds, Df,

f
eq
s , f

eq
f , and the exchange rate k¼ ksfþ kfs (9), FEXI meas-

ures the response to tm in the initial, approximately

monoexponential, decay of the signal. This decay is pro-

portional to ADC’(tm), which is given by

ADC0ðtmÞ ¼ ADC½1� sexpð�AXRtmÞ�; [3]

where ADC is the apparent diffusion coefficient at equi-

librium, s¼ 1 – ADC’(0)/ADC is the filter efficiency, and

AXR is the apparent exchange rate. In a two-

compartment system, AXR¼ k. In a multicompartment

system, the AXR approximates the “mean exchange” in a

similar way to how the ADC approximates the “mean

diffusivity” (20). The MR signal at tm is given by

Sðb; tmÞ ¼ S0ðtmÞexpð�bfADCÞexpð�bADC

½1� s expð�AXRtmÞ�Þ;
[4]

where S0(tm) is the relaxation-weighted signal without

diffusion encoding (21). The minimal sampling require-

ment to fit Eq. 4 and estimate ADC, s, and AXR is a

combination of two different b with two different tm.

Additionally, ‘unfiltered’ data acquired with bf¼ 0 must

be obtained for some number of tm to estimate the equi-

librium ADC.

Statistical Power and Parameter Variance

We describe two concepts related to the analysis of the

test-retest data: analysis of statistical power, and parti-

tioning variance contribution between intersubject differ-

ences within the population and measurement noise.

FIG. 1. Illustration of the FEXI pulse sequence. FEXI employs a
stimulated echo DDE sequence. The two diffusion-encoding

blocks, the “filter” and the “detection” block, have gradient
strengths g, diffusion weightings bf and b, and gradient timing
parameter pairs (Df, df) and (D, d), respectively. The magnetization

is stored longitudinally during the mixing time (tm) by the second
90� pulse, and then refocused by a third 90� pulse. Spoiler gra-

dients dephase the magnetization excited by the extra 90� pulses.
After the detection block, the signal is acquired by echo-planar
imaging (EPI, with readout time tEPI).
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The power of a statistical test (p) that compares a

parameter between two groups is the probability of the

test to find an effect with significance (a) in the presence

of a true difference. It depends on the effect size (such as

a difference in means, Dl), the variance of parameter

observations (V), and the group sizes (n, assuming they

are equal). In the analysis of statistical power, any of

these quantities (a, p, Dl, V, and n) can be calculated for

a given type of test by fixing the values of the others

(26). This is useful in study design to ensure that group

sizes are sufficiently large to assess an effect of known

(or hypothesized) size.
In a population, the variance of parameter observations

depends on both the intersubject variance (VI) about the

population mean (l), and on the variance introduced by

measurement noise (VM). In a two-level random effects

model for an observation Yij on subject i � [1. . .I], in the

repeated measurement j � [1. . .J], this is expressed as

Yij ¼ mþ ei þ ej; [5]

where ei and ej are the subject and measurement level

errors, respectively (27). The total variance is V¼
Var(Yij)¼Var(ei)þVar(ej)¼VIþVM, assuming Cov(ei,

ej)¼ 0. Provided data from at least two measurements

(J> 1), both VI and VM can be estimated. The relative

variance contribution from measurement noise may then

be estimated as RVM¼VM/(VIþVM)¼VM/V (28). It is a

measure of the degree to which statistical power can be

increased, and the required group sizes minimized,

through experimental improvements such as protocol

optimization.

METHODS

Protocol Optimization

We aimed to optimize a FEXI protocol for minimal var-

iance in AXR caused by measurement noise (VM). To

reach this aim, we followed the concepts introduced by

Alexander (29), and minimized an objective function

based on the Cram�er-Rao lower bound (CRLB) of the

AXR. For estimates of a given model parameter in an

unbiased model, the CRLB is a lower bound for VM

(30,31). It is expressed analytically based on the signal

model (Eq. 4 for FEXI), a noise model, and the experi-

mental protocol. In the following, we describe two

aspects of our approach: the FEXI protocol and the

CRLB-based protocol optimization.

The FEXI protocol

With “protocol” we refer to the set of values for experi-

mental parameters used during acquisition, such as the

filter strength (bf), the detection b-value (b), and the mix-

ing time (tm). In our implementation, the acquisition

loop obtains all detection b-values and diffusion-

encoding directions for all mixing times, in which at

least one mixing time is unfiltered (bf¼ 0). In the optimi-

zation, we simplified the protocol by considering only

two different b and tm. This approach is unlike that of

the previously presented protocol, which used a range of

tm (21). We also fixed the values of the short tm (tmin
m ¼ 16

ms) and the low b (bmin¼ 40 s/mm2), to maximize the

signal-to-noise ratio (SNR) while allowing the spoiling of

unwanted echoes. The unfiltered acquisitions always

used the shortest tm to maximize the SNR.
The parameters left to the optimization were bf, the

high b (bmax), the long tm (tmax
m ), the number of repeti-

tions at the low and high b (#bmin and #bmax), the num-

ber of repetitions at the short and long tm (#tmin
m and

#tmax
m ), and the number of unfiltered mixing time repeti-

tions (#b0
f ). In addition, the maximal gradient amplitude

(g) and the EPI readout time (sEPI) were kept free, yield-

ing a total of 10 optimization parameters. The effective

number was nine, however, due to the following rela-

tion: Taq/TR¼ndir(#bminþ #bmax)(#tmin
m þ#tmax

m þ #b0
f ),

where Taq is the acquisition time, ndir is the number of

diffusion-encoding directions, and TR is the repetition

time. The full set of optimization parameters is presented

in Table 1, with allowed intervals. The upper limits for

b and bf were set to 1300 s/mm2 to comply with the

FEXI method of observing the initial decay of the signal-

to-b curve. The upper limit for g (80 mT/m) reflects the

constraints of the testing system. Other constraints were

Taq� 15 min, nslice¼ 7, and ndir¼ 6.

CRLB-Based Optimization

To optimize the protocol, we constructed an objective

function based on the coefficient of variation (CV) of the

AXR (CV¼V
1=2
M /AXR), and used the CRLB of the AXR to

approximate VM. The CRLB is obtained from the Fisher

information matrix (F), which, assuming a Gaussian

noise distribution, has the elements

Table 1
Optimization Parameters of the FEXI Protocola

Parameter Interval Optimum

bf (s/mm2) 200�1300 830
bmax (s/mm2) 200�1300 1300

tmax
m (ms) 200�800 442

#bmin 1�10 3
#bmax 1�10 6

#tmin
m 1�10 2

#tmax
m 1�10 2

#b0
f 1�10 1

g (mT/m) 40�80 80
tEPI (ms) 30�100 63

Taq (s) �900 780
ndir 6
nslice 7

aThe FEXI optimization parameters, together with some constraint
parameters (Taq, ndir, nslice), are presented with allowed intervals

and found optima. The optimized protocol reduced the CV of the
AXR by approximately 40%, compared with the previously pre-

sented protocol (21), corresponding to a more than 60% reduction
in Taq. Main differences include using only two different tm and a
higher bmax. The most important hardware limitation was the max-

imal gradient amplitude (g).
Note: bf, filter strength; bmax, high detection b-value; tmax

m , long

mixing time; #bmin/max, number of repetitions at bmin/max; #t
min=max
m ,

number of repetitions at t
min=max
m ; b0

f , number of mixing time repeti-
tions in which bf¼0; g, maximal gradient amplitude; sEPI, EPI

readout time; Taq, acquisition time; ndir, number of diffusion-
encoding directions; nslice, number of slices.
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Fij ¼ s�2
n

XK

k¼1

@Sk

@mi

@Sk

@mj
; [6]

corresponding to the model parameters mi and mj. Here,
sn is the noise standard deviation and Sk is the predicted
signal for the kth set of protocol parameters (Eq. 4). The
CRLB of model parameter mi is the ith diagonal element
of the inverse F: CRLBi¼ (F-1)ii (29).

The assumption of Gaussian noise in Eq. 6 is valid for
SNR values above �2 (32). To avoid protocols yielding
an SNR near this limit, we introduced a penalty factor
based on the minimum SNR of all measurement points
(SNRmin), according to fP¼ 1þ (f max

P � 1) � (1þ exp[a
(SNRmin � SNRtol)])

�1, where a¼ 6, f max
P ¼ 10 and

SNRtol¼ 3.
The full objective function was obtained by averaging

the SNR-penalized CV estimate over priors calculated
from the two-compartment exchange model (33) (Ds, Df,
ff, and the exchange time ti¼ 1/ksf) according to

OF ¼ 1

IJKL

XI

i ¼1

XJ

j ¼1

XK

k ¼1

XL

l ¼1

CRLBðDs
i; Df

j; ff
k ; ti

lÞ1=2

AXRðff
k ; ti

lÞ fPðSNRijkl
minÞ

" #
:

[7]

The interval for the exchange time was postulated, ti

� [1.0, 4.0] s, whereas the other priors were based on
previous studies of white matter (34–36): Ds � [0.1, 0.3]
mm2/ms, Df � [0.9, 1.3] mm2/ms, and ff � [0.4, 0.7].

In the calculations, the SNR of the nondiffusion-
encoded signal (S0 in Eq. 4) was set to a reference value
(SNRref¼ 40) and rescaled based on departures from cor-
responding reference values of the echo times of the fil-
ter and detection blocks (TEfref¼39 ms and TEref¼ 53
ms), the repetition time (TRref¼ 2500 ms), and the EPI
readout time (sEPIref¼ 63 ms) (21). The scaling was given
by

SNR ¼ SNRref � FTEfTE � FTR � FtEPI; [8]

where

FTEfTE ¼ exp
�
½ðTEfref � TEfÞ þ ðTEref � TEÞ�=T2

�
; [9]

FTR ¼ ½1� expð�TR=T1Þ�=½1� expð�TRref=T1Þ�; and [10]

FtEPI ¼ ðtEPI=tEPIrefÞ1=2: [11]

The relaxation time constants were given fixed values,
T1/T2¼ 700/50 ms/ms, which were both low compared
with values reported in white matter (35,37,38), but cho-
sen to err on the safe side of low SNR (FEXI loses SNR
for short T1 due to relaxation during tm). Calculation of
the echo times were based on g and sEPI, according to
TEf¼2[df(g,bf)þ tRF] for the filter block with gradient
duration df, and TE¼ 2[d(g,b)þ tRFþ (HF – 0.5) sEPI] for
the detection block with gradient duration d. Here, tRF is
the duration of the inversion pulse (8 ms) and HF is the
half scan factor (0.7). The repetition times were

calculated as TR¼ tmnsliceþTR0, where TR0¼nslice

(TEfþTE)�33g. The last inequality modeled duty-cycle

restriction and had to be incorporated to execute the pro-

tocol with our software implementation. Improving the

implementation may make it less restrictive.
The objective function was minimized using the sto-

chastic self organizing migrating algorithm (SOMA,

http://www.ft.utb.cz/people/zelinka/soma/). SOMA ran-

domizes a population of guess vectors of the optimiza-

tion parameters, based on their allowed intervals. A

number of “migrations” are performed, in which the best

guess (according to the objective function) is identified

as the “leader,” toward which the rest of the population

performs randomized steps (migrations). SOMA was exe-

cuted six times with default settings, but with 100 migra-

tions for a population size of 18, after which the best

protocol was chosen.
To assess the optimization yield, we considered the

ratio of the CRLB-based CV estimate of the optimized

protocol versus that of the previously presented protocol

(21). Seeing that the protocols had different Taq, the ratio

was corrected with (Taq
new/T

aq
old)1/2, using SNR / (Taq)1/2.

The obtained metric corresponds to the change in CV

assuming equal Taq.

Methodological Validations

We validated the CRLB-based CV estimate by comparing

it with the CV estimated in a simulation procedure. A

synthetic data set of 104 samples was created by adding

Rice-distributed noise to the signal (Eq. 4) using a fixed

SNR. The AXR standard deviation was then estimated

from the set of AXR values obtained by fitting the model

to each of the samples. The comparison was performed

for AXR ground-truth values between 0.1 and 5.0 s�1,

whereas the other model parameters were fixed

(ADC¼ 0.7 mm2/ms and s¼0.3).
It is well known that ADC is optimally estimated using

only two b-values (39). Here, this was assumed also for

tm in AXR estimation, as it can be seen as a series of

exponential fits using first b and then tm. We tested the

assumption by studying how the objective function was

affected when protocols were modified to include a third

mixing time (tmid
m ).

To assess the importance of the gradients for the opti-

mal protocol, we also executed the full optimization pro-

cedure with an upper limit of g of 40 mT/m.

Furthermore, to examine the sensitivity of the optimized

protocol to changes in parameter values, we studied how

the objective function (Eq. 7) changed over the optimiza-

tion ranges of bf and bmax (Table 1).

FEXI Acquisition and Postprocessing

FEXI data were acquired on a Philips Achieva 3 Tesla (T)

system (Amsterdam, Netherlands), equipped with 80 mT/

m gradients with a maximum slew rate of 100 mT/m/ms

on axis and an eight-channel head coil, using the

sequence implementation of Nilsson et al (21) and the

optimized protocol. Seven contiguous axial slices were

obtained at the spatial resolution of 3	 3	 5 mm3, with

TEf/TE/TR¼ 39/66/2000 ms/ms/ms, yielding Taq¼13 min.
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The timing parameters of the filter and detection blocks
were df/d¼ 11/10 ms/ms and Df/D¼31/31 ms/ms.

Data were obtained from 18 healthy volunteers (9
male, 9 female, age 30 6 7 years, mean 6 standard devia-
tion), a group of 6 meningioma patients (all female, age
59 6 5 years), and a group of 5 astrocytoma patients (4
male, 1 female, age 45 6 11 years). All tumor patients
were scanned before surgical excision. In the volunteers,
FEXI data were obtained twice in the same session to
assess the test-retest variability. Additionally, we
acquired whole-brain DTI data, fluid-attenuated inver-
sion recovery (FLAIR), and T1-weighted (T1W) images.
The FLAIR and T1W images were coregistered to the
FEXI data using the Elastix software package (40,41).
The study was approved by the Regional Ethical Review
Board at Lund University, and all subjects gave written
informed consent.

The FEXI image volumes were corrected for motion
and eddy currents with Elastix, using an extrapolation-
based approach (42). To ensure a rotationally invariant
metric, the data were averaged arithmetically across the
diffusion-encoding directions before model fitting. Previ-
ous papers on exchange imaging have used either geo-
metric averaging (21,43), which is more sensitive to
noise than the arithmetic average, or a tensor-based
approach (22), which demands higher SNR than avail-
able at our clinical scanner. For region of interest (ROI)
based analysis, the signal vectors were also averaged
across the ROI voxels. Maps of the FEXI model parame-
ters were obtained by fitting Eq. 4, and keeping S0 as a
free parameter for each tm.

Test-Retest Study

In the analysis, the test-retest data were obtained from
six ROIs defined manually on directionally encoded
color (DEC) maps. The ROIs are illustrated for one volun-
teer in Figure 2, and were positioned in the anterior
corona radiata (ACR), the anterior limb of the internal
capsule (ALIC), the genu and splenium of the corpus cal-
losum (CC), the cerebrospinal tract (CST), the lentiform
nucleus (LN), and the thalamus (TH). Regional specific-
ity took precedence over ROI volume. ADC, s, and AXR
were estimated in the ROIs and described with respect
to mean and standard deviation, calculated from all
2	 18 measurements. Additionally, for the AXR, the CV
was calculated and the paired test-retest data were used
to calculate RVM. Finally, for each ROI and multiple
AXR effect sizes, the estimated V of AXR estimates were
used to calculate the group sizes required to achieve a
statistical power of 0.8 at a¼ 0.05. In this calculation,
we assumed groups with equal n and V.

Intracranial Tumor Study

The solid part of each tumor was defined manually on
the ADC map, guided by the coregistered T1W and
FLAIR images. ROI volumes were between 57 and 179
voxels for meningiomas and 29 and 150 voxels for astro-
cytomas. ADC, s, and AXR were estimated in each ROI
and compared between the tumor groups using the Stu-
dent’s t-test and the Mann-Whitney U-test (both Bonfer-
roni corrected for the three comparisons).

After surgical excision, the specimens were paraffin-

embedded and fixed in 4% buffered formaldehyde solu-

tion. Sections of 4 mm were stained with hematoxylin-

eosin for visualization of tissue structure and cell mor-

phology. The tumors were assessed neuropathologically,

and microphotos were obtained from the specimens

using an Olympus BX50 (Tokyo, Japan).

RESULTS

Protocol Optimization

The optimized protocol is presented in Table 1. Com-

pared with the protocol used by Nilsson et al (21), the

CV of the AXR was reduced by approximately 40%,

assuming equal Taq. Noteworthy changes include the use

of only two different tm (16 and 442 ms) rather than

including a range of intermediate values, and using a

higher bmax (increased from 900 to 1300 s/mm2) (21).

The optimized protocol featured the upper limit for bmax

and for the maximal gradient amplitude g (80 mT/m).

Methodological Validations

Figure 3a compares the CRLB-based CV estimate (black)

to the simulated CV (red). The CRLB-based estimate

yielded a negligible overestimation for AXR <2 s�1, and

a moderate underestimation for AXR between 3–5 s�1,

but overall the two metrics showed good agreement.
The rationale for using only two different mixing times

is shown in Figure 3b, where the CV of the AXR of a

modified protocol is plotted against the percentage of

samples obtained with tmid
m . For all investigated proto-

cols, we observed that adding samples at any tmid
m leads

to an increased CV.

FIG. 2. The six ROIs used in the test-retest study, with data from
one volunteer. ROIs were defined manually on DEC maps: the

anterior corona radiata (ACR, dark red), the anterior limb of the
internal capsule (ALIC, dark green), the genu and splenium of the
corpus callosum (CC, dark blue), the cerebrospinal tract (CST,

light red), the lentiform nucleus (LN, light green), and the thalamus
(TH, light blue).
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In the optimization executed with a reduced upper
limit of g (40 mT/m), the obtained protocol still featured
the maximal allowed value of g, whereas tmax

m settled at a
slightly lower value of 378 ms, and bf and bmax were
reduced to 660 and 1100 s/mm2, respectively. Also, TEf

and TE increased by 30 and 20%, respectively, and the
CV almost doubled as a consequence.

Figure 3c shows the change of the objective function
(Eq. 7) over the optimization ranges of bf and bmax. The
labeled contours show the percentage increase compared
with the optimized protocol (marked by a star). CV
changes were small (<10%) for bf � [600, 950] s/mm2

and bmax � [1000, 1300] s/mm2.

Test-Retest Study

Figure 4 shows maps of ADC, s, and AXR from one of the
volunteers. The AXR map exhibits a heterogeneous con-
trast in the brain that was seen in many of the volunteers,
including the previously observed distinctively high val-
ues in the frontal white matter (21). The test-retest results

for the parameters are presented in Table 2, with ROI
means and standard deviations, and values of CV and
RVM for the AXR. The mean AXR values varied substan-
tially across the ROIs, being high in the ACR, intermediate
in the TH, the LN and the ALIC, and low in the CST and
the CC. The AXR estimates exhibited relatively high val-
ues of the CV, with a median of 41%. Values of RVM were
also high, meaning that most of the variance was induced
by the measurement rather than from the population. The
observed test-retest repeatability of the AXR is illustrated
in Figure 5 by a scatter plot (left) and a Bland-Altman plot
(right), with test-retest data pairs color-coded by ROI. The
scatter plot shows AXRtest versus AXRretest, which were
clustered by ROI and correlated well. In the Bland-Altman
plot, the test-retest AXR difference is plotted against the
test-retest AXR mean. A significant test-retest bias was
observed in the ACR (12%, Bonferroni corrected for the
six comparisons).

Analysis of statistical power indicated that, in a ROI
analysis, group mean differences in the AXR of 0.3–0.5

FIG. 3. (a) Validation of the CRLB-based CV estimate (black) by comparison with the CV estimated in a simulation experiment (red). The val-
ues for ADC and s were fixed (ADC¼0.7 mm2/ms and s¼0.3). The CRLB-based estimate yielded a moderate underestimation for AXR val-

ues between 3 and 5 s�1, but was generally accurate. (b) Validation of the assumption that using only two different tm is optimal for AXR
estimation. The curves show how the CV of the AXR was affected when the optimized protocol was altered to obtain different percentages

of samples at a third mixing time (tmid
m ). For each value of tmid

m , the CV increased monotonically with increased time spent sampling it. (c)
Investigation of the performance sensitivity of the optimized protocol to changes in bf and bmax. The objective function (Eq. 7) was plotted
over the ranges used in the optimization. The labeled contours show the percentage increase in CV from the optimized protocol (star).

FIG. 4. Maps of the FEXI model parameters ADC, s, and AXR from one volunteer, all gamma corrected with g¼0.7. The s parameter is

the filter efficiency, which shows the degree to which ADC is reduced by the action of the filter block. The heterogeneous contrast in
the brain of the AXR map exemplifies the maps seen in the volunteers, including the distinctively high values in the frontal white matter

observed previously (21).
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s�1 can be inferred using groups of 5 to 10 subjects per
group. This was true for all investigated brain regions
barring the LN, which showed higher variance.

Intracranial Tumor Study

Figure 6 shows FEXI parameter maps for each subject in
the meningioma and the astrocytoma groups, together
with coregistered T1W and FLAIR images. The meningi-
omas exhibited homogenously low AXR values, with the
clear exception of case (f), which we considered to be an
outlier. This case exhibited similar values of ADC and s

compared with the other meningiomas, although parts of
it exhibited a darker FLAIR contrast, a feature that was
also observed in parts of cases (a) and (c). This last find-
ing may be explained by a T2 reduction caused by a
more fibrous content. In the AXR maps of the astrocyto-
mas, the AXR was elevated compared with the normal
appearing brain, and the elevation seemed correlated
with the tumor outline in the T1W and FLAIR images.
The FEXI parameters obtained in solid parts of the
tumors are given in Table 3. The meningiomas exhibited
low AXR values (0.6 6 0.1 s�1, mean 6 standard devia-
tion), excluding the outlier for which AXR¼ 1.7 s�1. The
AXR values of astrocytomas (1.0 6 0.3 s�1) were signifi-
cantly higher according to both the t-test and the U-test
(DmAXR¼ 0.4 s�1, CI95¼ [0.2–0.6] s�1, P< 0.05). The astro-
cytomas also exhibited significantly higher ADC values

(1.2 6 0.2mm2/ms) compared with the meningiomas
(0.8 6 0.1mm2/ms).

Tumor specimen microphotos are showed in Figure 7.
In the neuropathological assessment, the meningioma
specimens were classified as grade I (44) with varying
histopathological types, including fibroblastic, syncytial,
and transitional. The outlier meningioma, case (f), was of
a transitional type and exhibited microscopic signs of
increased growth potential, bringing it close to grade II
(atypical). The astrocytoma specimens were classified as
grade II–IV (44), and were heterogeneous with respect to
cell density and signs of increased malignancy. In gen-
eral, the meningiomas exhibited a dense growth pattern
with high tissue cohesion and structures such as sheets
and bundles, and often contained elongated cells. In con-
trast, the astrocytomas exhibited a looser, more homoge-
neous tissue structure, and showed no obvious
anisotropy on the cellular scale.

DISCUSSION

FEXI employs DDE for measuring the AXR, a quantity
that cannot be estimated using ordinary DWI methods,
such as DTI or DKI. In this work, the FEXI protocol was
optimized for minimal AXR variance in the normal
brain.

The optimized protocol, presented in Table 1 and also
in (45), reduced the CV of the AXR by approximately

FIG. 5. Illustration of the test-retest repeatability of the AXR in the 18 healthy volunteers, by a scatter plot (left) and a Bland-Altman plot
(right). Test and retest AXR are denoted as AXRt1 and AXRt2, respectively; AXRmean is their mean; and DAXR is AXRt2 � AXRt1. In the

scatter plot, the line corresponds to zero test-retest difference, and in the Bland-Altman plot, the lines denote the mean (solid) and limits
(dashed) of a 95% confidence interval for AXR test-retest differences, taken across all ROIs and all subjects. The dots are test-retest
data pairs, color-coded by ROI. The plots (approximately) illustrate the measurement variance by distances of points to the middle lines,

intersubject variance by spread of same-colored points, and across-ROI variance by spread of clusters of different-colored points. The
points show good correlation and are clustered by ROI. A significant test-retest bias was observed in the ACR (12%).

Table 2
FEXI Test-Retest Results In the 18 Healthy Volunteersa

ROI ADC (mm2/ms) s AXR (s�1) CVAXR (%) (RVM)AXR (%)

ACR 0.7 6 0.1 0.3 6 0.1 1.8 6 0.3 14 60
ALIC 0.6 6 0.1 0.3 6 0.1 0.9 6 0.3 35 70

CC 0.7 6 0.1 0.4 6 0.1 0.3 6 0.2 78 68
CST 0.6 6 0.1 0.3 6 0.1 0.4 6 0.1 32 100
LN 0.7 6 0.1 0.1 6 0.1 1.2 6 0.6 46 76

TH 0.8 6 0.1 0.2 6 0.1 0.8 6 0.4 47 78

aShown for the 2	18 measurements are the ADC, sigma, and AXR (mean 6 standard deviation) along with the CV and the RVM for the

AXR. The AXR values were heterogeneous across the ROIs, and particularly high in the ACR.
Note: ACR, anterior corona radiata; ALIC, anterior limb of the internal capsule; CC, genu and splenium of the corpus callosum; CST,
cerebrospinal tract; LN, lenticular nucleus; TH, thalamus.
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40%, compared with the previously presented protocol
(21), corresponding to a reduction of more than 60% in
Taq. Further reduction of variance and/or Taq can be
achieved by technological improvements. The most
important limiting hardware factor in the optimization
was the maximal gradient amplitude (g), which attained
its upper limit (80 mT/m) despite accounting for a
duty-cycle limitation by increasing TR linearly with g.
Minimizing TE by using stronger gradients thus
increases the SNR more effectively than minimizing TR
to obtain more samples, at least for an assumed T2 of
50 ms. Systems with stronger gradients are available at
some sites, eg, 300 mT/m at the human connectome
scanner (46).

For performing FEXI on systems with different hard-
ware configurations, we recommend using the protocol
in Table 1 with small modifications. A change in the
SNR, eg, from using a coil with more channels (which
was eight in this study), should not affect the optimal
protocol, provided that the noise distribution remains
approximately Gaussian (SNR>2). A change in the
available sampling time, such as an increased Taq or a
reduced nslice, can be accommodated by adding extra
samples while preserving the ratios #bmin/#bmax and
#tmin

m /t
max�
m . A change in g, however, would affect TEf and

TE, and possibly the optima for bf and bmax. We make
two points concerning this matter. First, we do not rec-
ommend breaking the upper b-value limit (1300 s/mm2)

FIG. 6. Overview of the FEXI parameter maps in the six meningioma and five astrocytoma patients, together with coregistered T1W and

FLAIR images, all gamma-corrected with g¼0.7. The AXR values of the meningiomas were homogenously low (mean 6 standard devia-
tion, 0.6 6 0.1 s�1), excluding the meningioma outlier case (f) in which AXR¼1.7 s�1. The astrocytomas exhibited significantly higher
AXR values (1.0 6 0.3 s�1) and ADC values (1.2 6 0.2 versus 0.8 6 0.1mm2/ms). The outlier exhibited similar ADC and s to the other

meningiomas, although parts of it, and parts of cases (a) and (c), exhibited a darker FLAIR contrast, which could be caused by a more
fibrous content.

Table 3

FEXI Parameter Values In Meningiomas and Astrocytomasa

Group n ADC (mm2/ms) s AXR (s�1) CVAXR (%)

meningioma 6 0.8 6 0.1b 0.2 6 0.1 0.8 6 0.4 58

meningioma* 5 0.8 6 0.1c 0.2 6 0.1 0.6 6 0.1d 20
astrocytoma 5 1.2 6 0.2b,c 0.2 6 0.1 1.0 6 0.3d 26

aFEXI parameter values are presented, with group means and standard deviation, for the meningioma group (six patients, grade I) and
the astrocytoma group (five patients, grade II–IV). The meningioma* group is the meningioma group with one outlier excluded.
bastrocytoma versus meningioma, P<0.05, CI95% [0.3 0.6].
castrocytoma versus meningioma*, P<0.05, CI95% [0.2 0.7].
dastrocytoma versus meningioma*, P<0.05, CI95% [0.2 0.6].
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due to the bias it may cause in the FEXI model. Second,

the optimization performed with a halved upper limit of

g (40 mT/m) reduced the optimal values for bf and bmax

by approximately 200 s/mm2. As illustrated in Figure 3c,

b-value reductions of this magnitude, alone, have only a

small effect on the CV. Therefore, we conclude that most

clinical systems should get near-optimal performance

using slightly reduced values for bf and bmax.
When performing FEXI on other organs than the brain,

new optimizations, including whether to use more than

two mixing times, are necessary to account for differen-

ces in tissue priors and relaxation properties. Prelimi-

nary results using a FEXI protocol optimized for the

breast has already been presented (24). Generally, faster

exchange demands shorter mixing times, and vice versa,

due to the exponential coupling of AXR and tm (Eq. 3).

This is illustrated by the valley shape of the CV in Fig-

ure 3a. The valley can be seen as a “measurement win-

dow,” in which the timescales of the system (the

exchange time, ti) and the measurement (tm) are well

matched. Choosing the proper tm moves the window to

the AXR range of interest.
In the test-retest study, the AXR was highest in the

ACR and lowest in the CC, which also exhibited the

highest CV values. In periventricular structures such

as the CC, the AXR could be negatively biased by par-

tial volume effects with cerebrospinal fluid (CSF) (21).

Over all regions, the CV values of the AXR ranged

between 14 and 78%. This is relatively large compared

with other high b-value techniques, such as diffusion

kurtosis imaging (DKI), in which the CV is 4–8% for

mean diffusivity and fractional anisotropy, and 3–15%

for mean kurtosis and radial kurtosis (28). The values

of RVM, however, suggested that more than two thirds

of the variance in AXR was caused by measurement

noise, which is more than what has been estimated for

the DKI parameters (4–54%) (28). Variance in the AXR

can thus be effectively addressed by technological

advancements and system upgrades, if prolonged scan

times are not an option. Nevertheless, according to the

analysis of statistical power, regional mean differences

in the AXR of 0.3–0.5 s�1, thus comparable to the

observed increase in astrocytomas compared with

meningiomas (0.4 s�1), can already be inferred using

rather small groups of 5 to 10 subjects each. An AXR

effect size well beyond this (1–2 s�1) was reported by

Schilling et al from preliminary results of urea trans-

porter gene expression (23).
In the tumor study, there was a significant difference

in AXR between astrocytomas (1.0 6 0.3 s�1) and menin-

giomas (0.6 6 0.1 s�1), excluding a meningioma outlier.

The astrocytomas also exhibited a significantly higher

ADC (1.2 6 0.2 versus 0.8 6 0.1mm2/ms), but there are

reasons to suspect that these findings are independent.

First, the ADC is often related to tumor cell density (47),

and a higher ADC in the histopathologically less dense

astrocytomas is therefore unsurprising. Second, the AXR

has been shown to be uncorrelated with ADC in the

human brain in vivo (21). Finally, although the ADC is

sensitive to cell permeability, the effect is almost negligi-

ble until the permeability becomes very high (48). Inter-

estingly, ADC shows promise as a fast marker of

treatment response (49) due to its sensitivity to

treatment-induced tumor cell-kill (50). If the cell-kill is

preceded by permeability changes, the AXR may be an

even faster and more sensitive marker.
The main histopathological difference between the

tumor types was a denser, more cohesive, and structured

tissue of meningiomas compared with astrocytomas. We

hypothesize that higher tissue cohesion might reduce the

effective surface-to-volume ratio of the intracellular com-

partment and contribute to a lower intra-extracellular

FIG. 7. Microphotos of specimens of the surgically excised tumors. The meningiomas were grade I and had different histopathological

types: fibroblastic in cases (a), (b), (d), and (e), fibroblastic/syncytial in case (c), and transitional in case (f). The outlier meningioma case
(f) was close to grade II, as it exhibited microscopic signs of increased growth potential, such as slight nuclear atypia and pleomor-

phism, and incipient necroses. The astrocytomas were of different grades: IV in case (a) and (b), II and III in case (c) and (d), and II in
case (e). They exhibited different degrees of cell density and signs of increased malignancy, such as high mitotic activity, vascular prolif-
eration, and necrosis. The main histopathological difference between the tumor types was a denser and more cohesive tissue structure

of meningiomas and the presence of elongated cells and structures such as sheets or bundles.

1112 Lampinen et al



exchange rate. The hemorrhage seen in the outlier
meningioma was considered by the neuropathologist to
be of surgical origin, and not present at the time of the
MRI scan. However, it might have been inherent, signal-
ing an increased vascular leakage of more proliferative
tumors. Hemorrhage may otherwise cause elevated levels
of iron in the tissue, resulting in stronger background
gradients that may potentially affect the AXR quantifica-
tion. It is interesting that the meningioma outlier, which
exhibited an almost tripled AXR compared with the
others, was close to being grade II, and was suspected
possibly aggressive and invasive by the surgeon. Expres-
sion of AQP is considered conducive to cell migration
(51), and its upregulation has been demonstrated in
aggressive tumors, including high grade astrocytomas
(13–15). In this study, the tumor with the highest grade
(IV) also showed the highest AXR (1.4 s�1) among the
astrocytomas. We hypothesize that there might be a con-
nection between water exchange and tumor grade. This
should be tested in future studies using larger sample
sizes of multiple tumor types with different grades.

We identified six main limitations of this study. First,
the CRLB is a lower bound for parameter variance only if
the signal model is without bias, which is a strong
assumption. However, the CRLB showed a good agree-
ment with the simulated variance (Fig. 4). Also, we did
not address bias in the study, but focused on optimizing
the potential for observing population-wise differences
in the AXR. Sources of bias should be addressed in
future studies. Second, the CRLB cannot account for var-
iance caused by artifacts rather than thermal noise. We
observed that using an extrapolation-based motion cor-
rection (42) reduced the variance in AXR compared with
the preliminary results published previously (52), which
were based on the same test-retest data but used a con-
ventional motion correction. Third, the optimization did
not account for T2* blurring during sEPI. Fourth, the field
of view (FOV) in the slice direction was only 35 mm in
our implementation. This limitation may be resolved by
multiband excitation (53). With a multiband factor of
three, the FOV would be enhanced to 105 mm, which is
almost full brain coverage. Fifth, we observed an unex-
pected test-retest bias in the ACR, which we speculate
was induced by subjects turning their heads toward the
end of the session. Because subjects were in a supine
position, the largest rotation would happen frontally in
the brain. Sixth, predictions on group sizes must be
interpreted with care for comparisons involving a patho-
logical group, as the present analysis was based on var-
iance estimates in the normal brain.

CONCLUSIONS

We present an optimized 13-min clinical FEXI protocol
that reduced the CV of the AXR by approximately 40%,
and thus Taq by more than 60%. In the test-retest study,
the observed AXR variance was primarily caused by
measurement noise, rather than intersubject differences.
This promises additional CV reductions from technologi-
cal upgrades, such as better coils and stronger gradient
systems. Limited coverage can be addressed by, eg, mul-
tiband excitation. Already, with this protocol, group-

wise differences of a magnitude demonstrated between

meningiomas and astrocytomas would be inferable

between groups of 5 to 10 subjects. We conclude that

optimized FEXI has the ability to infer relevant differen-

ces in the AXR between two populations for small group

sizes.
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